Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

Apple consumption affects cecal health by regulating 12<em>S</em>-hydroxy-5<em>Z</em>,8<em>Z</em>,10<em>E</em>,14<em>Z</em>-eicosatetraenoic acid (12(<em>S</em>)-HETE) levels through modifying the microbiota in rats

Thu, 05/10/2023 - 12:00
Food Funct. 2023 Oct 5. doi: 10.1039/d3fo03207h. Online ahead of print.ABSTRACTApples are rich in many nutrients and functional components. However, the mechanism of the effect of fresh apple consumption on rats remains unclear. In the present study, fresh apples (10 g kg-1) were added to the diet of Wistar rats, and changes in the microbiota and metabolite content of the cecum were analyzed after 28 days of feeding, and changes in the 12S-hydroxy-5Z,8Z,10E,14Z-eicosatetraenoic acid (12(S)-HETE) content and indicators related to inflammation, oxidative stress, and apoptosis were detected. Subsequently, a fecal microbiota transplantation (FMT) protocol was designed and carried out to verify the relationship between the microbiota and 12(S)-HETE, the cecal structure, and inflammatory factors. The results show that apple consumption significantly reduced the serum levels of alanine aminotransferase (ALT) and immunoglobulin G (IgG), altered the cecal histomorphology, and significantly upregulated the gene expression of claudin-1 and zonula occludens-1 (ZO-1), which encode tight junction proteins. Apple consumption also changed the structure of the cecal microbiota, increasing the abundance of some species (such as Shuttleworthia) and decreasing the abundance of others (such as Alphaproteobacteria). Metabolomic screening identified 64 significantly different metabolites. The FMT results showed that apple consumption reduced 12(S)-HETE metabolite levels in the cecal contents, improved the intestinal structure, and reduced the levels of proinflammatory factor expression by altering the cecal microbiota. In conclusion, this study provides further insight into the effects of apples on animals using rats as experimental animals. It provides basic data for future exploration of the mechanisms of the effect of apple consumption on humans.PMID:37795613 | DOI:10.1039/d3fo03207h

Delayed metabolic disturbances in the myocardium after exertional heat stroke: contrasting effects of exertion and thermal load

Thu, 05/10/2023 - 12:00
J Appl Physiol (1985). 2023 Oct 5. doi: 10.1152/japplphysiol.00372.2023. Online ahead of print.ABSTRACTEpidemiological studies report higher risks of cardiovascular disease in humans exposed to heat stroke earlier in life. Previously, we explored mechanistic links between heat stroke and developing cardiac abnormalities using a preclinical mouse model of exertional heat stroke (EHS). Profound metabolic abnormalities developed in the ventricles of females but not males after two weeks of recovery. Here we tested whether this lack of response in males could be attributed to the lower exercise performances or reduced thermal loads they experienced with the same running protocol. We systematically altered environmental temperature (Te) during EHS to manipulate heat exposure and exercise performance in the males. Three groups of adult C57BL/6 male mice were studied: 'EHS-34' (Te=34°C), 'EHS-41' (Te=41°C), and EHS-39.5 (Te=39.5°C). Mice ran until symptom limitation (unconsciousness), reaching max core temperature (Tc,max). After a 2-wk, the mice were euthanized, and the ventricles removed for untargeted metabolomics. Results were compared against age-matched non-exercise controls. The EHS-34 mice greatly elevated their exercise performance, but reached lower Tc,max and lower thermal loads. The EHS-41 mice exhibited equivalent thermal loads, exercise times and Tc,max compared to EHS-39.5. The ventricles from EHS-34 mice exhibited the greatest metabolic disturbances in the heart, characterized by shifts toward glucose metabolism, reductions in acylcarnitines, increased amino acid metabolites, elevations in antioxidants, altered TCA cycle flux and increased xenobiotics. In conclusion, delayed metabolic disturbances following EHS in male myocardium appear to be greatly amplified by higher levels of exertion in the heat, even with lower thermal loads and max core temperatures.PMID:37795530 | DOI:10.1152/japplphysiol.00372.2023

Integration of a perfusion reactor and continuous precipitation in an entirely membrane-based process for antibody capture

