Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

Recent advances in understanding the fitness and survival mechanisms of Vibrio parahaemolyticus

Wed, 17/04/2024 - 12:00
Int J Food Microbiol. 2024 Apr 5;417:110691. doi: 10.1016/j.ijfoodmicro.2024.110691. Online ahead of print.ABSTRACTThe presence of Vibrio parahaemolyticus (Vp) in different production stages of seafood has generated negative impacts on both public health and the sustainability of the industry. To further better investigate the fitness of Vp at the phenotypical level, a great number of studies have been conducted in recent years using plate counting methods. In the meantime, with the increasing accessibility of the next generation sequencing and the advances in analytical chemistry techniques, omics-oriented biotechnologies have further advanced our knowledge in the survival and virulence mechanisms of Vp at various molecular levels. These observations provide insights to guide the development of novel prevention and control strategies and benefit the monitoring and mitigation of food safety risks associated with Vp contamination. To timely capture these recent advances, this review firstly summarizes the most recent phenotypical level studies and provide insights about the survival of Vp under important in vitro stresses and on aquatic products. After that, molecular survival mechanisms of Vp at transcriptomic and proteomic levels are summarized and discussed. Looking forward, other newer omics-biotechnology such as metabolomics and secretomics show great potential to be used for confirming the cellular responses of Vp. Powerful data mining tools from the field of machine learning and artificial intelligence, that can better utilize the omics data and solve complex problems in the processing, analysis, and interpretation of omics data, will further improve our mechanistic understanding of Vp.PMID:38631283 | DOI:10.1016/j.ijfoodmicro.2024.110691

Dietary supplementation with ellagic acid improves the growth performance, meat quality, and metabolomics profile of yellow-feathered broiler chickens

Wed, 17/04/2024 - 12:00
Poult Sci. 2024 Mar 30;103(6):103700. doi: 10.1016/j.psj.2024.103700. Online ahead of print.ABSTRACTThe aim of this research was to explore the effects of ellagic acid (EA) on growth performance, meat quality, and metabolomics profile of broiler chickens. 240 healthy yellow-feathered broilers were randomly divided into 4 groups (6 replicates/group and 10 broilers /replicate): 1) a standard diet (CON); 2) CON+0.01% EA; 3) CON+0.02% EA; 4) CON+0.04% EA. Compared with the CON group, dietary 0.02% EA increased linearly and quadratically the ADG and lowered F/G ratio from 29 to 56 d and from 1 to 56 d of age (P < 0.05). The EA groups had higher spleen index and showed linear and quadratic improve thymus index (P < 0.05). A total of 0.02% EA linearly and quadratically increased the leg muscle percentage and quadratically increased the breast muscle percentage (P < 0.05). Compared to the control diet, 0.02% EA decreased quadratically the L* and increased a* of breast muscle at 45 min postslaughter (P < 0.05), and quadratically decreased (P < 0.05) the b* and increased linearly and quadratically (P < 0.05) drip loss. Additionally, EA improved linearly and quadratically (P < 0.05) serum total protein concentration and reduced linearly and quadratically (P < 0.05) serum blood urea nitrogen concentration. A total of 0.02% EA quadratically increased catalase activity and decreased malondialdehyde concentration in breast muscle compared with the control diet (P < 0.05). 0.02% and 0.04% EA could linearly and quadratically increase (P < 0.05) the concentrations of histidine, leucine and essential amino acids (EAA), 0.02% EA could linearly and quadratically increase (P < 0.05) the concentrations of threonine, glutamate, and flavored amino acids in breast muscle. 0.02% EA linearly and quadratically improved the C20:3n6, C22:6n3, polyunsaturated fatty acid (PUFA) concentrations, and the ratio of PUFA to saturated fatty acids (SFA), but reduced the C16:0 and the SFA concentrations in breast muscle than the CON group (P < 0.05). The EA diet linearly increased (P = 0.035) and quadratically tended (P = 0.068) to regulate the C18:2n6c concentration of breast muscle. Metabolomics showed that alanine metabolism, aspartate and glutamate metabolism, arginine and proline metabolism, taurine and hypotaurine metabolism, and glycerophospholipid metabolism were the most differentially abundant. These results showed that EA supported moderate positive effects on growth performance, meat quality, and metabolomics profile of broilers.PMID:38631231 | DOI:10.1016/j.psj.2024.103700

Multiple metabolite profiles uncover remarkable bioactive compounds and metabolic characteristics of noni fruit (Morinda citrifolia L.) at various stages of ripeness

