Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

Sex-specific metabolic profiling to explain the increased CVD risk in women with migraine: a narrative review

Mon, 05/06/2023 - 12:00
J Headache Pain. 2023 Jun 6;24(1):64. doi: 10.1186/s10194-023-01601-5.ABSTRACTBACKGROUND: Migraine is a disabling neurological disorder whose diagnosis is based on clinical criteria. A shortcoming of these criteria is that they do not fully capture the underlying neurobiological factors and sex-specific complications in migraine such as cardio- and cerebrovascular disease. Biomarker research can help to improve disease characterization and identify pathophysiological mechanism underlying these comorbidities.OBJECTIVE: In this narrative review we searched for sex-specific metabolomics research to identify markers that may explain the migraine-cardiovascular disease (CVD) relationship.DISCUSSION: Large-scale plasma metabolome analyses revealed alterations in migraine. Sex-specific findings showed a less CVD-protective HDL metabolism as well as the ApoA1 lipoprotein, especially for women with migraine. To explore other possible pathophysiological pathways, we expanded our review to include inflammatory markers, endothelial and vascular markers and sex hormones. Biological sex differences may affect the pathophysiology of migraine and its complications.CONCLUSIONS: There is no general large dyslipidemia profile in migraine patients, in line with findings that the increased risk of CVD in migraine patients seems not to be due to (large artery) atherosclerosis. Sex-specific associations are indicative towards a less CVD-protective lipoprotein profile in women with migraine. Future studies into the pathophysiology of CVD and migraine need to take sex specific factors into account. By establishing the overlapping pathophysiological mechanism of migraine and CVD, and unraveling the associated effects these diseases exert on each other, better preventative measures can be identified.PMID:37277733 | DOI:10.1186/s10194-023-01601-5

Genetic studies of paired metabolomes reveal enzymatic and transport processes at the interface of plasma and urine

Mon, 05/06/2023 - 12:00
Nat Genet. 2023 Jun 5. doi: 10.1038/s41588-023-01409-8. Online ahead of print.ABSTRACTThe kidneys operate at the interface of plasma and urine by clearing molecular waste products while retaining valuable solutes. Genetic studies of paired plasma and urine metabolomes may identify underlying processes. We conducted genome-wide studies of 1,916 plasma and urine metabolites and detected 1,299 significant associations. Associations with 40% of implicated metabolites would have been missed by studying plasma alone. We detected urine-specific findings that provide information about metabolite reabsorption in the kidney, such as aquaporin (AQP)-7-mediated glycerol transport, and different metabolomic footprints of kidney-expressed proteins in plasma and urine that are consistent with their localization and function, including the transporters NaDC3 (SLC13A3) and ASBT (SLC10A2). Shared genetic determinants of 7,073 metabolite-disease combinations represent a resource to better understand metabolic diseases and revealed connections of dipeptidase 1 with circulating digestive enzymes and with hypertension. Extending genetic studies of the metabolome beyond plasma yields unique insights into processes at the interface of body compartments.PMID:37277652 | DOI:10.1038/s41588-023-01409-8

Metabolomics identifies the intestinal geography of microbial metabolite production

Mon, 05/06/2023 - 12:00
Nat Metab. 2023 Jun 5. doi: 10.1038/s42255-023-00805-y. Online ahead of print.NO ABSTRACTPMID:37277611 | DOI:10.1038/s42255-023-00805-y

Baicalein Attenuates Neuroinflammation in LPS-Treated BV-2 Cells by Inhibiting Glycolysis via STAT3/c-Myc Pathway