Thu, 05/10/2023 - 12:00
Eng Life Sci. 2023 Sep 7;23(10):e2300219. doi: 10.1002/elsc.202300219. eCollection 2023 Oct.ABSTRACTContinuous precipitation coupled with continuous tangential flow filtration is a cost-effective alternative for the capture of recombinant antibodies from crude cell culture supernatant. The removal of surge tanks between unit operations, by the adoption of tubular reactors, maintains a continuous harvest and mass flow of product with the advantage of a narrow residence time distribution (RTD). We developed a continuous process implementing two orthogonal precipitation methods, CaCl2 precipitation for removal of host-cell DNA and polyethylene glycol (PEG) for capturing the recombinant antibody, with no influence on the glycosylation profile. Our lab-scale prototype consisting of two tubular reactors and two stages of tangential flow microfiltration was continuously operated for up to 8 days in a truly continuous fashion and without any product flow interruption, both as a stand-alone capture and as an integrated perfusion-capture. Furthermore, we explored the use of a negatively charged membrane adsorber for flow-through anion exchange as first polishing step. We obtained a product recovery of approximately 80% and constant product quality, with more than two logarithmic reduction values (LRVs) for both host-cell proteins and host-cell DNA by the combination of the precipitation-based capture and the first polishing step.PMID:37795344 | PMC:PMC10545976 | DOI:10.1002/elsc.202300219

Heat stress exposure cause alterations in intestinal microbiota, transcriptome, and metabolome of broilers

Thu, 05/10/2023 - 12:00
Front Microbiol. 2023 Sep 19;14:1244004. doi: 10.3389/fmicb.2023.1244004. eCollection 2023.ABSTRACTINTRODUCTION: Heat stress can affect the production of poultry through complex interactions between genes, metabolites and microorganisms. At present, it is unclear how heat stress affects genetic, metabolic and microbial changes in poultry, as well as the complex interactions between them.METHODS: Thus, at 28 days of age a total of 200 Arbor Acres broilers with similar body weights were randomly divided into the control (CON) and heat stress treatment (HS). There were 5 replicates in CON and HS, respectively, 20 per replication. From the 28-42 days, the HS was kept at 31 ± 1°C (9:00-17:00, 8 h) and other time was maintained at 21 ± 1°C as in the CON. At the 42nd day experiment, we calculated the growth performance (n = 8) of broilers and collected 3 and 6 cecal tissues for transcriptomic and metabolomic investigation and 4 cecal contents for metagenomic investigation of each treatment.RESULTS AND DISCUSSION: The results indicate that heat stress significantly reduced the average daily gain and body weight of broilers (value of p < 0.05). Transcriptome KEGG enrichment showed that the differential genes were mainly enriched in the NF-kB signaling pathway. Metabolomics results showed that KEGG enrichment showed that the differential metabolites were mainly enriched in the mTOR signaling pathway. 16S rDNA amplicon sequencing results indicated that heat stress increased the relative abundance of Proteobacteria decreased the relative abundance of Firmicutes. Multi-omics analysis showed that the co-participating pathway of differential genes, metabolites and microorganisms KEGG enrichment was purine metabolism. Pearson correlation analysis found that ornithine was positively correlated with SULT1C3, GSTT1L and g_Lactobacillus, and negatively correlated with CALB1. PE was negatively correlated with CALB1 and CHAC1, and positively with g_Alistipes. In conclusion, heat stress can generate large amounts of reactive oxygen and increase the types of harmful bacteria, reduce intestinal nutrient absorption and antioxidant capacity, and thereby damage intestinal health and immune function, and reduce growth performance indicators. This biological process is manifested in the complex regulation, providing a foundational theoretical basis for solving the problem of heat stress.PMID:37795292 | PMC:PMC10547010 | DOI:10.3389/fmicb.2023.1244004

Identification of Plasma Biomarkers in Drug-Naïve Schizophrenia Using Targeted Metabolomics

Thu, 05/10/2023 - 12:00
Psychiatry Investig. 2023 Sep;20(9):818-825. doi: 10.30773/pi.2023.0121. Epub 2023 Sep 19.ABSTRACTOBJECTIVE: Schizophrenia (SCZ) is a severe psychiatric disorder with unknown etiology and lacking specific biomarkers. Herein, we aimed to explore plasma biomarkers relevant to SCZ using targeted metabolomics.METHODS: Sixty drug-naïve SCZ patients and 36 healthy controls were recruited. Psychotic symptoms were assessed using the Positive and Negative Syndrome Scale. We analyzed the levels of 271 metabolites in plasma samples from all subjects using targeted metabolomics, and identified metabolites that differed significantly between the two groups. Then we evaluated the diagnostic power of the metabolites based on receiver operating characteristic curves, and explored metabolites associated with the psychotic symptoms in SCZ patients.RESULTS: Twenty-six metabolites showed significant differences between SCZ patients and healthy controls. Among them, 12 metabolites were phosphatidylcholines and cortisol, ceramide (d18:1/22:0), acetylcarnitine, and γ-aminobutyric acid, which could significantly distinguish SCZ from healthy controls with the area under the curve (AUC) above 0.7. Further, a panel consisting of the above 4 metabolites had an excellent performance with an AUC of 0.867. In SCZ patients, phosphatidylcholines were positively related with positive symptoms, and cholic acid was positively associated with negative symptoms.CONCLUSION: Our study provides insights into the metabolite alterations associated with SCZ and potential biomarkers for its diagnosis and symptom severity assessment.PMID:37794663 | DOI:10.30773/pi.2023.0121