Wed, 17/04/2024 - 12:00
Food Chem. 2024 Apr 13;450:139357. doi: 10.1016/j.foodchem.2024.139357. Online ahead of print.ABSTRACTThis study aimed to investigate the changes in physicochemical properties, bioactive compounds, and metabolic characteristics of noni fruit at different ripeness levels. The results showed that there were significant differences in physicochemical properties. HPLC analysis was conducted, revealing succinic acid, scopoletin, deacetylasperulosidic acid, and asperulosidic acid were key bioactive compounds as the fruit ripened. Additionally, 4 differentbiomarkers (isocitric acid, 4,4-thiodiphenol, lobaric acid, and octocrylene), identified using 1HNMR and LC-IT-TOF-MS, were found to have a VIP value over 1. The results from HS-GC-IMS demonstrated noteworthy that 14 volatile compounds were identified as highly discriminative features during fruit ripening. Furthermore, correlation analysis showed that different ripeness had significant effects on bioactive components and functional activities, e.g., the inhibition rate of enzyme and E. coli of noni fruit with different ripeness exceeded 90% at the last stage. This study contributes new insights into the effective utilization of bioactive ingredients in noni fruit.PMID:38631202 | DOI:10.1016/j.foodchem.2024.139357

Modulation of gut microbiota and metabolites by Flammulina velutipes polysaccharides during in vitro human fecal fermentation: Unveiling Bacteroides as a potential primary degrader

Wed, 17/04/2024 - 12:00
Food Chem. 2024 Apr 10;450:139309. doi: 10.1016/j.foodchem.2024.139309. Online ahead of print.ABSTRACTFlammulina velutipes, a widely cultivated species of edible fungus, exhibits diverse functional activities attributed to its polysaccharides. In this study, we employed an in vitro model to investigate the impact of F. velutipes polysaccharides (FVP) fermentation on gut microbiota, with a particular focus on Bacteroides. FVP fermentation resulted in the proliferation of microbiota associated with short-chain fatty acid (SCFA) metabolism and suppression of Escherichia-Shigella. Bacteroides emerged as potential primary degraders of FVP, with species-level analysis identifying the preference of B. thetaiotaomicron and B. intestinalis in FVP degradation. Metabolomics analysis revealed significant increases in hypoxanthine and 7-methyladenine contents, with histidine metabolism emerging as the most enriched pathway. B. nordii and B. xylanisolvens exhibited the most influence on amino acid and SCFA metabolism. Understanding the mechanisms by which gut microbiota metabolize FVP can provide valuable insights into the potential of FVP to promote intestinal health and disease prevention.PMID:38631200 | DOI:10.1016/j.foodchem.2024.139309

Integrated lipid metabolomics and proteomics analysis reveal the pathogenesis of polycystic ovary syndrome

Wed, 17/04/2024 - 12:00
J Transl Med. 2024 Apr 17;22(1):364. doi: 10.1186/s12967-024-05167-x.ABSTRACTBACKGROUND: Polycystic ovary syndrome (PCOS) is an endocrinological and metabolic disorder that can lead to female infertility. Lipid metabolomics and proteomics are the new disciplines in systems biology aimed to discover metabolic pathway changes in diseases and diagnosis of biomarkers. This study aims to reveal the features of PCOS to explore its pathogenesis at the protein and metabolic level.METHODS: We collected follicular fluid samples and granulosa cells of women with PCOS and normal women who underwent in vitro fertilization(IVF) and embryo transfer were recruited. The samples were for the lipidomic study and the proteomic study based on the latest metabolomics and proteomics research platform.RESULTS: Lipid metabolomic analysis revealed abnormal metabolism of glycerides, glycerophospholipids, and sphingomyelin in the FF of PCOS. Differential lipids were strongly linked with the rate of high-quality embryos. In total, 144 differentially expressed proteins were screened in ovarian granulosa cells in women with PCOS compared to controls. Go functional enrichment analysis showed that differential proteins were associated with blood coagulation and lead to follicular development disorders.CONCLUSION: The results showed that the differential lipid metabolites and proteins in PCOS were closely related to follicle quality,which can be potential biomarkers for oocyte maturation and ART outcomes.PMID:38632610 | DOI:10.1186/s12967-024-05167-x

Landscapes of gut bacterial and fecal metabolic signatures and their relationship in severe preeclampsia