Mon, 05/06/2023 - 12:00
Neurochem Res. 2023 Jun 5. doi: 10.1007/s11064-023-03961-5. Online ahead of print.ABSTRACTMore and more evidence shows that metabolic reprogramming is closely related to the occurrence of AD. The metabolic conversion of oxidative phosphorylation into glycolysis will aggravate microglia-mediated inflammation. It has been demonstrated that baicalein could inhibit neuroinflammation in LPS-treated BV-2 microglial cells, but whether the anti-neuroinflammatory mechanisms of baicalein were related to glycolysis is unclear. Our results depicted that baicalein significantly inhibited the levels of nitric oxide (NO), interleukin-6 (IL-6), prostaglandin 2 (PGE2) and tumor necrosis factor (TNF-α) in LPS-treated BV-2 cells. 1H-NMR metabolomics analysis showed that baicalein decreased the levels of lactic acid and pyruvate, and significantly regulated glycolytic pathway. Further study revealed that baicalein significantly inhibited the activities of glycolysis-related enzymes including hexokinase (HK), 6-phosphate kinase (6-PFK), pyruvate kinase (PK), lactate dehydrogenase (LDH), and inhibited STAT3 phosphorylation and c-Myc expression. By using of STAT3 activator RO8191, we found that baicalein suppressed the increase of STAT3 phosphorylation and c-Myc expression triggered by RO8191, and inhibited the increased levels of 6-PFK, PK and LDH caused by RO8191. In conclusion, these results suggested that baicalein attenuated the neuroinflammation in LPS-treated BV-2 cells by inhibiting glycolysis through STAT3/c-Myc pathway.PMID:37277556 | DOI:10.1007/s11064-023-03961-5

Sexual differentiation in human malaria parasites is regulated by competition between phospholipid metabolism and histone methylation

Mon, 05/06/2023 - 12:00
Nat Microbiol. 2023 Jun 5. doi: 10.1038/s41564-023-01396-w. Online ahead of print.ABSTRACTFor Plasmodium falciparum, the most widespread and virulent malaria parasite that infects humans, persistence depends on continuous asexual replication in red blood cells, while transmission to their mosquito vector requires asexual blood-stage parasites to differentiate into non-replicating gametocytes. This decision is controlled by stochastic derepression of a heterochromatin-silenced locus encoding AP2-G, the master transcription factor of sexual differentiation. The frequency of ap2-g derepression was shown to be responsive to extracellular phospholipid precursors but the mechanism linking these metabolites to epigenetic regulation of ap2-g was unknown. Through a combination of molecular genetics, metabolomics and chromatin profiling, we show that this response is mediated by metabolic competition for the methyl donor S-adenosylmethionine between histone methyltransferases and phosphoethanolamine methyltransferase, a critical enzyme in the parasite's pathway for de novo phosphatidylcholine synthesis. When phosphatidylcholine precursors are scarce, increased consumption of SAM for de novo phosphatidylcholine synthesis impairs maintenance of the histone methylation responsible for silencing ap2-g, increasing the frequency of derepression and sexual differentiation. This provides a key mechanistic link that explains how LysoPC and choline availability can alter the chromatin status of the ap2-g locus controlling sexual differentiation.PMID:37277533 | DOI:10.1038/s41564-023-01396-w

'Multi-omics' data integration: applications in probiotics studies

Mon, 05/06/2023 - 12:00
NPJ Sci Food. 2023 Jun 5;7(1):25. doi: 10.1038/s41538-023-00199-x.ABSTRACTThe concept of probiotics is witnessing increasing attention due to its benefits in influencing the host microbiome and the modulation of host immunity through the strengthening of the gut barrier and stimulation of antibodies. These benefits, combined with the need for improved nutraceuticals, have resulted in the extensive characterization of probiotics leading to an outburst of data generated using several 'omics' technologies. The recent development in system biology approaches to microbial science is paving the way for integrating data generated from different omics techniques for understanding the flow of molecular information from one 'omics' level to the other with clear information on regulatory features and phenotypes. The limitations and tendencies of a 'single omics' application to ignore the influence of other molecular processes justify the need for 'multi-omics' application in probiotics selections and understanding its action on the host. Different omics techniques, including genomics, transcriptomics, proteomics, metabolomics and lipidomics, used for studying probiotics and their influence on the host and the microbiome are discussed in this review. Furthermore, the rationale for 'multi-omics' and multi-omics data integration platforms supporting probiotics and microbiome analyses was also elucidated. This review showed that multi-omics application is useful in selecting probiotics and understanding their functions on the host microbiome. Hence, recommend a multi-omics approach for holistically understanding probiotics and the microbiome.PMID:37277356 | DOI:10.1038/s41538-023-00199-x

Remembering Ad de Jong

Mon, 05/06/2023 - 12:00
Mol Cell Proteomics. 2023 Jun 3;22(6):100568. doi: 10.1016/j.mcpro.2023.100568. Online ahead of print.NO ABSTRACTPMID:37276839 | DOI:10.1016/j.mcpro.2023.100568