Phytotoxic fungal secondary metabolites as herbicides

Thu, 05/10/2023 - 12:00
Pest Manag Sci. 2023 Oct 4. doi: 10.1002/ps.7813. Online ahead of print.ABSTRACTAmong the alternatives to synthetic plant protection products, biocontrol appears as a promising method. This review reports on the diversity of fungal secondary metabolites phytotoxic to weeds and on the approach generally used to extract, characterize, identify and exploit them for weed management. The 183 phytotoxic fungal secondary metabolites discussed in this review fall into five main classes of molecules: 61 polyketides, 53 terpenoids, 36 nitrogenous metabolites, 18 phenols and phenolic acids, and 15 miscellaneous. They are mainly produced by the genera Drechslera, Fusarium and Alternaria. The phytotoxic effects, more often described by the symptoms they produce on plants than by their mode of action, range from inhibition of germination to inhibition of root and vegetative growth, including tissue and organ alterations. The biochemical characterization of fungal secondary metabolites requires expertise and tools to carry out fungal cultivation and metabolite extraction, phytotoxicity tests, purification and fractionation of the extracts, and chemical identification procedures. Phytotoxicity tests are mainly carried out under controlled laboratory conditions (not always on whole plants), while effectiveness against targeted weeds and environmental impacts must be assessed in greenhouses and open fields. These steps are necessary for the formulation of effective, environment-friendly fungal secondary metabolites-derived bioherbicides using new technologies such as nanomaterials. This article is protected by copyright. All rights reserved.PMID:37794581 | DOI:10.1002/ps.7813

Impacts of maternal microbiota and microbial metabolites on fetal intestine, brain, and placenta

Wed, 04/10/2023 - 12:00
BMC Biol. 2023 Oct 4;21(1):207. doi: 10.1186/s12915-023-01709-9.ABSTRACTBACKGROUND: The maternal microbiota modulates fetal development, but the mechanisms of these earliest host-microbe interactions are unclear. To investigate the developmental impacts of maternal microbial metabolites, we compared full-term fetuses from germ-free and specific pathogen-free mouse dams by gene expression profiling and non-targeted metabolomics.RESULTS: In the fetal intestine, critical genes mediating host-microbe interactions, innate immunity, and epithelial barrier were differentially expressed. Interferon and inflammatory signaling genes were downregulated in the intestines and brains of the fetuses from germ-free dams. The expression of genes related to neural system development and function, translation and RNA metabolism, and regulation of energy metabolism were significantly affected. The gene coding for the insulin-degrading enzyme (Ide) was most significantly downregulated in all tissues. In the placenta, genes coding for prolactin and other essential regulators of pregnancy were downregulated in germ-free dams. These impacts on gene expression were strongly associated with microbially modulated metabolite concentrations in the fetal tissues. Aryl sulfates and other aryl hydrocarbon receptor ligands, the trimethylated compounds TMAO and 5-AVAB, Glu-Trp and other dipeptides, fatty acid derivatives, and the tRNA nucleobase queuine were among the compounds strongly associated with gene expression differences. A sex difference was observed in the fetal responses to maternal microbial status: more genes were differentially regulated in male fetuses than in females.CONCLUSIONS: The maternal microbiota has a major impact on the developing fetus, with male fetuses potentially more susceptible to microbial modulation. The expression of genes important for the immune system, neurophysiology, translation, and energy metabolism are strongly affected by the maternal microbial status already before birth. These impacts are associated with microbially modulated metabolites. We identified several microbial metabolites which have not been previously observed in this context. Many of the potentially important metabolites remain to be identified.PMID:37794486 | DOI:10.1186/s12915-023-01709-9

Multi-omics analysis reveals the molecular basis of flavonoid accumulation in fructus of Gardenia (Gardenia jasminoides Ellis)