Wed, 17/04/2024 - 12:00
J Transl Med. 2024 Apr 17;22(1):360. doi: 10.1186/s12967-024-05143-5.ABSTRACTBACKGROUND: Preeclampsia is a pregnancy-specific disease leading to maternal and perinatal morbidity. Hypertension and inflammation are the main characteristics of preeclampsia. Many factors can lead to hypertension and inflammation, including gut microbiota which plays an important role in hypertension and inflammation in humans. However, alterations to the gut microbiome and fecal metabolome, and their relationships in severe preeclampsia are not well known. This study aims to identify biomarkers significantly associated with severe preeclampsia and provide a knowledge base for treatments regulating the gut microbiome.METHODS: In this study, fecal samples were collected from individuals with severe preeclampsia and healthy controls for shotgun metagenomic sequencing to evaluate changes in gut microbiota composition. Quantitative polymerase chain reaction analysis was used to validate the reliability of our shotgun metagenomic sequencing results. Additionally, untargeted metabolomics analysis was performed to measure fecal metabolome concentrations.RESULTS: We identified several Lactobacillaceae that were significantly enriched in the gut of healthy controls, including Limosilactobacillus fermentum, the key biomarker distinguishing severe preeclampsia from healthy controls. Limosilactobacillus fermentum was significantly associated with shifts in KEGG Orthology (KO) genes and KEGG pathways of the gut microbiome in severe preeclampsia, such as flagellar assembly. Untargeted fecal metabolome analysis found that severe preeclampsia had higher concentrations of Phenylpropanoate and Agmatine. Increased concentrations of Phenylpropanoate and Agmatine were associated with the abundance of Limosilactobacillus fermentum. Furthermore, all metabolites with higher abundances in healthy controls were enriched in the arginine and proline metabolism pathway.CONCLUSION: Our research indicates that changes in metabolites, possibly due to the gut microbe Limosilactobacillus fermentum, can contribute to the development of severe preeclampsia. This study provides insights into the interaction between gut microbiome and fecal metabolites and offers a basis for improving severe preeclampsia by modulating the gut microbiome.PMID:38632606 | DOI:10.1186/s12967-024-05143-5

Microbiota-derived acetate attenuates neuroinflammation in rostral ventrolateral medulla of spontaneously hypertensive rats

Wed, 17/04/2024 - 12:00
J Neuroinflammation. 2024 Apr 18;21(1):101. doi: 10.1186/s12974-024-03061-3.ABSTRACTBACKGROUND: Increased neuroinflammation in brain regions regulating sympathetic nerves is associated with hypertension. Emerging evidence from both human and animal studies suggests a link between hypertension and gut microbiota, as well as microbiota-derived metabolites short-chain fatty acids (SCFAs). However, the precise mechanisms underlying this gut-brain axis remain unclear.METHODS: The levels of microbiota-derived SCFAs in spontaneously hypertensive rats (SHRs) were determined by gas chromatography-mass spectrometry. To observe the effect of acetate on arterial blood pressure (ABP) in rats, sodium acetate was supplemented via drinking water for continuous 7 days. ABP was recorded by radio telemetry. The inflammatory factors, morphology of microglia and astrocytes in rostral ventrolateral medulla (RVLM) were detected. In addition, blood-brain barrier (BBB) permeability, composition and metabolomics of the gut microbiome, and intestinal pathological manifestations were also measured.RESULTS: The serum acetate levels in SHRs are lower than in normotensive control rats. Supplementation with acetate reduces ABP, inhibits sympathetic nerve activity in SHRs. Furthermore, acetate suppresses RVLM neuroinflammation in SHRs, increases microglia and astrocyte morphologic complexity, decreases BBB permeability, modulates intestinal flora, increases fecal flora metabolites, and inhibits intestinal fibrosis.CONCLUSIONS: Microbiota-derived acetate exerts antihypertensive effects by modulating microglia and astrocytes and inhibiting neuroinflammation and sympathetic output.PMID:38632579 | DOI:10.1186/s12974-024-03061-3

Metabolic difference between patient-derived xenograft model of pancreatic ductal adenocarcinoma and corresponding primary tumor