A comprehensive view of metabolic responses to CYP98 perturbation in ancestral plants

Mon, 05/06/2023 - 12:00
Plant Physiol Biochem. 2023 May 23;201:107793. doi: 10.1016/j.plaphy.2023.107793. Online ahead of print.ABSTRACTCytochrome P450 monooxygenase 98 (CYP98) is a critical rate-limiting enzyme of the phenylpropanoid pathway. One of the end-product of the phenylpropanoid pathway is a lignin monomer, although the occurrence of lignin in bryophytes is controversial. Here we investigated the functions of PpCYP98 in Physcomitrium patens by transcriptome and metabolome analyses. We identified 5266 differentially expressed genes (DEGs) and 68 differentially abundant secondary metabolites between wild-type and ΔPpCYP98 gametophores. Of the identified metabolites, 23 phenolic acids were identified, with only one showing upregulation. Among the phenolic acids, 4-coumaroyl tartaric acid and chlorogenic acid showed significant decreases. Declines were also observed in coniferylaldehyde and coniferin, precursor substances and downstream products of the lignin monomer coniferyl alcohol, respectively. Thus, the pre-lignin synthesis pathway already exists in bryophytes, and PpCYP98 plays vital roles in this pathway. Besides, most flavonoids show significant reductions, including eriodyctiol, dihydroquecetin, and dihydromyricetin, whereas naringenin chalone and dihydrokaempferol were increased after PpCYP98 knockout. Therefore, the synthesis of flavonoids shares the core pathway with phenylpropanoids and mainly starts from caffeoyl-CoA, that is the compound of divergence between the two pathways in moss. PpCYP98 showed systemic effects on metabolisms, including carbohydrate, fatty acid, and hormonal signaling transductions, suggesting that PpCYP98 might indirectly regulate carbon influx allocation. Our results demonstrated roles of PpCYP98 were essential for the development of the early landing plant.PMID:37276808 | DOI:10.1016/j.plaphy.2023.107793

Nervonic acid improves liver inflammation in a mouse model of Parkinson's disease by inhibiting proinflammatory signaling pathways and regulating metabolic pathways

Mon, 05/06/2023 - 12:00
Phytomedicine. 2023 Jun 1;117:154911. doi: 10.1016/j.phymed.2023.154911. Online ahead of print.ABSTRACTBACKGROUND: Nervonic acid (NA) - a type of bioactive fatty acid that is found in natural sources - can inhibit inflammatory reactions and regulate immune system balance. Therefore, the use of NA for the treatment of neurodegenerative diseases has received considerable attention. Our previous study found that NA inhibited inflammatory responses in the brain of Parkinson's disease (PD) mouse models. In addition to the brain, PD is also associated with visceral organ dysfunction, especially impaired liver function. Thus, studying the role of NA in PD-mediated inflammation of the liver is particularly important.METHODS: A combined transcriptome and metabolomic approach was utilized to investigate the anti-inflammatory effects of NA on the liver of PD mice. Inflammatory signaling molecules and metabolic pathway-related genes were examined in the liver using real-time PCR and western blotting.RESULTS: Liver transcriptome analysis revealed that NA exerted anti-inflammatory effects by controlling several pro-inflammatory signaling pathways, such as the down-regulation of the tumor necrosis factor and nuclear factor kappa B signaling pathways, both of which were essential in the development of inflammatory disease. In addition, liver metabolomic results revealed that metabolites related to steroid hormone biosynthesis, arachidonic acid metabolism, and linoleic acid metabolism were up-regulated and those related to valine, leucine, and isoleucine degradation pathways were down-regulated in NA treatment groups compared with the PD model. The integration of metabolomic and transcriptomic results showed NA significantly exerted its anti-inflammatory function by regulating the transcription and metabolic pathways of multiple genes. Particularly, linoleic acid metabolism, arachidonic acid metabolism, and steroid hormone biosynthesis were the crucial pathways of the anti-inflammatory action of NA. Key genes in these metabolic pathways and key molecules in inflammatory signaling pathways were also verified, which were consistent with transcriptomic results.CONCLUSION: These findings provide novel insights into the liver protective effects of NA against PD mice. This study also showed that NA could be a useful dietary element for improving and treating PD-induced liver inflammation.PMID:37276724 | DOI:10.1016/j.phymed.2023.154911

