Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

Omics analyses of Rehmannia glutinosa dedifferentiated and cambial meristematic cells reveal mechanisms of catalpol and indole alkaloid biosynthesis

Wed, 04/10/2023 - 12:00
BMC Plant Biol. 2023 Oct 5;23(1):463. doi: 10.1186/s12870-023-04478-3.ABSTRACTBACKGROUND: Rehmannia glutinosa is a rich source of terpenoids with a high medicinal reputation. The present study compared dedifferentiated cells (DDCs) and cambial meristematic cells (CMCs) cell cultures of R. glutinosa for terpenoid (catalpol) and indole alkaloid (IA) biosynthesis. In this regard, we used widely targeted metabolomics and transcriptome sequencing approaches together with the comparison of cell morphology, cell death (%), and catalpol production at different time points.RESULTS: We were able to identify CMCs based on their morphology and hypersensitivity to zeocin. CMCs showed higher dry weight content and better catalpol production compared to DDCs. The metabolome analysis revealed higher concentrations of IA, terpenoids, and catalpol in CMCs compared to DDCs. The transcriptome sequencing analysis showed that a total of 27,201 genes enriched in 139 pathways were differentially expressed. The higher catalpol concentration in CMCs is related to the expression changes in genes involved in acetyl-CoA and geranyl-PP biosynthesis, which are precursors for monoterpenoid biosynthesis. Moreover, the expressions of the four primary genes involved in monoterpenoid biosynthesis (NMD, CYP76A26, UGT6, and CYP76F14), along with a squalene monooxygenase, exhibit a strong association with the distinct catalpol biosynthesis. Contrarily, expression changes in AADC, STR, and RBG genes were consistent with the IA biosynthesis. Finally, we discussed the phytohormone signaling and transcription factors in relation to observed changes in metabolome.CONCLUSIONS: Overall, our study provides novel data for improving the catalpol and IA biosynthesis in R. glutinosa.PMID:37794352 | DOI:10.1186/s12870-023-04478-3

Genomic and metabolomic insights into the antimicrobial compounds and plant growth-promoting potential of Bacillus velezensis Q-426

Wed, 04/10/2023 - 12:00
BMC Genomics. 2023 Oct 4;24(1):589. doi: 10.1186/s12864-023-09662-1.ABSTRACTBACKGROUND: The Q-426 strain isolated from compost samples has excellent antifungal activities against a variety of plant pathogens. However, the complete genome of Q-426 is still unclear, which limits the potential application of Q-426.RESULTS: Genome sequencing revealed that Q-426 contains a single circular chromosome 4,086,827 bp in length, with 4691 coding sequences and an average GC content of 46.3%. The Q-426 strain has a high degree of collinearity with B. velezensis FZB42, B. velezensis SQR9, and B. amyloliquefaciens DSM7, and the strain was reidentified as B. velezensis Q-426 based on the homology analysis results. Many genes in the Q-426 genome have plant growth-promoting activity, including the secondary metabolites of lipopeptides. Genome mining revealed 14 clusters and 732 genes encoding secondary metabolites with predicted functions, including the surfactin, iturin, and fengycin families. In addition, twelve lipopeptides (surfactin, iturin and fengycin) were successfully detected from the fermentation broth of B. velezensis Q-426 by ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS/MS), which is consistent with the genome analysis results. We found that Q-426 produced indole-3-acetic acid (IAA) at 1.56 mg/l on the third day of incubation, which might promote the growth of plants. Moreover, we identified eighteen volatile compounds (VOCs, including 2-heptanone, 6-methylheptan-2-one, 5-methylheptan-2-one, 2-nonanone, 2-decanone, 2-undecanone, 2-dodecanone, 2-tridecanone, 2-tetradecanone, 2-nonadecanone, pentadecanoic acid, oleic acid, dethyl phthalate, dibutyl phthalate, methyl (9E,12E)-octadeca-9,12-dienoate), pentadecane, (6E,10E)-1,2,3,4,4a,5,8,9,12,12a-decahydro-1,4-methanobenzo[10]annulene, and nonanal) based on gas chromatograph-mass spectrometer (GC/MS) results.CONCLUSIONS: We mined secondary metabolite-related genes from the genome based on whole-genome sequence results. Our study laid the theoretical foundation for the development of secondary metabolites and the application of B. velezensis Q-426. Our findings provide insights into the genetic characteristics responsible for the bioactivities and potential application of B. velezensis Q-426 as a plant growth-promoting strain in ecological agriculture.PMID:37794314 | DOI:10.1186/s12864-023-09662-1

Mechanistic insight into the adjuvant effect of co-exposure to ultrafine carbon black and high humidity on allergic asthma