Wed, 17/04/2024 - 12:00
BMC Cancer. 2024 Apr 17;24(1):485. doi: 10.1186/s12885-024-12193-x.ABSTRACTBACKGROUND: Patients-derived xenograft (PDX) model have been widely used for tumor biological and pathological studies. However, the metabolic similarity of PDX tumor to the primary cancer (PC) is still unknown.METHODS: In present study, we established PDX model by engrafting primary tumor of pancreatic ductal adenocarcinoma (PDAC), and then compared the tumor metabolomics of PC, the first generation of PDX tumor (PDXG1), and the third generation of PDX tumor (PDXG3) by using 1H NMR spectroscopy. Then, we assessed the differences in response to chemotherapy between PDXG1 and PDXG3 and corresponding metabolomic differences in drug-resistant tumor tissues. To evaluate the metabolomic similarity of PDX to PC, we also compared the metabolomic difference of cell-derived xenograft (CDX) vs. PC and PDX vs. PC.RESULTS: After engraftment, PDXG1 tumor had a low level of lactate, pyruvate, citrate and multiple amino acids (AAs) compared with PC. Metabolite sets enrichment and metabolic pathway analyses implied that glycolysis metabolisms were suppressed in PDXG1 tumor, and tricarboxylic acid cycle (TCA)-associated anaplerosis pathways, such as amino acids metabolisms, were enhanced. Then, after multiple passages of PDX, the altered glycolysis and TCA-associated anaplerosis pathways were partially recovered. Although no significant difference was observed in the response of PDXG1 and PDXG3 to chemotherapy, the difference in glycolysis and amino acids metabolism between PDXG1 and PDXG3 could still be maintained. In addition, the metabolomic difference between PC and CDX models were much larger than that of PDX model and PC, indicating that PDX model still retain more metabolic characteristics of primary tumor which is more suitable for tumor-associated metabolism research.CONCLUSIONS: Compared with primary tumor, PDX models have obvious difference in metabolomic level. These findings can help us design in vivo tumor metabolomics research legitimately and analyze the underlying mechanism of tumor metabolic biology thoughtfully.PMID:38632504 | DOI:10.1186/s12885-024-12193-x

Deciphering Aphanomyces euteiches-pea-biocontrol bacterium interactions through untargeted metabolomics

Wed, 17/04/2024 - 12:00
Sci Rep. 2024 Apr 17;14(1):8877. doi: 10.1038/s41598-024-52949-w.ABSTRACTAphanomyces euteiches causes root rot in pea, leading to significant yield losses. However, the metabolites involved in this pathosystem have not been thoroughly studied. This study aimed to fill this gap and explore mechanisms of bacterial suppression of A. euteiches via untargeted metabolomics using pea grown in a controlled environment. Chemical isotope labeling (CIL), followed by liquid chromatography-mass spectrometry (LC-MS), was used for metabolite separation and detection. Univariate and multivariate analyses showed clear separation of metabolites from pathogen-treated pea roots and roots from other treatments. A three-tier approach positively or putatively identified 5249 peak pairs or metabolites. Of these, 403 were positively identified in tier 1; 940 were putatively identified with high confidence in tier 2. There were substantial changes in amino acid pool, and fatty acid and phenylpropanoid pathway products. More metabolites, including salicylic and jasmonic acids, were upregulated than downregulated in A. euteiches-infected roots. 1-aminocyclopropane-1-carboxylic acid and 12-oxophytodienoic acid were upregulated in A. euteiches + bacterium-treated roots compared to A. euteiches-infected roots. A great number of metabolites were up- or down-regulated in response to A. euteiches infection compared with the control and A. euteiches + bacterium-treated plants. The results of this study could facilitate improved disease management.PMID:38632368 | DOI:10.1038/s41598-024-52949-w

Activation of the native PHYTOENE SYNTHASE 1 promoter by modifying near-miss cis-acting elements induces carotenoid biosynthesis in embryogenic rice callus

Wed, 17/04/2024 - 12:00
Plant Cell Rep. 2024 Apr 17;43(5):118. doi: 10.1007/s00299-024-03199-7.ABSTRACTModification of silent latent endosperm-enabled promoters (SLEEPERs) allows the ectopic activation of non-expressed metabolic genes in rice callus Metabolic engineering in plants typically involves transgene expression or the mutation of endogenous genes. An alternative is promoter modification, where small changes in the promoter sequence allow genes to be switched on or off in particular tissues. To activate silent genes in rice endosperm, we screened native promoters for near-miss cis-acting elements that can be converted to endosperm-active regulatory motifs. We chose rice PHYTOENE SYNTHASE 1 (PSY1), encoding the enzyme responsible for the first committed step in the carotenoid biosynthesis pathway, because it is not expressed in rice endosperm. We identified six motifs within a 120-bp region, upstream of the transcriptional start site, which differed from endosperm-active elements by up to four nucleotides. We mutated four motifs to match functional elements in the endosperm-active BCH2 promoter, and this promoter was able to drive GFP expression in callus and in seeds of regenerated plants. The 4 M promoter was not sufficient to drive PSY1 expression, so we mutated the remaining two elements and used the resulting 6 M promoter to drive PSY1 expression in combination with a PDS transgene. This resulted in deep orange callus tissue indicating the accumulation of carotenoids, which was subsequently confirmed by targeted metabolomics analysis. PSY1 expression driven by the uncorrected or 4 M variants of the promoter plus a PDS transgene produced callus that lacked carotenoids. These results confirm that the adjustment of promoter elements can facilitate the ectopic activation of endogenous plant promoters in rice callus and endosperm and most likely in other tissues and plant species.PMID:38632121 | DOI:10.1007/s00299-024-03199-7