Responses of gut microbiomes to commercial polyester polymer biodegradation in Tenebrio molitor Larvae

Mon, 05/06/2023 - 12:00
J Hazard Mater. 2023 Jun 2;457:131759. doi: 10.1016/j.jhazmat.2023.131759. Online ahead of print.ABSTRACTPolyethylene terephthalate (PET) is a mass-produced fossil-based plastic polymer that contributes to catastrophic levels of plastic pollution. Here we demonstrated that Tenebrio molitor (mealworms) was capable of rapidly biodegrading two commercial PET resins (microplastics) with respective weight-average molecular weight (Mw) of 39.33 and 29.43 kDa and crystallinity of 22.8 ± 3.06% and 18 ± 2.25%, resulting in an average mass reduction of 71.03% and 73.28% after passage of their digestive tract, and respective decrease by 9.22% and 11.36% in Mw of residual PET polymer in egested frass. Sequencing of 16 S rRNA gene amplicons of gut microbial communities showed that dominant bacterial genera were enriched and associated with PET degradation. Also, PICRUSt prediction exhibited that oxidases (monooxygenases and dioxygenases), hydrolases (cutinase, carboxylesterase and chitinase), and PET metabolic enzymes, and chemotaxis related functions were up-regulated in the PET-fed larvae. Additionally, metabolite analyses revealed that PET uptake caused alterations of stress response and plastic degradation related pathways, and lipid metabolism pathways in the T. molitor larvae could be reprogrammed when the larvae fed on PET. This study provides new insights into gut microbial community adaptation to PET diet under nutritional stress (especially nitrogen deficiency) and its contribution to PET degradation.PMID:37276692 | DOI:10.1016/j.jhazmat.2023.131759

Identification of nutritional biomarkers through highly sensitive and chemoselective metabolomics

Mon, 05/06/2023 - 12:00
Food Chem. 2023 Jun 1;425:136481. doi: 10.1016/j.foodchem.2023.136481. Online ahead of print.ABSTRACTThe importance of a healthy diet for humans is known for decades. The elucidation of key molecules responsible for the beneficial and adverse dietary effects is slowly developing as the tools are missing. Carbonyl-containing metabolites are a common bioproducts through conversion of diet by the microbiome. In here, we have utilized our recently developed mass spectrometric methodology based on chemoselective conjugation of carbonyl-metabolites. The method has been applied for urine sample analysis from a dietary (poly)phenol intervention study (N = 78 individuals) for the first time. We have identified a series of carbonyl-metabolites of dietary origin and the chemical structure was validated for 30 metabolites. Our sensitive analysis led to the discovery of four unknown dietary markers with high sensitivity and selectivity (AUC > 0.91). Our chemical metabolomics method has been successfully applied for large-scale analysis and provides the basis for targeted metabolomics to identify unknown nutritional and disease-related biomarkers.PMID:37276670 | DOI:10.1016/j.foodchem.2023.136481

UHPLC-Q-Orbitrap HR-MS-Based Metabolomics for Profiling the Sida rhombifolia Metabolites with Different Plant Organs and Cultivation Ages

Mon, 05/06/2023 - 12:00
Chem Biodivers. 2023 Jun 5:e202201042. doi: 10.1002/cbdv.202201042. Online ahead of print.ABSTRACTPlant organs and cultivation ages can result in different compositions and concentration levels of plant metabolites. The metabolite profile of plants can be determined using liquid chromatography. This study determined the metabolite profiles of leaves, stems, and roots of Sida rhombifolia at different cultivation ages at 3, 4, and 5 months post-planting (MPP) using liquid chromatography-mass spectrometry/mass spectrometry (LC/MS/MS). The results identified that 41 metabolites in S. rhombifolia extract for all plant organs and cultivation ages. We successfully identified approximately 36 (leaves), 22 (stems), and 18 (roots) compounds in all extract. Using principal component analysis (PCA) with peak area as the variable, we clustered all sample extracts based on plant organs and cultivation ages. As a result of PCA, S. rhombifolia extracts were grouped according to plant organs and cultivation ages. In conclusion, a clear difference in the composition and concentration levels of metabolites was observed in the leaves, stems, and roots of S. rhombifolia harvested at 3-, 4-, and 5-MPP.PMID:37276379 | DOI:10.1002/cbdv.202201042