Wed, 04/10/2023 - 12:00
Environ Geochem Health. 2023 Oct 4. doi: 10.1007/s10653-023-01764-9. Online ahead of print.ABSTRACTRespiratory diseases continue to be a major global concern, with allergies and asthma often discussed as critical areas of study. While the role of environmental risk factors, such as non-allergenic pollutants and high humidity, in asthma induction is often mentioned, there is still a lack of thorough research on their co-exposure. This study aims to investigate the adjuvant effect of ultrafine carbon black (30-50 nm) and high humidity (70% relative humidity) on the induction of allergic asthma. A mouse model of asthma was established using ovalbumin, and airway hyperresponsiveness, remodeling, and inflammation were measured as the endpoint effects of asthma. The mediating role of the oxidative stress pathway and the transient receptor potential vanilloid 1 pathway in asthma induction was validated using pathway inhibitors vitamin E and capsaicin, respectively. Co-exposure to ultrafine carbon black and high humidity had a significant impact on metabolic pathways in the lung, including aminoacyl-tRNA biosynthesis, glycerophospholipid metabolism, and ATP-binding cassette transporters. However, administering vitamin E and capsaicin altered the effects of co-exposure on the lung metabolome. These results offer new insights into the health risk assessment of co-exposure to environmental risk factors and provide an important reference point for the prevention and treatment of allergic asthma.PMID:37794280 | DOI:10.1007/s10653-023-01764-9

Association of Placental Tissue Metabolite Levels with Gestational Diabetes Mellitus: a Metabolomics Study

Wed, 04/10/2023 - 12:00
Reprod Sci. 2023 Oct 4. doi: 10.1007/s43032-023-01353-2. Online ahead of print.ABSTRACTThe purpose of the study is to investigate the metabolic characteristics of placental tissue in patients diagnosed with gestational diabetes mellitus (GDM). Ultra-performance liquid chromatography-mass spectrometry (UPLC-MS/MS) was employed to qualitatively and quantitatively analyze the metabolites in placental tissues obtained from 25 healthy pregnant women and 25 pregnant women diagnosed with GDM. Multilevel statistical methods are applied to process intricate metabolomics data. Meanwhile, we applied machine learning techniques to identify biomarkers that could potentially predict the risk of long-term complications in patients with GDM as well as their offspring. We identified 1902 annotated metabolites, out of which 212 metabolites exhibited significant differences in GDM placentas. In addition, the study identifies a set of risk biomarkers that effectively predict the likelihood of long-term complications in both pregnant women with GDM and their offspring. The accuracy of this panel was measured by the area under the receiver operating characteristic curve (ROC), which was found to be 0.992 and 0.960 in the training and validation sets, respectively. This study enhances our understanding of GDM pathogenesis through metabolomics. Furthermore, the panel of risk markers identified could prove to be a valuable tool in predicting potential long-term complications for both GDM patients and their offspring.PMID:37794198 | DOI:10.1007/s43032-023-01353-2

Growth of alfalfa in the presence of metabolites from a dark septate endophyte strain Alternaria sp. 17463 cultured with a non-ionic surfactant and emulsifier

Wed, 04/10/2023 - 12:00
J Appl Microbiol. 2023 Oct 4:lxad226. doi: 10.1093/jambio/lxad226. Online ahead of print.ABSTRACTAIM: Dark septate endophytes (DSE) was widely used in the agriculture and ecological restoration. The objective of this work was to assess the effect of culture media non-ionic surfactant and emulsifier on the biomass and metabolites of DSE strain Alternaria sp. 17463.METHODS AND RESULTS: Changes in the composition of DSE metabolites following the addition of Tween 80 during liquid culture of a DSE fungus were analyzed and used in growth tests of alfalfa.Shaking flask fermentation was carried out and the surfactant was fed to the fungus during the fermentation. The residual sugar content and pH declined significantly in the medium and the biomass of DSE increased by 7.27% over controls with no surfactant. Metabolomics analysis showed that adding the surfactant significantly increased the content of 63 metabolites (P < 0.05). These include lipids and lipid-like molecules, organooxygen compounds, amino acids and organic acids, and flavonoids. Enrichment analysis of metabolic pathways indicates that surfactant addition promoted carbohydrate metabolism and amino acid synthesis. A plant hydroponic experiment indicated that these changes in metabolites altered the root structure of alfalfa seedlings. They also promoted significant increases in root length and root surface area, and increased alfalfa total biomass by 50.2%.CONCLUSIONS: Addition of the surfactant promoted sugar utilization by the DSE fungus and increased the synthesis of lipids and amino acids, resulting in the ability of the fungal metabolites to change root structure and promote plant growth.PMID:37793812 | DOI:10.1093/jambio/lxad226

Bioactive and chemically defined hydrogels with tunable stiffness guide cerebral organoid formation and modulate multi-omics plasticity in cerebral organoids