Wed, 04/10/2023 - 12:00
BMC Genomics. 2023 Oct 4;24(1):588. doi: 10.1186/s12864-023-09666-x.ABSTRACTBACKGROUND: The fruits of Gardenia are rich in flavonoids and geniposides, which have various pharmacological effects such as antioxidant, anti-inflammatory and anticancer. In this study, we analyzed the transcriptome and metabolome of gardenia peel and kernel at different growth stages, revealed the regulatory network related to flavonoid synthesis, and identified the key regulatory genes.RESULTS: The results showed that in terms of flavonoid metabolic pathways, gardenia fruits mainly synthesized cinnamic acid through the phenylpropanoid pathway, and then synthesized flavonoids through the action of catalytic enzymes such as 4-coumaroyl-CoA ligase, chalcone synthase, chalcone isomerase and flavanol synthase, respectively. In addition, we found that the metabolomics data showed a certain spatial and temporal pattern in the expression of genes related to the flavonoid metabolism pathway and the relative content of metabolites, which was related to the development and ripening process of the fruit.CONCLUSIONS: In summary, this study successfully screened out the key genes related to the biosynthesis metabolism of flavonoids in gardenia through the joint analysis of transcriptome and metabolome. This is of certain significance to the in-depth study of the formation mechanism of gardenia efficacy components and the improvement of quality.PMID:37794356 | DOI:10.1186/s12864-023-09666-x

Omics analyses of Rehmannia glutinosa dedifferentiated and cambial meristematic cells reveal mechanisms of catalpol and indole alkaloid biosynthesis

Wed, 04/10/2023 - 12:00
BMC Plant Biol. 2023 Oct 5;23(1):463. doi: 10.1186/s12870-023-04478-3.ABSTRACTBACKGROUND: Rehmannia glutinosa is a rich source of terpenoids with a high medicinal reputation. The present study compared dedifferentiated cells (DDCs) and cambial meristematic cells (CMCs) cell cultures of R. glutinosa for terpenoid (catalpol) and indole alkaloid (IA) biosynthesis. In this regard, we used widely targeted metabolomics and transcriptome sequencing approaches together with the comparison of cell morphology, cell death (%), and catalpol production at different time points.RESULTS: We were able to identify CMCs based on their morphology and hypersensitivity to zeocin. CMCs showed higher dry weight content and better catalpol production compared to DDCs. The metabolome analysis revealed higher concentrations of IA, terpenoids, and catalpol in CMCs compared to DDCs. The transcriptome sequencing analysis showed that a total of 27,201 genes enriched in 139 pathways were differentially expressed. The higher catalpol concentration in CMCs is related to the expression changes in genes involved in acetyl-CoA and geranyl-PP biosynthesis, which are precursors for monoterpenoid biosynthesis. Moreover, the expressions of the four primary genes involved in monoterpenoid biosynthesis (NMD, CYP76A26, UGT6, and CYP76F14), along with a squalene monooxygenase, exhibit a strong association with the distinct catalpol biosynthesis. Contrarily, expression changes in AADC, STR, and RBG genes were consistent with the IA biosynthesis. Finally, we discussed the phytohormone signaling and transcription factors in relation to observed changes in metabolome.CONCLUSIONS: Overall, our study provides novel data for improving the catalpol and IA biosynthesis in R. glutinosa.PMID:37794352 | DOI:10.1186/s12870-023-04478-3

Genomic and metabolomic insights into the antimicrobial compounds and plant growth-promoting potential of Bacillus velezensis Q-426

Wed, 04/10/2023 - 12:00
BMC Genomics. 2023 Oct 4;24(1):589. doi: 10.1186/s12864-023-09662-1.ABSTRACTBACKGROUND: The Q-426 strain isolated from compost samples has excellent antifungal activities against a variety of plant pathogens. However, the complete genome of Q-426 is still unclear, which limits the potential application of Q-426.RESULTS: Genome sequencing revealed that Q-426 contains a single circular chromosome 4,086,827 bp in length, with 4691 coding sequences and an average GC content of 46.3%. The Q-426 strain has a high degree of collinearity with B. velezensis FZB42, B. velezensis SQR9, and B. amyloliquefaciens DSM7, and the strain was reidentified as B. velezensis Q-426 based on the homology analysis results. Many genes in the Q-426 genome have plant growth-promoting activity, including the secondary metabolites of lipopeptides. Genome mining revealed 14 clusters and 732 genes encoding secondary metabolites with predicted functions, including the surfactin, iturin, and fengycin families. In addition, twelve lipopeptides (surfactin, iturin and fengycin) were successfully detected from the fermentation broth of B. velezensis Q-426 by ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS/MS), which is consistent with the genome analysis results. We found that Q-426 produced indole-3-acetic acid (IAA) at 1.56 mg/l on the third day of incubation, which might promote the growth of plants. Moreover, we identified eighteen volatile compounds (VOCs, including 2-heptanone, 6-methylheptan-2-one, 5-methylheptan-2-one, 2-nonanone, 2-decanone, 2-undecanone, 2-dodecanone, 2-tridecanone, 2-tetradecanone, 2-nonadecanone, pentadecanoic acid, oleic acid, dethyl phthalate, dibutyl phthalate, methyl (9E,12E)-octadeca-9,12-dienoate), pentadecane, (6E,10E)-1,2,3,4,4a,5,8,9,12,12a-decahydro-1,4-methanobenzo[10]annulene, and nonanal) based on gas chromatograph-mass spectrometer (GC/MS) results.CONCLUSIONS: We mined secondary metabolite-related genes from the genome based on whole-genome sequence results. Our study laid the theoretical foundation for the development of secondary metabolites and the application of B. velezensis Q-426. Our findings provide insights into the genetic characteristics responsible for the bioactivities and potential application of B. velezensis Q-426 as a plant growth-promoting strain in ecological agriculture.PMID:37794314 | DOI:10.1186/s12864-023-09662-1