Diallyl Trisulfide Acts as a Soil Disinfestation Against the <em>Ilyonectria destructans</em> through Inducing the Burst of Reactive Oxygen Species

Wed, 17/04/2024 - 12:00
J Agric Food Chem. 2024 Apr 17. doi: 10.1021/acs.jafc.4c01422. Online ahead of print.ABSTRACTSoil-borne diseases represent an impediment to the sustainable development of agriculture. A soil-borne disease caused by Ilyonectria destructans severely impacts Panax species, and soil disinfestation has proven to be an effective management approach. Here, diallyl trisulfide (DATS), derived from garlic, exhibited pronounced inhibitory effects on the growth of I. destructans in vitro tests and contributed to the alleviation of soil-borne diseases in the field. A comprehensive analysis demonstrated that DATS inhibits the growth of I. destructans by activating detoxifying enzymes, such as GSTs, disrupting the equilibrium of redox reactions. A series of antioxidant amino acids were suppressed by DATS. Particularly noteworthy is the substantial depletion of glutathione by DATS, resulting in the accumulation of ROS, ultimately culminating in the inhibition of I. destructans growth. Briefly, DATS could effectively suppress soil-borne diseases by inhibiting pathogen growth through the activation of ROS, and it holds promise as a potential environmentally friendly soil disinfestation.PMID:38632108 | DOI:10.1021/acs.jafc.4c01422

Frataxin deficiency shifts metabolism to promote reactive microglia via glucose catabolism

Wed, 17/04/2024 - 12:00
Life Sci Alliance. 2024 Apr 17;7(7):e202402609. doi: 10.26508/lsa.202402609. Print 2024 Jul.ABSTRACTImmunometabolism investigates the intricate relationship between the immune system and cellular metabolism. This study delves into the consequences of mitochondrial frataxin (FXN) depletion, the primary cause of Friedreich's ataxia (FRDA), a debilitating neurodegenerative condition characterized by impaired coordination and muscle control. By using single-cell RNA sequencing, we have identified distinct cellular clusters within the cerebellum of an FRDA mouse model, emphasizing a significant loss in the homeostatic response of microglial cells lacking FXN. Remarkably, these microglia deficient in FXN display heightened reactive responses to inflammatory stimuli. Furthermore, our metabolomic analyses reveal a shift towards glycolysis and itaconate production in these cells. Remarkably, treatment with butyrate counteracts these immunometabolic changes, triggering an antioxidant response via the itaconate-Nrf2-GSH pathways and suppressing the expression of inflammatory genes. Furthermore, we identify Hcar2 (GPR109A) as a mediator involved in restoring the homeostasis of microglia without FXN. Motor function tests conducted on FRDA mice underscore the neuroprotective attributes of butyrate supplementation, enhancing neuromotor performance. In conclusion, our findings elucidate the role of disrupted homeostatic function in cerebellar microglia in the pathogenesis of FRDA. Moreover, they underscore the potential of butyrate to mitigate inflammatory gene expression, correct metabolic imbalances, and improve neuromotor capabilities in FRDA.PMID:38631900 | DOI:10.26508/lsa.202402609

Monitoring Changes in Biochemical and Metabolite Profiles in Garlic Cloves during Storage

Wed, 17/04/2024 - 12:00
J Agric Food Chem. 2024 Apr 17. doi: 10.1021/acs.jafc.3c08396. Online ahead of print.ABSTRACTStorage is important for the garlic cloves industry because it is critical to enabling a year-round supply. This study aimed to investigate the changes in biochemical and metabolic profiles in garlic cloves in terms of different temperatures and cultivars during storage using nontargeted and targeted metabolomics. The results showed that the storage temperatures and times were important factors affecting the composition and metabolite content of garlic cloves. In detail, the metabolic profiling of garlic cloves changed significantly at 22 °C, which was mainly related to sprouting. Furthermore, γ-glutamyl peptide was converted into the corresponding flavor precursors or free amino acids, leading to the fluctuation in the amount of nutrients in garlic cloves. In contrast, the quality of garlic cloves remained stable for 290 days at 0 °C though metabolism still occurred, which indicated that the slight chemical changes did not impact the quality significantly and low temperature could prolong their dormancy.PMID:38631034 | DOI:10.1021/acs.jafc.3c08396

ELAPOR1 induces the classical/progenitor subtype and contributes to reduced disease aggressiveness through metabolic reprogramming in pancreatic cancer