Wed, 04/10/2023 - 12:00
Acta Biomater. 2023 Oct 2:S1742-7061(23)00588-3. doi: 10.1016/j.actbio.2023.09.040. Online ahead of print.ABSTRACTOrganoids are an emerging technology with great potential in human disease modelling, drug development, diagnosis, tissue engineering, and regenerative medicine. Organoids as 3D-tissue culture systems have gained special attention in the past decades due to their ability to faithfully recapitulate the complexity of organ-specific tissues. Despite considerable successes in culturing physiologically relevant organoids, their real-life applications are currently limited by challenges such as scarcity of an appropriate biomimetic matrix. Peptide amphiphiles (PAs) due to their well-defined chemistry, tunable bioactivity, and extracellular matrix (ECM)-like nanofibrous architecture represent an attractive material scaffold for organoids development. Using cerebral organoids (COs) as exemplar, we demonstrate the possibility to create bio-instructive hydrogels with tunable stiffness ranging from 0.69 kPa to 2.24 kPa to culture and induce COs growth. We used orthogonal chemistry involving oxidative coupling and supramolecular interactions to create two-component hydrogels integrating the bio-instructive activity and ECM-like nanofibrous architecture of a laminin-mimetic PAs (IKVAV-PA) and tunable crosslinking density of hyaluronic acid functionalized with tyramine (HA-Try). Multi-omics technology including transcriptomics, proteomics, and metabolomics reveals the induction and growth of COs in soft HA-Tyr hydrogels containing PA-IKVAV such that the COs display morphology and biomolecular signatures similar to those grown in Matrigel scaffolds. Our materials hold great promise as a safe synthetic ECM for COs induction and growth. Our approach represents a well-defined alternative to animal-derived matrices for the culture of COs and might expand the applicability of organoids in basic and clinical research. STATEMENT OF SIGNIFICANCE: Synthetic bio-instructive materials which display tissue-specific functionality and nanoscale architecture of the native extracellular matrix are attractive matrices for organoids development. These synthetic matrices are chemically defined and animal-free compared to current gold standard matrices such as Matrigel. Here, we developed hydrogel matrices with tunable stiffness, which incorporate laminin-mimetic peptide amphiphiles to grow and expand cerebral organoids. Using multi-omics tools, the present study provides exciting data on the effects of neuro-inductive cues on the biomolecular profiles of brain organoids.PMID:37793600 | DOI:10.1016/j.actbio.2023.09.040

Salivary metabolomics for oral leukoplakia : a viewpoint

Wed, 04/10/2023 - 12:00
J Stomatol Oral Maxillofac Surg. 2023 Oct 2:101652. doi: 10.1016/j.jormas.2023.101652. Online ahead of print.NO ABSTRACTPMID:37793570 | DOI:10.1016/j.jormas.2023.101652

Staphylococcus aureus adapts to the immunometabolite itaconic acid by inducing acid and oxidative stress responses including S-bacillithiolations and S-itaconations

Wed, 04/10/2023 - 12:00
Free Radic Biol Med. 2023 Oct 2:S0891-5849(23)00656-1. doi: 10.1016/j.freeradbiomed.2023.09.031. Online ahead of print.ABSTRACTStaphylococcus aureus is a major pathogen, which has to defend against reactive oxygen and electrophilic species encountered during infections. Activated macrophages produce the immunometabolite itaconate as potent electrophile and antimicrobial upon pathogen infection. In this work, we used transcriptomics, metabolomics and shotgun redox proteomics to investigate the specific stress responses, metabolic changes and redox modifications caused by sublethal concentrations of itaconic acid in S. aureus. In the RNA-seq transcriptome, itaconic acid caused the induction of the GlnR, KdpDE, CidR, SigB, GraRS, PerR, CtsR and HrcA regulons and the urease-encoding operon, revealing an acid and oxidative stress response and impaired proteostasis. Neutralization using external urea as ammonium source improved the growth and decreased the expression of the glutamine synthetase-controlling GlnR regulon, indicating that S. aureus experienced ammonium starvation upon itaconic acid stress. In the extracellular metabolome, the amounts of acetate and formate were decreased, while secretion of pyruvate and the neutral product acetoin were strongly enhanced to avoid intracellular acidification. Exposure to itaconic acid affected the amino acid uptake and metabolism as revealed by the strong intracellular accumulation of lysine, threonine, histidine, aspartate, alanine, valine, leucine, isoleucine, cysteine and methionine. In the proteome, itaconic acid caused widespread S-bacillithiolation and S-itaconation of redox-sensitive antioxidant and metabolic enzymes, ribosomal proteins and translation factors in S. aureus, supporting its oxidative and electrophilic mode of action in S. aureus. In phenotype analyses, the catalase KatA, the low molecular weight thiol bacillithiol and the urease provided protection against itaconic acid-induced oxidative and acid stress in S. aureus. Altogether, our results revealed that under physiological infection conditions, such as in the acidic phagolysome, itaconic acid is a highly effective antimicrobial against multi-resistant S. aureus isolates, which acts as weak acid causing an acid, oxidative and electrophilic stress response, leading to S-bacillithiolation and itaconation.PMID:37793500 | DOI:10.1016/j.freeradbiomed.2023.09.031