Mechanistic insight into the adjuvant effect of co-exposure to ultrafine carbon black and high humidity on allergic asthma

Wed, 04/10/2023 - 12:00
Environ Geochem Health. 2023 Oct 4. doi: 10.1007/s10653-023-01764-9. Online ahead of print.ABSTRACTRespiratory diseases continue to be a major global concern, with allergies and asthma often discussed as critical areas of study. While the role of environmental risk factors, such as non-allergenic pollutants and high humidity, in asthma induction is often mentioned, there is still a lack of thorough research on their co-exposure. This study aims to investigate the adjuvant effect of ultrafine carbon black (30-50 nm) and high humidity (70% relative humidity) on the induction of allergic asthma. A mouse model of asthma was established using ovalbumin, and airway hyperresponsiveness, remodeling, and inflammation were measured as the endpoint effects of asthma. The mediating role of the oxidative stress pathway and the transient receptor potential vanilloid 1 pathway in asthma induction was validated using pathway inhibitors vitamin E and capsaicin, respectively. Co-exposure to ultrafine carbon black and high humidity had a significant impact on metabolic pathways in the lung, including aminoacyl-tRNA biosynthesis, glycerophospholipid metabolism, and ATP-binding cassette transporters. However, administering vitamin E and capsaicin altered the effects of co-exposure on the lung metabolome. These results offer new insights into the health risk assessment of co-exposure to environmental risk factors and provide an important reference point for the prevention and treatment of allergic asthma.PMID:37794280 | DOI:10.1007/s10653-023-01764-9

Association of Placental Tissue Metabolite Levels with Gestational Diabetes Mellitus: a Metabolomics Study

Wed, 04/10/2023 - 12:00
Reprod Sci. 2023 Oct 4. doi: 10.1007/s43032-023-01353-2. Online ahead of print.ABSTRACTThe purpose of the study is to investigate the metabolic characteristics of placental tissue in patients diagnosed with gestational diabetes mellitus (GDM). Ultra-performance liquid chromatography-mass spectrometry (UPLC-MS/MS) was employed to qualitatively and quantitatively analyze the metabolites in placental tissues obtained from 25 healthy pregnant women and 25 pregnant women diagnosed with GDM. Multilevel statistical methods are applied to process intricate metabolomics data. Meanwhile, we applied machine learning techniques to identify biomarkers that could potentially predict the risk of long-term complications in patients with GDM as well as their offspring. We identified 1902 annotated metabolites, out of which 212 metabolites exhibited significant differences in GDM placentas. In addition, the study identifies a set of risk biomarkers that effectively predict the likelihood of long-term complications in both pregnant women with GDM and their offspring. The accuracy of this panel was measured by the area under the receiver operating characteristic curve (ROC), which was found to be 0.992 and 0.960 in the training and validation sets, respectively. This study enhances our understanding of GDM pathogenesis through metabolomics. Furthermore, the panel of risk markers identified could prove to be a valuable tool in predicting potential long-term complications for both GDM patients and their offspring.PMID:37794198 | DOI:10.1007/s43032-023-01353-2

Growth of alfalfa in the presence of metabolites from a dark septate endophyte strain Alternaria sp. 17463 cultured with a non-ionic surfactant and emulsifier