Directed Evolution of a G-Quadruplex Peroxidase DNAzyme and Application in Proteomic DNAzyme-Aptamer Proximity Labeling

Mon, 05/06/2023 - 12:00
J Am Chem Soc. 2023 Jun 5. doi: 10.1021/jacs.3c02625. Online ahead of print.ABSTRACTDNAzymes have been limited in application by their low catalytic rates. Here, we evolved a new peroxidase DNAzyme mSBDZ-X-3 through a directed evolution method based on the capture of self-biotinylated DNA catalyzed by its intrinsic peroxidase activity. The mSBDX-X-3 DNAzyme has a parallel G-quadruplex structure and has more favorable catalytic properties than all previously reported peroxidase DNAzyme variants. We applied mSBDZ-X-3 in an aptamer-coupled proximity-based labeling proteomic assay to determine the proteins that bind to cell surface cancer biomarkers EpCAM and nucleolin. Confocal microscopy, western blot analysis, and LC-MS/MS showed that the hybrid DNAzyme aptamer-coupled proximity assay-labeled proteins associated with EpCAM and nucleolin within 6-12 min in fixed cancer cells. The labeled proteins were identified by mass spectrometry. This study provides a highly efficient peroxidase DNAzyme, a methodology for selection of such variants, and a method for its application in spatial proteomics using entirely nucleic acid-based tooling.PMID:37276197 | DOI:10.1021/jacs.3c02625

Metabolomics of infectious diseases in the era of personalized medicine

Mon, 05/06/2023 - 12:00
Front Mol Biosci. 2023 May 18;10:1120376. doi: 10.3389/fmolb.2023.1120376. eCollection 2023.ABSTRACTInfectious diseases continue to be a major cause of morbidity and mortality worldwide. Diseases cause perturbation of the host's immune system provoking a response that involves genes, proteins and metabolites. While genes are regulated by epigenetic or other host factors, proteins can undergo post-translational modification to enable/modify function. As a result, it is difficult to correlate the disease phenotype based solely on genetic and proteomic information only. Metabolites, however, can provide direct information on the biochemical activity during diseased state. Therefore, metabolites may, potentially, represent a phenotypic signature of a diseased state. Measuring and assessing metabolites in large scale falls under the omics technology known as "metabolomics". Comprehensive and/or specific metabolic profiling in biological fluids can be used as biomarkers of disease diagnosis. In addition, metabolomics together with genomics can be used to differentiate patients with differential treatment response and development of host targeted therapy instead of pathogen targeted therapy where pathogens are more prone to mutation and lead to antimicrobial resistance. Thus, metabolomics can be used for patient stratification, personalized drug formulation and disease control and management. Currently, several therapeutics and in vitro diagnostics kits have been approved by US Food and Drug Administration (FDA) for personalized treatment and diagnosis of infectious diseases. However, the actual number of therapeutics or diagnostics kits required for tailored treatment is limited as metabolomics and personalized medicine require the involvement of personnel from multidisciplinary fields ranging from technological development, bioscience, bioinformatics, biostatistics, clinicians, and biotechnology companies. Given the significance of metabolomics, in this review, we discussed different aspects of metabolomics particularly potentials of metabolomics as diagnostic biomarkers and use of small molecules for host targeted treatment for infectious diseases, and their scopes and challenges in personalized medicine.PMID:37275959 | PMC:PMC10233009 | DOI:10.3389/fmolb.2023.1120376

Potential of algae-derived alginate oligosaccharides and β-glucan to counter inflammation in adult zebrafish intestine