Altered intestinal microbial flora and metabolism in patients with idiopathic membranous nephropathy

Wed, 04/10/2023 - 12:00
Am J Nephrol. 2023 Oct 4. doi: 10.1159/000533537. Online ahead of print.ABSTRACTINTRODUCTION: Dysbiosis of the intestinal microbiome and related metabolites have been observed in chronic kidney disease (CKD), yet their roles in idiopathic membranous nephropathy (IMN) is poorly understood.METHODS: In this study, we describe the variation of intestinal bacteria and fecal metabolites in patients with IMN in Chinese population. Stool samples are collected from 41 IMN patients at the beginning of diagnosis confirmation and 41 gender and age matched healthy control (HC). Microbial communities are investigated by sequencing of 16S rRNA genes and functional profiles predicted using Tax4Fun, and the correlation between intestinal bacteria and IMN clinical characteristics is also analyzed. Untargeted metabolomic analysis is performed to explore the relationship between colon's microbiota and fecal metabolites.RESULTS: IMN gastrointestinal microbiota demonstrates lower richness and diversity compared to HC, and exhibits a marked taxonomic and inferred functional dysbiosis when compared to HC. Some genera are closely related to the clinical parameters, such as Citrobacter and Akkermansia. 20 characteristic microbial biomarkers are selected to establish a disease prediction model with a diagnostic accuracy of 93.53%. Fecal metabolomics shows that tryptophan metabolism is reduced in IMN patients but uremic toxin accumulation in feces is not noticeable. Fecal microbiota transplantation demonstrates that gut dysbiosis impairs gut permeability in microbiota-depleted mice and induces NOD-like receptor activation in kidneys.DISCUSSION/CONCLUSIONS: Clarifying the changes in intestinal microbiota in IMN patients will help further know the pathogenesis of this disease, and microbiota-targeted biomarkers will provide a potentially powerful tool for diagnosing and treating IMN.PMID:37793354 | DOI:10.1159/000533537

Proteomics to metabolomics: A new insight into the pathogenesis of hypertensive nephropathy

Wed, 04/10/2023 - 12:00
Kidney Blood Press Res. 2023 Oct 4. doi: 10.1159/000534354. Online ahead of print.ABSTRACTBACKGROUND: Hypertensive nephropathy (HN) is a high burden disorder and a leading cause of end-stage renal disorder. In spite of huge investigations, the underlying mechanisms are yet largely unknown. Systems biology is a promising approach to provide a comprehensive insight towards this complex disorder.METHODS: Protein expression profiles of kidney tubule and cortex sub-compartments were retrieved from the PRIDE database and the quality of the datasets were assessed using principal component analysis (PCA) and hierarchical clustering. Differentially expressed proteins (DEPs) were detected and their attributed metabolites were enriched and their interactions were assessed in multi-layer networks. Moreover, considering the DEPs and the predicted metabolites, key biomedical phenomena with a leading role in HN pathogenesis were proposed.RESULTS: Amino acid and purine metabolisms are the most prominent alteration in kidney cortex whereas dysregulation of energy hemostasis is a key pathogenic mechanism in tubule. Besides, actin cytoskeleton disorganization is an enriched pathway in both anatomical areas.CONCLUSION: The proteomics profiles of kidney sub-compartments were analyzed using a top-down approach to infer the main pathogenic processes. The constructed holistic map of HN can be exploited to propose novel therapeutic strategies.PMID:37793351 | DOI:10.1159/000534354

The joint action of biochar and plant roots on U-stressed soil remediation: Insights from bacteriomics and metabolomics