Wed, 04/10/2023 - 12:00
J Appl Microbiol. 2023 Oct 4:lxad226. doi: 10.1093/jambio/lxad226. Online ahead of print.ABSTRACTAIM: Dark septate endophytes (DSE) was widely used in the agriculture and ecological restoration. The objective of this work was to assess the effect of culture media non-ionic surfactant and emulsifier on the biomass and metabolites of DSE strain Alternaria sp. 17463.METHODS AND RESULTS: Changes in the composition of DSE metabolites following the addition of Tween 80 during liquid culture of a DSE fungus were analyzed and used in growth tests of alfalfa.Shaking flask fermentation was carried out and the surfactant was fed to the fungus during the fermentation. The residual sugar content and pH declined significantly in the medium and the biomass of DSE increased by 7.27% over controls with no surfactant. Metabolomics analysis showed that adding the surfactant significantly increased the content of 63 metabolites (P < 0.05). These include lipids and lipid-like molecules, organooxygen compounds, amino acids and organic acids, and flavonoids. Enrichment analysis of metabolic pathways indicates that surfactant addition promoted carbohydrate metabolism and amino acid synthesis. A plant hydroponic experiment indicated that these changes in metabolites altered the root structure of alfalfa seedlings. They also promoted significant increases in root length and root surface area, and increased alfalfa total biomass by 50.2%.CONCLUSIONS: Addition of the surfactant promoted sugar utilization by the DSE fungus and increased the synthesis of lipids and amino acids, resulting in the ability of the fungal metabolites to change root structure and promote plant growth.PMID:37793812 | DOI:10.1093/jambio/lxad226

Bioactive and chemically defined hydrogels with tunable stiffness guide cerebral organoid formation and modulate multi-omics plasticity in cerebral organoids

Wed, 04/10/2023 - 12:00
Acta Biomater. 2023 Oct 2:S1742-7061(23)00588-3. doi: 10.1016/j.actbio.2023.09.040. Online ahead of print.ABSTRACTOrganoids are an emerging technology with great potential in human disease modelling, drug development, diagnosis, tissue engineering, and regenerative medicine. Organoids as 3D-tissue culture systems have gained special attention in the past decades due to their ability to faithfully recapitulate the complexity of organ-specific tissues. Despite considerable successes in culturing physiologically relevant organoids, their real-life applications are currently limited by challenges such as scarcity of an appropriate biomimetic matrix. Peptide amphiphiles (PAs) due to their well-defined chemistry, tunable bioactivity, and extracellular matrix (ECM)-like nanofibrous architecture represent an attractive material scaffold for organoids development. Using cerebral organoids (COs) as exemplar, we demonstrate the possibility to create bio-instructive hydrogels with tunable stiffness ranging from 0.69 kPa to 2.24 kPa to culture and induce COs growth. We used orthogonal chemistry involving oxidative coupling and supramolecular interactions to create two-component hydrogels integrating the bio-instructive activity and ECM-like nanofibrous architecture of a laminin-mimetic PAs (IKVAV-PA) and tunable crosslinking density of hyaluronic acid functionalized with tyramine (HA-Try). Multi-omics technology including transcriptomics, proteomics, and metabolomics reveals the induction and growth of COs in soft HA-Tyr hydrogels containing PA-IKVAV such that the COs display morphology and biomolecular signatures similar to those grown in Matrigel scaffolds. Our materials hold great promise as a safe synthetic ECM for COs induction and growth. Our approach represents a well-defined alternative to animal-derived matrices for the culture of COs and might expand the applicability of organoids in basic and clinical research. STATEMENT OF SIGNIFICANCE: Synthetic bio-instructive materials which display tissue-specific functionality and nanoscale architecture of the native extracellular matrix are attractive matrices for organoids development. These synthetic matrices are chemically defined and animal-free compared to current gold standard matrices such as Matrigel. Here, we developed hydrogel matrices with tunable stiffness, which incorporate laminin-mimetic peptide amphiphiles to grow and expand cerebral organoids. Using multi-omics tools, the present study provides exciting data on the effects of neuro-inductive cues on the biomolecular profiles of brain organoids.PMID:37793600 | DOI:10.1016/j.actbio.2023.09.040

Salivary metabolomics for oral leukoplakia : a viewpoint

Wed, 04/10/2023 - 12:00
J Stomatol Oral Maxillofac Surg. 2023 Oct 2:101652. doi: 10.1016/j.jormas.2023.101652. Online ahead of print.NO ABSTRACTPMID:37793570 | DOI:10.1016/j.jormas.2023.101652

Staphylococcus aureus adapts to the immunometabolite itaconic acid by inducing acid and oxidative stress responses including S-bacillithiolations and S-itaconations