Mon, 05/06/2023 - 12:00
Front Immunol. 2023 May 19;14:1183701. doi: 10.3389/fimmu.2023.1183701. eCollection 2023.ABSTRACTAlginate oligosaccharides (AOS) are natural bioactive compounds with anti-inflammatory properties. We performed a feeding trial employing a zebrafish (Danio rerio) model of soybean-induced intestinal inflammation. Five groups of fish were fed different diets: a control (CT) diet, a soybean meal (SBM) diet, a soybean meal+β-glucan (BG) diet and 2 soybean meal+AOS diets (alginate products differing in the content of low molecular weight fractions - AL, with 31% < 3kDa and AH, with 3% < 3kDa). We analyzed the intestinal transcriptomic and plasma metabolomic profiles of the study groups. In addition, we assessed the expression of inflammatory marker genes and histological alterations in the intestine. Dietary algal β-(1, 3)-glucan and AOS were able to bring the expression of certain inflammatory genes altered by dietary SBM to a level similar to that in the control group. Intestinal transcriptomic analysis indicated that dietary SBM changed the expression of genes linked to inflammation, endoplasmic reticulum, reproduction and cell motility. The AL diet suppressed the expression of genes related to complement activation, inflammatory and humoral response, which can likely have an inflammation alleviation effect. On the other hand, the AH diet reduced the expression of genes, causing an enrichment of negative regulation of immune system process. The BG diet suppressed several immune genes linked to the endopeptidase activity and proteolysis. The plasma metabolomic profile further revealed that dietary SBM can alter inflammation-linked metabolites such as itaconic acid, taurochenodeoxycholic acid and enriched the arginine biosynthesis pathway. The diet AL helped in elevating one of the short chain fatty acids, namely 2-hydroxybutyric acid while the BG diet increased the abundance of a vitamin, pantothenic acid. Histological evaluation revealed the advantage of the AL diet: it increased the goblet cell number and length of villi of the intestinal mucosa. Overall, our results indicate that dietary AOS with an appropriate amount of < 3kDa can stall the inflammatory responses in zebrafish.PMID:37275890 | PMC:PMC10235609 | DOI:10.3389/fimmu.2023.1183701

Widely targeted metabolomics reveals the antioxidant and anticancer activities of different colors of <em>Dianthus caryophyllus</em>

Mon, 05/06/2023 - 12:00
Front Nutr. 2023 May 19;10:1166375. doi: 10.3389/fnut.2023.1166375. eCollection 2023.ABSTRACTCarnation is edible flower that has potent antioxidant properties and is used in traditional Chinese medicinal system and food industry. The phytochemicals responsible for these various proprieties, however, are not fully understood. Thus, in order to recognize metabolite diversity and variability in carnation flowers of different colors and to discover key metabolites that contribute to the differences in antioxidant and anticancer activities, widely targeted LC-MS/MS-based metabolomics analysis was conducted on purple, green, yellow, and white carnation flowers. We identified and chemically categorized 932 metabolites. Metabolic compounds varied significantly with flower color. Several flavonoids, organic acids, phenolic acids, and nucleotides and their derivatives were found to be specific differential metabolites in purple flowers. A total of 128 key differential metabolites were screened. The purple flowers were found to have the highest antioxidant and anticancer activities compared to the other colored flowers. Correlation analysis revealed that the 6-hydroxykaempferol-3,6-O-diglucoside, 6-hydroxykaempferol-7-O-glucoside, quercetin-3-O-sophoroside, and 2'-deoxyguanosine were found to be the major constituents of the antioxidant and anticancer activities. 2'-Deoxyguanosine has effective antiproliferative activity against A549 and U2OS cells for the first report. At the same time, the combination of 2'-deoxyguanosine with 6-hydroxykaempferol-3, 6-O-diglucoside, or quercetin-3-O-sophoroside have also been found to increase the antitumor activity of 2'-deoxyguanosine. These discoveries enrich information on the phytochemical composition of carnation of different colors and provide resources for the overall use and improvement of carnation flowers quality.PMID:37275648 | PMC:PMC10235515 | DOI:10.3389/fnut.2023.1166375

Comprehensive metabolic analyses provide new insights into primary and secondary metabolites in different tissues of Jianghua Kucha tea (<em>Camellia sinensis</em> var. <em>assamica</em> cv. Jianghua)