Wed, 17/04/2024 - 12:00
Int J Cancer. 2024 Apr 17. doi: 10.1002/ijc.34960. Online ahead of print.ABSTRACTPancreatic ductal adenocarcinoma (PDAC) is a heterogeneous disease with distinct molecular subtypes described as classical/progenitor and basal-like/squamous PDAC. We hypothesized that integrative transcriptome and metabolome approaches can identify candidate genes whose inactivation contributes to the development of the aggressive basal-like/squamous subtype. Using our integrated approach, we identified endosome-lysosome associated apoptosis and autophagy regulator 1 (ELAPOR1/KIAA1324) as a candidate tumor suppressor in both our NCI-UMD-German cohort and additional validation cohorts. Diminished ELAPOR1 expression was linked to high histological grade, advanced disease stage, the basal-like/squamous subtype, and reduced patient survival in PDAC. In vitro experiments demonstrated that ELAPOR1 transgene expression not only inhibited the migration and invasion of PDAC cells but also induced gene expression characteristics associated with the classical/progenitor subtype. Metabolome analysis of patient tumors and PDAC cells revealed a metabolic program associated with both upregulated ELAPOR1 and the classical/progenitor subtype, encompassing upregulated lipogenesis and downregulated amino acid metabolism. 1-Methylnicotinamide, a known oncometabolite derived from S-adenosylmethionine, was inversely associated with ELAPOR1 expression and promoted migration and invasion of PDAC cells in vitro. Taken together, our data suggest that enhanced ELAPOR1 expression promotes transcriptome and metabolome characteristics that are indicative of the classical/progenitor subtype, whereas its reduction associates with basal-like/squamous tumors with increased disease aggressiveness in PDAC patients. These findings position ELAPOR1 as a promising candidate for diagnostic and therapeutic targeting in PDAC.PMID:38630934 | DOI:10.1002/ijc.34960

Evaluation of the mechanism of Gong Ying San activity on dairy cows mastitis by network pharmacology and metabolomics analysis

Wed, 17/04/2024 - 12:00
PLoS One. 2024 Apr 17;19(4):e0299234. doi: 10.1371/journal.pone.0299234. eCollection 2024.ABSTRACTOBJECTIVES: The goal of this investigation was to identify the main compounds and the pharmacological mechanism of the traditional Chinese medicine formulation, Gong Ying San (GYS), by infrared spectral absorption characteristics, metabolomics, network pharmacology, and molecular-docking analysis for mastitis. The antibacterial and antioxidant activities were determined in vitro.METHODS: The chemical constituents of GYS were detected by ultra-high-performance liquid chromatography Q-extractive mass spectrometry (UHPLC-QE-MS). Related compounds were screened from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP, http://tcmspw.com/tcmsp.php) and the Encyclopedia of Traditional Chinese Medicine (ETCM, http://www.tcmip.cn/ETCM/index.php/Home/) databases; genes associated with mastitis were identified in DisGENT. A protein-protein interaction (PPI) network was generated using STRING. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment screening was conducted using the R module. Molecular-docking analyses were performed with the AutoDockTools V1.5.6.RESULTS: Fifty-four possible compounds in GYS with forty likely targets were found. The compound-target-network analysis showed that five of the ingredients, quercetin, luteolin, kaempferol, beta-sitosterol, and stigmasterol, had degree values >41.6, and the genes TNF, IL-6, IL-1β, ICAM1, CXCL8, CRP, IFNG, TP53, IL-2, and TGFB1 were core targets in the network. Enrichment analysis revealed that pathways associated with cancer, lipids, atherosclerosis, and PI3K-Akt signaling pathways may be critical in the pharmacology network. Molecular-docking data supported the hypothesis that quercetin and luteolin interacted well with TNF-α and IL-6.CONCLUSIONS: An integrative investigation based on a bioinformatics-network topology provided new insights into the synergistic, multicomponent mechanisms of GYS's anti-inflammatory, antibacterial, and antioxidant activities. It revealed novel possibilities for developing new combination medications for reducing mastitis and its complications.PMID:38630770 | DOI:10.1371/journal.pone.0299234

Cullin 3 RING E3 ligase inactivation causes NRF2-dependent NADH reductive stress, hepatic lipodystrophy, and systemic insulin resistance