Wed, 04/10/2023 - 12:00
J Hazard Mater. 2023 Sep 29;461:132635. doi: 10.1016/j.jhazmat.2023.132635. Online ahead of print.ABSTRACTAlthough biological remediation of U-stressed soil has been studied for a long time, the combined effects of biochar and plant roots are rarely discussed and its influence on rhizosphere microecology are still unknown. Based on pot experiments, we explored the combined efforts of biochar addition and plant roots on U-stressed rhizosphere soil in several ways, including soil physicochemical properties, soil enzyme activities, uranium chemical speciation, bacterial community structure and metabolic pathways. Our results indicates that the content of DTPA-extractable U decreased by 49.31% after biochar and plant roots application, whereas plant roots only treatment just decreased by 25.46%. Further research has found that the pH, CEC, enzyme activities and nutritional level of rhizosphere soil were more significantly improved after biochar and plant roots application. Meanwhile, the abundance and diversity of bacterial community was also upregulated, which was also suggested by the stronger metabolisms of lipids, carbohydrate, nucleotides as well as amino acids. Correlation analyses also certified the positive associations between soil properties, bacterial communities and metabolism. We speculated that the uranium immobilization was mainly attributed to the direct fixation of biochar for its alkalinity, CEC, DOC, etc. and the joint action of biochar and plant roots for their stimulating effects on bacteria. Our findings suggested that combination of biochar and plant roots could limit bioaccessibility of U in a larger extend than plant roots only, which may be a better strategy for rapid remediation of U-streesed soil.PMID:37793252 | DOI:10.1016/j.jhazmat.2023.132635

Molecular Mechanism of ε-Polylysine Treatment of Animal-Derived Foods: <em>Glycine Amidinotransferase</em> Activity Implicates Upregulation of l-Arginine and Creatine

Wed, 04/10/2023 - 12:00
J Agric Food Chem. 2023 Oct 4. doi: 10.1021/acs.jafc.3c04033. Online ahead of print.ABSTRACTε-Polylysine is a novel food preservative approved by the U.S. Food and Drug Administration (FDA), yet the mechanism of its effect on animal-derived foods remains unclear. Assessment of the effect of preservatives on goat meat products is necessary. Herein, metabolite accumulation and protein expression of ε-polylysine (0.025%, w/w) spiked with goat meat were investigated by nontarget metabolomics and proteomics combined with ultrahigh performance liquid chromatography quadrupole-Orbitrap high-resolution-mass spectrometry (UHPLC-Q-Orbitrap HRMS) in a simulated in vitro digestion model. The amino side chain of ε-polylysine increased the activity of glycine aminotransferase due to its nucleophilic nature, inducing a significant upregulation of l-arginine (0.43-0.72 mg kg-1) and creatine (3.98-6.89 mg kg-1), with an improvement in muscle quality of goat meat. Downregulation of enzyme phenylalanine hydroxylase expression led to upregulation of l-phenylalanine (2.26-3.25 mg kg-1) and l-tyrosine (0.98-1.29 mg kg-1). Collectively, this study first revealed the biochemical mechanism of ε-polylysine in goat meat products, which makes available new prospects for more accurate use of ε-polylysine in animal-derived foods.PMID:37793042 | DOI:10.1021/acs.jafc.3c04033

Metabolomic analysis of Drosophila melanogaster larvae lacking Pyruvate kinase

Wed, 04/10/2023 - 12:00
G3 (Bethesda). 2023 Oct 4:jkad228. doi: 10.1093/g3journal/jkad228. Online ahead of print.ABSTRACTPyruvate kinase (Pyk) is a rate-limiting enzyme that catalyzes the final metabolic reaction in glycolysis. The importance of this enzyme, however, extends far beyond ATP production, as Pyk is also known to regulate tissue growth, cell proliferation, and development. Studies of this enzyme in Drosophila melanogaster are complicated by the fact that the fly genome encodes six Pyk paralogs whose functions remain poorly defined. To address this issue, we used sequence distance and phylogenetic approaches to demonstrate that the gene Pyk encodes the enzyme most similar to the mammalian Pyk orthologs, while the other five Drosophila Pyk paralogs have significantly diverged from the canonical enzyme. Consistent with this observation, metabolomic studies of two different Pyk mutant strains revealed that larvae lacking Pyk exhibit a severe block in glycolysis, with a buildup of glycolytic intermediates upstream of pyruvate. However, our analysis also unexpectedly reveals that pyruvate levels are unchanged in Pyk mutants, indicating that larval metabolism maintains pyruvate pool size despite severe metabolic limitations. Consistent with our metabolomic findings, a complementary RNA-seq analysis revealed that genes involved in lipid metabolism and protease activity are elevated in Pyk mutants, again indicating that loss of this glycolytic enzyme induces compensatory changes in other aspects of metabolism. Overall, our study provides both insight into how Drosophila larval metabolism adapts to disruption of glycolytic metabolism as well as immediate clinical relevance, considering that Pyk deficiency is the most common congenital enzymatic defect in humans.PMID:37792629 | DOI:10.1093/g3journal/jkad228

Spatiotemporal modeling of chemoresistance evolution in breast tumors uncovers dependencies on SLC38A7 and SLC46A1