Wed, 04/10/2023 - 12:00
Free Radic Biol Med. 2023 Oct 2:S0891-5849(23)00656-1. doi: 10.1016/j.freeradbiomed.2023.09.031. Online ahead of print.ABSTRACTStaphylococcus aureus is a major pathogen, which has to defend against reactive oxygen and electrophilic species encountered during infections. Activated macrophages produce the immunometabolite itaconate as potent electrophile and antimicrobial upon pathogen infection. In this work, we used transcriptomics, metabolomics and shotgun redox proteomics to investigate the specific stress responses, metabolic changes and redox modifications caused by sublethal concentrations of itaconic acid in S. aureus. In the RNA-seq transcriptome, itaconic acid caused the induction of the GlnR, KdpDE, CidR, SigB, GraRS, PerR, CtsR and HrcA regulons and the urease-encoding operon, revealing an acid and oxidative stress response and impaired proteostasis. Neutralization using external urea as ammonium source improved the growth and decreased the expression of the glutamine synthetase-controlling GlnR regulon, indicating that S. aureus experienced ammonium starvation upon itaconic acid stress. In the extracellular metabolome, the amounts of acetate and formate were decreased, while secretion of pyruvate and the neutral product acetoin were strongly enhanced to avoid intracellular acidification. Exposure to itaconic acid affected the amino acid uptake and metabolism as revealed by the strong intracellular accumulation of lysine, threonine, histidine, aspartate, alanine, valine, leucine, isoleucine, cysteine and methionine. In the proteome, itaconic acid caused widespread S-bacillithiolation and S-itaconation of redox-sensitive antioxidant and metabolic enzymes, ribosomal proteins and translation factors in S. aureus, supporting its oxidative and electrophilic mode of action in S. aureus. In phenotype analyses, the catalase KatA, the low molecular weight thiol bacillithiol and the urease provided protection against itaconic acid-induced oxidative and acid stress in S. aureus. Altogether, our results revealed that under physiological infection conditions, such as in the acidic phagolysome, itaconic acid is a highly effective antimicrobial against multi-resistant S. aureus isolates, which acts as weak acid causing an acid, oxidative and electrophilic stress response, leading to S-bacillithiolation and itaconation.PMID:37793500 | DOI:10.1016/j.freeradbiomed.2023.09.031

Altered intestinal microbial flora and metabolism in patients with idiopathic membranous nephropathy

Wed, 04/10/2023 - 12:00
Am J Nephrol. 2023 Oct 4. doi: 10.1159/000533537. Online ahead of print.ABSTRACTINTRODUCTION: Dysbiosis of the intestinal microbiome and related metabolites have been observed in chronic kidney disease (CKD), yet their roles in idiopathic membranous nephropathy (IMN) is poorly understood.METHODS: In this study, we describe the variation of intestinal bacteria and fecal metabolites in patients with IMN in Chinese population. Stool samples are collected from 41 IMN patients at the beginning of diagnosis confirmation and 41 gender and age matched healthy control (HC). Microbial communities are investigated by sequencing of 16S rRNA genes and functional profiles predicted using Tax4Fun, and the correlation between intestinal bacteria and IMN clinical characteristics is also analyzed. Untargeted metabolomic analysis is performed to explore the relationship between colon's microbiota and fecal metabolites.RESULTS: IMN gastrointestinal microbiota demonstrates lower richness and diversity compared to HC, and exhibits a marked taxonomic and inferred functional dysbiosis when compared to HC. Some genera are closely related to the clinical parameters, such as Citrobacter and Akkermansia. 20 characteristic microbial biomarkers are selected to establish a disease prediction model with a diagnostic accuracy of 93.53%. Fecal metabolomics shows that tryptophan metabolism is reduced in IMN patients but uremic toxin accumulation in feces is not noticeable. Fecal microbiota transplantation demonstrates that gut dysbiosis impairs gut permeability in microbiota-depleted mice and induces NOD-like receptor activation in kidneys.DISCUSSION/CONCLUSIONS: Clarifying the changes in intestinal microbiota in IMN patients will help further know the pathogenesis of this disease, and microbiota-targeted biomarkers will provide a potentially powerful tool for diagnosing and treating IMN.PMID:37793354 | DOI:10.1159/000533537

Proteomics to metabolomics: A new insight into the pathogenesis of hypertensive nephropathy