Wed, 17/04/2024 - 12:00
Proc Natl Acad Sci U S A. 2024 Apr 23;121(17):e2320934121. doi: 10.1073/pnas.2320934121. Epub 2024 Apr 17.ABSTRACTCullin RING E3 ligases (CRL) have emerged as key regulators of disease-modifying pathways and therapeutic targets. Cullin3 (Cul3)-containing CRL (CRL3) has been implicated in regulating hepatic insulin and oxidative stress signaling. However, CRL3 function in liver pathophysiology is poorly defined. Here, we report that hepatocyte Cul3 knockout results in rapid resolution of steatosis in obese mice. However, the remarkable resistance of hepatocyte Cul3 knockout mice to developing steatosis does not lead to overall metabolic improvement but causes systemic metabolic disturbances. Liver transcriptomics analysis identifies that CRL3 inactivation causes persistent activation of the nuclear factor erythroid 2-related factor 2 (NRF2) antioxidant defense pathway, which also reprograms the lipid transcriptional network to prevent TG storage. Furthermore, global metabolomics reveals that NRF2 activation induces numerous NAD+-consuming aldehyde dehydrogenases to increase the cellular NADH/NAD+ ratio, a redox imbalance termed NADH reductive stress that inhibits the glycolysis-citrate-lipogenesis axis in Cul3 knockout livers. As a result, this NRF2-induced cellular lipid storage defect promotes hepatic ceramide accumulation, elevates circulating fatty acids, and worsens systemic insulin resistance in a vicious cycle. Hepatic lipid accumulation is restored, and liver injury and hyperglycemia are attenuated when NRF2 activation and NADH reductive stress are abolished in hepatocyte Cul3/Nrf2 double-knockout mice. The resistance to hepatic steatosis, hyperglycemia, and NADH reductive stress are observed in hepatocyte Keap1 knockout mice with NRF2 activation. In summary, our study defines a critical role of CRL3 in hepatic metabolic regulation and demonstrates that the CRL3 downstream NRF2 overactivation causes hepatic metabolic maladaptation to obesity and insulin resistance.PMID:38630726 | DOI:10.1073/pnas.2320934121

Altered GM1 catabolism affects NMDAR-mediated Ca<sup>2+</sup> signaling at ER-PM junctions and increases synaptic spine formation in a GM1-gangliosidosis model

Wed, 17/04/2024 - 12:00
Cell Rep. 2024 Apr 16;43(5):114117. doi: 10.1016/j.celrep.2024.114117. Online ahead of print.ABSTRACTEndoplasmic reticulum-plasma membrane (ER-PM) junctions mediate Ca2+ flux across neuronal membranes. The properties of these membrane contact sites are defined by their lipid content, but little attention has been given to glycosphingolipids (GSLs). Here, we show that GM1-ganglioside, an abundant GSL in neuronal membranes, is integral to ER-PM junctions; it interacts with synaptic proteins/receptors and regulates Ca2+ signaling. In a model of the neurodegenerative lysosomal storage disease, GM1-gangliosidosis, pathogenic accumulation of GM1 at ER-PM junctions due to β-galactosidase deficiency drastically alters neuronal Ca2+ homeostasis. Mechanistically, we show that GM1 interacts with the phosphorylated N-methyl D-aspartate receptor (NMDAR) Ca2+ channel, thereby increasing Ca2+ flux, activating extracellular signal-regulated kinase (ERK) signaling, and increasing the number of synaptic spines without increasing synaptic connectivity. Thus, GM1 clustering at ER-PM junctions alters synaptic plasticity and worsens the generalized neuronal cell death characteristic of GM1-gangliosidosis.PMID:38630590 | DOI:10.1016/j.celrep.2024.114117

Machine learning-based plasma metabolomic profiles for predicting long-term complications of cirrhosis

Wed, 17/04/2024 - 12:00
Hepatology. 2024 Apr 17. doi: 10.1097/HEP.0000000000000879. Online ahead of print.ABSTRACTBACKGROUND AND AIMS: The liver cirrhosis complications occur after long asymptomatic stages of progressive fibrosis and are generally diagnosed late. We aimed to develop a plasma metabolomic-based score tool to predict these events.APPROACH AND RESULTS: We enrolled 64,005 UK biobank participants with metabolomic profile. Participants were randomly divided into the training (n=43,734) and validation cohorts (n=20,271). Liver cirrhosis complications were defined as hospitalization for liver cirrhosis or presentation with hepatocellular carcinoma. Interpretable machine learning framework was applied to learn the metabolomic states extracted from 168 circulating metabolites in the training cohort. An integrated nomogram was developed and compared to conventional and genetic risk scores. We created three groups: low-risk, middle-risk, and high-risk through selected cut-offs of the nomogram. The predictive performance was validated through area under time-dependent receiver operating characteristic curve (time-dependent AUC), calibration curves, and decision curve analysis. The metabolomic state model could accurately predict 10-year risk of liver cirrhosis complications in the training cohort (time-dependent AUC 0.84 [95% CI 0.82-0.86]), and outperform the fibrosis-4 index (time-dependent AUC difference 0.06 [0.03-0.10]) and polygenic risk score (0.25 [0.21-0.29]). The nomogram, integrating metabolomic state, aspartate aminotransferase, platelet count, waist/hip ratio, and smoking status, showed a time-dependent AUC of 0.930 at 3 years, 0.889 at 5 years, and 0.861 at 10 years in the validation cohort, respectively. The hazard ratio in the high-risk group was 43.58 (95% CI 27.08-70.12) compared with the low-risk group.CONCLUSIONS: We developed a metabolomic state-integrated nomogram, which enables risk stratification and personalized administration of liver-related events.PMID:38630500 | DOI:10.1097/HEP.0000000000000879