Wed, 04/10/2023 - 12:00
Cell Rep. 2023 Oct 3;42(10):113191. doi: 10.1016/j.celrep.2023.113191. Online ahead of print.ABSTRACTIn solid tumors, drug concentrations decrease with distance from blood vessels. However, cellular adaptations accompanying the gradated exposure of cancer cells to drugs are largely unknown. Here, we modeled the spatiotemporal changes promoting chemotherapy resistance in breast cancer. Using pairwise cell competition assays at each step during the acquisition of chemoresistance, we reveal an important priming phase that renders cancer cells previously exposed to sublethal drug concentrations refractory to dose escalation. Therapy-resistant cells throughout the concentration gradient display higher expression of the solute carriers SLC38A7 and SLC46A1 and elevated intracellular concentrations of their associated metabolites. Reduced levels of SLC38A7 and SLC46A1 diminish the proliferative potential of cancer cells, and elevated expression of these SLCs in breast tumors from patients correlates with reduced survival. Our work provides mechanistic evidence to support dose-intensive treatment modalities for patients with solid tumors and reveals two members of the SLC family as potential actionable targets.PMID:37792528 | DOI:10.1016/j.celrep.2023.113191

Holistic view of heat acclimation alleviated intestinal lesion in mice with heat stroke based on microbiome-metabolomics analysis

Wed, 04/10/2023 - 12:00
Microb Biotechnol. 2023 Oct 4. doi: 10.1111/1751-7915.14349. Online ahead of print.ABSTRACTThe severity of heat stroke (HS) is associated with intestinal injury, which is generally considered an essential issue for HS. Heat acclimation (HA) is considered the best strategy to protect against HS. In addition, HA has a protective effect on intestinal injuries caused by HS. Considering the essential role of gut microbes in intestinal structure and function, we decided to investigate the potential protective mechanism of HA in reducing intestinal injury caused by HS. HA model was established by male C57BL/6J mice (5-6 weeks old, 17-19 g) were exposed at (34 ± 0.7)°C for 4 weeks to establish an animal HA model. The protective effect of HA on intestinal barrier injury in HS was investigated by 16S rRNA gene sequencing and nontargeted liquid chromatography-mass spectrometry (LC-MS) metabolomics. According to the experimental results, HA can change the composition of the gut microbiota, which increases the proportion of lactobacilli, faecal bacteria, and urinobacteria but decreases the proportion of deoxycholic acid. Moreover, HA can reduce liver and kidney injury and systemic inflammation caused by HS and reduce intestinal injury by enhancing the integrity of the intestinal barrier. In addition, HA regulates inflammation by inhibiting NF-κB signalling and increasing tight junction protein expression in HS mice. HA induces changes in the gut microbiota, which may enhance tight junction protein expression, thereby reducing intestinal inflammation, promoting bile acid metabolism, and ultimately maintaining the integrity of the intestinal barrier. In conclusion, HA induced changes in the gut microbiota. Among the gut microbiota, lactobacilli may play a key role in the potential protective mechanism of HA.PMID:37792264 | DOI:10.1111/1751-7915.14349

Volatile profiling distinguishes <em>Streptococcus pyogenes</em> from other respiratory streptococcal species

Wed, 04/10/2023 - 12:00
mSphere. 2023 Oct 4:e0019423. doi: 10.1128/msphere.00194-23. Online ahead of print.ABSTRACTSore throat is one of the most common complaints encountered in the ambulatory clinical setting. Rapid, culture-independent diagnostic techniques that do not rely on pharyngeal swabs would be highly valuable as a point-of-care strategy to guide outpatient antibiotic treatment. Despite the promise of this approach, efforts to detect volatiles during oropharyngeal infection have yet been limited. In our research study, we sought to evaluate for specific bacterial volatile organic compounds (VOC) biomarkers in isolated cultures in vitro, in order to establish proof-of-concept prior to initial clinical studies of breath biomarkers. A particular challenge for the diagnosis of pharyngitis due to Streptococcus pyogenes is the likelihood that many metabolites may be shared by S. pyogenes and other related oropharyngeal colonizing bacterial species. Therefore, we evaluated whether sufficient metabolic differences are present, which distinguish the volatile metabolome of Group A streptococci from other streptococcal species that also colonize the respiratory mucosa, such as Streptococcus pneumoniae and Streptococcus intermedius. In this work, we identified 27 discriminatory VOCs (q-values < 0.05), composed of aldehydes, alcohols, nitrogen-containing compounds, hydrocarbons, ketones, aromatic compounds, esters, ethers, and carboxylic acid. From this group of volatiles, we identify candidate biomarkers that distinguish S. pyogenes from other species and establish highly produced VOCs that indicate the presence of S. pyogenes in vitro, supporting future breath-based diagnostic testing for streptococcal pharyngitis. IMPORTANCE Acute pharyngitis accounts for approximately 15 million ambulatory care visits in the United States. The most common and important bacterial cause of pharyngitis is Streptococcus pyogenesis, accounting for 15%-30% of pediatric pharyngitis. Distinguishing between bacterial and viral pharyngitis is key to management in US practice. The culture of a specimen obtained by a throat swab is the standard laboratory procedure for the microbiologic confirmation of pharyngitis; however, this method is time-consuming, which delays appropriate treatment. If left untreated, S. pyogenes pharyngitis may lead to local and distant complications. In this study, we characterized the volatile metabolomes of S. pyogenes and other related oropharyngeal colonizing bacterial species. We identify candidate biomarkers that distinguish S. pyogenes from other species and provide evidence to support future breath-based diagnostic testing for streptococcal pharyngitis.PMID:37791788 | DOI:10.1128/msphere.00194-23