Wed, 04/10/2023 - 12:00
Kidney Blood Press Res. 2023 Oct 4. doi: 10.1159/000534354. Online ahead of print.ABSTRACTBACKGROUND: Hypertensive nephropathy (HN) is a high burden disorder and a leading cause of end-stage renal disorder. In spite of huge investigations, the underlying mechanisms are yet largely unknown. Systems biology is a promising approach to provide a comprehensive insight towards this complex disorder.METHODS: Protein expression profiles of kidney tubule and cortex sub-compartments were retrieved from the PRIDE database and the quality of the datasets were assessed using principal component analysis (PCA) and hierarchical clustering. Differentially expressed proteins (DEPs) were detected and their attributed metabolites were enriched and their interactions were assessed in multi-layer networks. Moreover, considering the DEPs and the predicted metabolites, key biomedical phenomena with a leading role in HN pathogenesis were proposed.RESULTS: Amino acid and purine metabolisms are the most prominent alteration in kidney cortex whereas dysregulation of energy hemostasis is a key pathogenic mechanism in tubule. Besides, actin cytoskeleton disorganization is an enriched pathway in both anatomical areas.CONCLUSION: The proteomics profiles of kidney sub-compartments were analyzed using a top-down approach to infer the main pathogenic processes. The constructed holistic map of HN can be exploited to propose novel therapeutic strategies.PMID:37793351 | DOI:10.1159/000534354

The joint action of biochar and plant roots on U-stressed soil remediation: Insights from bacteriomics and metabolomics

Wed, 04/10/2023 - 12:00
J Hazard Mater. 2023 Sep 29;461:132635. doi: 10.1016/j.jhazmat.2023.132635. Online ahead of print.ABSTRACTAlthough biological remediation of U-stressed soil has been studied for a long time, the combined effects of biochar and plant roots are rarely discussed and its influence on rhizosphere microecology are still unknown. Based on pot experiments, we explored the combined efforts of biochar addition and plant roots on U-stressed rhizosphere soil in several ways, including soil physicochemical properties, soil enzyme activities, uranium chemical speciation, bacterial community structure and metabolic pathways. Our results indicates that the content of DTPA-extractable U decreased by 49.31% after biochar and plant roots application, whereas plant roots only treatment just decreased by 25.46%. Further research has found that the pH, CEC, enzyme activities and nutritional level of rhizosphere soil were more significantly improved after biochar and plant roots application. Meanwhile, the abundance and diversity of bacterial community was also upregulated, which was also suggested by the stronger metabolisms of lipids, carbohydrate, nucleotides as well as amino acids. Correlation analyses also certified the positive associations between soil properties, bacterial communities and metabolism. We speculated that the uranium immobilization was mainly attributed to the direct fixation of biochar for its alkalinity, CEC, DOC, etc. and the joint action of biochar and plant roots for their stimulating effects on bacteria. Our findings suggested that combination of biochar and plant roots could limit bioaccessibility of U in a larger extend than plant roots only, which may be a better strategy for rapid remediation of U-streesed soil.PMID:37793252 | DOI:10.1016/j.jhazmat.2023.132635

Molecular Mechanism of ε-Polylysine Treatment of Animal-Derived Foods: <em>Glycine Amidinotransferase</em> Activity Implicates Upregulation of l-Arginine and Creatine

Wed, 04/10/2023 - 12:00
J Agric Food Chem. 2023 Oct 4. doi: 10.1021/acs.jafc.3c04033. Online ahead of print.ABSTRACTε-Polylysine is a novel food preservative approved by the U.S. Food and Drug Administration (FDA), yet the mechanism of its effect on animal-derived foods remains unclear. Assessment of the effect of preservatives on goat meat products is necessary. Herein, metabolite accumulation and protein expression of ε-polylysine (0.025%, w/w) spiked with goat meat were investigated by nontarget metabolomics and proteomics combined with ultrahigh performance liquid chromatography quadrupole-Orbitrap high-resolution-mass spectrometry (UHPLC-Q-Orbitrap HRMS) in a simulated in vitro digestion model. The amino side chain of ε-polylysine increased the activity of glycine aminotransferase due to its nucleophilic nature, inducing a significant upregulation of l-arginine (0.43-0.72 mg kg-1) and creatine (3.98-6.89 mg kg-1), with an improvement in muscle quality of goat meat. Downregulation of enzyme phenylalanine hydroxylase expression led to upregulation of l-phenylalanine (2.26-3.25 mg kg-1) and l-tyrosine (0.98-1.29 mg kg-1). Collectively, this study first revealed the biochemical mechanism of ε-polylysine in goat meat products, which makes available new prospects for more accurate use of ε-polylysine in animal-derived foods.PMID:37793042 | DOI:10.1021/acs.jafc.3c04033

Pages