Cerebrospinal fluid metabolomes of treatment-resistant depression subtypes and ketamine response: a pilot study

Wed, 17/04/2024 - 12:00
Discov Ment Health. 2024 Apr 17;4(1):12. doi: 10.1007/s44192-024-00066-5.ABSTRACTDepression is a disorder with variable presentation. Selecting treatments and dose-finding is, therefore, challenging and time-consuming. In addition, novel antidepressants such as ketamine have sparse optimization evidence. Insights obtained from metabolomics may improve the management of patients. The objective of this study was to determine whether compounds in the cerebrospinal fluid (CSF) metabolome correlate with scores on questionnaires and response to medication. We performed a retrospective pilot study to evaluate phenotypic and metabolomic variability in patients with treatment-resistant depression using multivariate data compression algorithms. Twenty-nine patients with treatment-resistant depression provided fasting CSF samples. Over 300 metabolites were analyzed in these samples with liquid chromatography-mass spectrometry. Chart review provided basic demographic information, clinical status with self-reported questionnaires, and response to medication. Of the 300 metabolites analyzed, 151 were present in all CSF samples and used in the analyses. Hypothesis-free multivariate analysis compressed the resultant data set into two dimensions using Principal Component (PC) analysis, accounting for ~ 32% of the variance. PC1 accounted for 16.9% of the variance and strongly correlated with age in one direction and 5-methyltetrahydrofolate, homocarnosine, and depression and anxiety scores in the opposite direction. PC2 accounted for 15.4% of the variance, with one end strongly correlated with autism scores, male gender, and cognitive fatigue scores, and the other end with bipolar diagnosis, lithium use, and ethylmalonate disturbance. This small pilot study suggests that complex treatment-resistant depression can be mapped onto a 2-dimensional pathophysiological domain. The results may have implications for treatment selection for depression subtypes.PMID:38630417 | DOI:10.1007/s44192-024-00066-5

β-Indole-3-acetic acid attenuated collagen-induced arthritis through reducing the ubiquitination of Foxp3 via the AhR-TAZ-Tip60 pathway

Wed, 17/04/2024 - 12:00
Immunol Res. 2024 Apr 17. doi: 10.1007/s12026-024-09480-x. Online ahead of print.ABSTRACTMassive evidence shows that intestinal tryptophan metabolites affected by intestinal flora can modulate the progression of rheumatoid arthritis (RA). However, the effects and mechanisms of intestinal tryptophan metabolites on RA are not yet detailed. Herein, we investigated the protective effects of intestinal tryptophan metabolites on RA and its detailed mechanisms. In this study, the collagen-induced arthritis (CIA) rat model was established. Based on metabolomics analysis, the contents of β-indole-3-acetic acid (IAA), indolylpropionic acid, and indole-3-β-acrylic acid in the sera of CIA rats were significantly less compared with those of the normal rats. Under the condition of Treg or Th17 cell differentiation, IAA significantly promoted the differentiation and activation of Treg cells instead of Th17 cells. Intestinal tryptophan metabolites are well-known endogenic ligands of aryl hydrocarbon receptor (AhR). Not surprisingly, IAA increased the level of Foxp3 through activating the AhR pathway. Interestingly, IAA had little impact on the level of Foxp3 mRNA, but reducing the ubiquitination and degradation of Foxp3. Mechanically, IAA reduced the expression of the transcriptional coactivator TAZ, which was almost completely reversed by either AhR antagonist CH223191 or siRNA. In vitro, IAA decreased the combination of TAZ and the histone acetyltransferase Tip60, while it increased the combination of Tip60 and Foxp3. In CIA rats, oral administration of IAA increased the number of Treg cells and relieved the inflammation. A combined use with CH223191 almost abolished the effect of IAA. Taken together, IAA attenuated CIA by promoting the differentiation of Treg cells through reducing the ubiquitination of Foxp3 via the AhR-TAZ-Tip60 pathway.PMID:38630408 | DOI:10.1007/s12026-024-09480-x

Pages