NAMPT/SIRT1 Expression Levels in White Blood Cells Differentiate the Different Rheumatoid Arthritis Subsets: An Inspiration from Traditional Chinese Medicine

Wed, 04/10/2023 - 12:00
J Inflamm Res. 2023 Sep 26;16:4271-4285. doi: 10.2147/JIR.S431600. eCollection 2023.ABSTRACTBACKGROUND: Rheumatoid arthritis (RA) patients are prone to developing different metabolic complications. Traditional Chinese Medicine attributes this uncertainty to varied syndrome types.METHODS AND RESULTS: We retrospectively analyzed some serological indicators of active RA patients and healthy individuals. Randomly selected RA patients were divided into three groups according to NAMPT and SIRT1 expression levels in white blood cells (WBCs). Their disease severity and metabolic status were compared. Representative blood samples were subjected to a UPLC-MS/MS-based metabolomics analysis. Different human WBCs were treated with oleic acid and palmitic acid in vitro. The results indicated that blood glucose and lipid levels were decreased in RA patients, but their decrease was not in accordance with disease severity. Nutrients in the patients highly expressing SIRT1 were well preserved, with the lowest levels of RF and β-CTX and the highest levels of adiponectin and resistin. Most of them exhibited cold symptoms. When SIRT1 deficiency was obvious, lipid depletion became evident, irrespective of expression levels of NAMPT. Simultaneous high-expression of SIRT1 and NAMPT coincided with the increase in production of lactic acid and the prevalence of hot symptoms. Despite the low levels of IL-6, joint injuries were severe. The corresponding WBCs were especially sensitive to fatty acids anti-inflammatory treatments. The levels of CCL27, CCL11, CCL5, AKP, CRP and ESR were similar among all the groups.CONCLUSION: NAMPT overexpression is a risk factor for joint injuries and nutrient depletion in RA. Supplementation with lipids would exert beneficial effects on these RA patients. Its aftermath would cause even severe inflammation. Contrarily, SIRT1 up-regulation restrains inflammation and lipid depletion.PMID:37791116 | PMC:PMC10543492 | DOI:10.2147/JIR.S431600

Human bone marrow stromal cells: the impact of anticoagulants on stem cell properties

Wed, 04/10/2023 - 12:00
Front Cell Dev Biol. 2023 Sep 18;11:1255823. doi: 10.3389/fcell.2023.1255823. eCollection 2023.ABSTRACTBackground: Bone marrow stromal cells (BMSCs) are the source of multipotent stem cells, which are important for regenerative medicine and diagnostic purposes. The isolation of human BMSCs from the bone marrow (BM) cavity using BM aspiration applies the method with collection into tubes containing anticoagulants. Interactions with anticoagulants may affect the characteristics and composition of isolated BMSCs in the culture. Thus, we investigated how anticoagulants in isolation procedures and cultivation affect BMSC molecular characteristics. Methods: BM donors (age: 48-85 years) were recruited from the hematology clinic. BM aspirates were obtained from the iliac crest and divided into tubes coated with ethylenediaminetetraacetic acid (EDTA) or heparin anticoagulants. Isolated BMSCs were analyzed by flow cytometry and RNA-seq analysis. Further cellular and molecular characterizations of BMSCs including CFU, proliferation and differentiation assays, cytometry, bioenergetic assays, metabolomics, immunostaining, and RT-qPCR were performed. Results: The paired samples of isolated BMSCs obtained from the same patient showed increased cellular yield in heparin vs. EDTA samples, accompanied by the increased number of CFU colonies. However, no significant changes in molecular characteristics were found between heparin- and EDTA-isolated BMSCs. On the other hand, RNA-seq analysis revealed an increased expression of genes involved in nucleotide metabolism and cellular metabolism in cultivated vs. non-cultivated BMSCs regardless of the anticoagulant, while genes involved in inflammation and chromatin remodeling were decreased in cultivated vs. non-cultivated BMSCs. Conclusion: The type of anticoagulant in BMSC isolation did not have a significant impact on molecular characteristics and cellular composition, while in vitro cultivation caused the major change in the transcriptomics of BMSCs, which is important for future protocols using BMSCs in regenerative medicine and clinics.PMID:37791077 | PMC:PMC10544901 | DOI:10.3389/fcell.2023.1255823

Sustained organic amendments utilization enhances ratoon crop growth and soil quality by enriching beneficial metabolites and suppressing pathogenic bacteria

Wed, 04/10/2023 - 12:00
Front Plant Sci. 2023 Sep 18;14:1273546. doi: 10.3389/fpls.2023.1273546. eCollection 2023.ABSTRACTINTRODUCTION: Organic soil amendments such as filter mud (FM) and biochar (BC) can potentially influence the abundance and composition of metabolites. However, our current understanding of the stimulatory effects of FM and BC's long-term impact on stress-regulating metabolites, such as abscisic acid (ABA), jasmonic acid (JA), melatonin, and phenyllactic acid (PLA), and these substrates regulatory effects on disease-causing bacteria in sugarcane ratooning field, which is susceptible to nutrients depletion, diseases, etc., remain poorly understood. Additionally, little is known about how the long-term interaction of these substrates and compounds influences sugarcane ratooning soil enzyme activities, nutrient cycling, and crop growth performance.METHODS: To answer these questions, we adopted metabolomics tools combined with high-throughput sequencing to explore the stimulatory effects of the long-term addition of FM and BC on metabolites (e.g., PLA and abscisic aldehyde) and quantify these substrates' regulatory effects on disease-causing bacteria, soil enzyme activities, nutrient cycling, and crop growth performance.RESULTS: The result revealed that ratoon crop weight, stem diameter, sugar content, as well as soil physico-chemical properties, including soil nitrate (NH3 +-N), organic matter (OM), total nitrogen (TN), total carbon (TC), and β-glucosidase, marked a significant increase under the BC and FM-amended soils. Whereas soil available potassium (AK), NO3 -N, cellulase activity, and phosphatase peaked under the BC-amended soil, primarily due to the enduring effects of these substrates and metabolites. Furthermore, BC and FM-amended soils enriched specific stress-regulating metabolites, including JA, melatonin, abscisic aldehyde, etc. The sustained effects of both BC and FM-amended soils suppressed disease-causing bacteria, eventually promoting ratooning soil growth conditions. A number of key bioactive compounds had distinct associations with several beneficial bacteria and soil physico-chemical properties.DISCUSSION: This study proves that long-term BC and FM application is one of the eco-friendly strategies to promote ratoon crop growth and soil quality through the enrichment of stress-regulating metabolites and the suppression of disease-causing bacteria.PMID:37790789 | PMC:PMC10544933 | DOI:10.3389/fpls.2023.1273546

Metabolomics and transcriptomics analyses for characterizing the alkaloid metabolism of Chinese jujube and sour jujube fruits

Wed, 04/10/2023 - 12:00
Front Plant Sci. 2023 Sep 18;14:1267758. doi: 10.3389/fpls.2023.1267758. eCollection 2023.ABSTRACTINTRODUCTION: Jujube is an important economic forest tree whose fruit is rich in alkaloids. Chinese jujube (Ziziphus jujuba Mill.) and sour jujube (Ziziphus spinosa Hu.) are the two most important species of the jujube genus. However, the mechanisms underlying the synthesis and metabolism of alkaloids in jujube fruits remain poorly understood.METHODS: In this study, the fruits of Ziziphus jujuba 'Hupingzao' and Ziziphus spinosa 'Taigusuanzao' in different harvest stages were used as test materials, we first integrated widely targeted metabolomics and transcriptomics analyses to elucidate the metabolism of alkaloids of jujube fruits.RESULTS: In the metabolomics analysis, 44 alkaloid metabolites were identified in 4 samples, 3 of which were unique to sour jujube fruit. The differential alkaloid metabolites (DAMs) were more accumulated in sour jujube than in Chinese jujube; further, they were more accumulated in the white ripening stage than in the red stage. DAMs were annotated to 12 metabolic pathways. Additionally, transcriptomics data revealed 259 differentially expressed genes (DEGs) involved in alkaloid synthesis and metabolism. By mapping the regulatory networks of DAMs and DEGs, we screened out important metabolites and 11 candidate genes.DISCUSSION: This study preliminarily elucidated the molecular mechanism of jujube alkaloid synthesis. The candidate genes regulated the synthesis of key alkaloid metabolites, but the specific regulation mechanism is unclear. Taken together, our results provide insights into the metabolic networks of alkaloid synthesis in Chinese jujube and sour jujube fruits at different harvest stages, thereby providing a theoretical reference for further research on the regulatory mechanism of jujube alkaloids and their development and utilization.PMID:37790781 | PMC:PMC10544937 | DOI:10.3389/fpls.2023.1267758

Pages