Mon, 05/06/2023 - 12:00
Front Nutr. 2023 May 19;10:1181135. doi: 10.3389/fnut.2023.1181135. eCollection 2023.ABSTRACTBACKGROUND: Jianghua Kucha (JHKC) is a special tea germplasm with enriched specialized secondary metabolites, including theacrine, non-epimeric flavanols and methylated flavanols. Moreover, primary metabolites provide precursors and energy for the production of secondary metabolites. However, the accumulation patterns of primary and secondary metabolites in different tissues of JHKC are unclear.METHODS: The changes of primary and secondary metabolites and related metabolic pathways (primary and secondary metabolism) in different JHKC tissues (the bud, 1st-4th leaves, and new stem) were investigated via metabolomics analysis with ultra-high-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UHPLC-QTOF/MS).RESULTS: Significant differences were observed in 68 primary and 51 secondary metabolites mainly related with the pathways of starch and sucrose, amino acids, caffeine, and flavanols metabolism and TCA cycle. The bud exhibited higher levels of glucose-6-phosphate, citric acid, most amino acids, theobromine, catechin-gallate, epicatechin-gallate, procyanidins, and theasinensins; the 1st leaf showed higher levels of caffeine and epigallocatechin-3-gallate; and the 4th leaf contained higher levels of most monosaccharides, theacrine, and epigallocatechin-3-O-(3"-O-methyl)-gallate. In addition, primary metabolites and important secondary metabolites had certain correlations.CONCLUSION: This study provides comprehensive insight into primary and secondary metabolites in JHKC and offers guidelines for efficiently utilizing specialized metabolites of JHKC in the future.PMID:37275632 | PMC:PMC10235520 | DOI:10.3389/fnut.2023.1181135

Response of <em>Salmonella enterica</em> serovar Typhimurium to alginate oligosaccharides fermented with fecal inoculum: integrated transcriptomic and metabolomic analyses

Mon, 05/06/2023 - 12:00
Mar Life Sci Technol. 2023 May 29;5(2):242-256. doi: 10.1007/s42995-023-00176-z. eCollection 2023 May.ABSTRACTAlginate oligosaccharides (AOS), extracted from marine brown algae, are a common functional feed additive; however, it remains unclear whether they modulate the gut microbiota and microbial metabolites. The response of Salmonella enterica serovar Typhimurium, a common poultry pathogen, to AOS fermented with chicken fecal inocula was investigated using metabolomic and transcriptomic analyses. Single-strain cultivation tests showed that AOS did not directly inhibit the growth of S. Typhimurium. However, when AOS were fermented by chicken fecal microbiota, the supernatant of fermented AOS (F-AOS) exhibited remarkable antibacterial activity against S. Typhimurium, decreasing the abundance ratio of S. Typhimurium in the fecal microbiota from 18.94 to 2.94%. Transcriptomic analyses showed that the 855 differentially expressed genes induced by F-AOS were mainly enriched in porphyrin and chlorophyll metabolism, oxidative phosphorylation, and Salmonella infection-related pathways. RT-qPCR confirmed that F-AOS downregulated key genes involved in flagellar assembly and the type III secretory system of S. Typhimurium, indicating metabolites in F-AOS can influence the growth and metabolism of S. Typhimurium. Metabolomic analyses showed that 205 microbial metabolites were significantly altered in F-AOS. Among them, the increase in indolelactic acid and 3-indolepropionic acid levels were further confirmed using HPLC. This study provides a new perspective for the application of AOS as a feed additive against pathogenic intestinal bacteria.SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s42995-023-00176-z.PMID:37275545 | PMC:PMC10232696 | DOI:10.1007/s42995-023-00176-z

UPLC-Q-TOF/MS-based metabolomic analysis reveals the effects of asomate on the citrus fruit

Mon, 05/06/2023 - 12:00
Curr Res Food Sci. 2023 May 20;6:100523. doi: 10.1016/j.crfs.2023.100523. eCollection 2023.ABSTRACTThe regulation of the sugar-acid ratio is of great significance to the improvement of citrus fruit quality. The citric acid level in fruit is influenced by many factors. Among them, cultivar selection and production practices are the most important strategies under the grower's control. In recent years, an arsenic-containing preparation called "Tianmisu", with the main ingredient of asomate, has occasionally been reported to be used in citrus cultivation to improve the sweetness of fruits. In order to reveal the effects of the pesticide on citrus fruits, 'Harumi' tangor was treated with "Tianmisu", and the impact of this pesticide on fruit quality and metabolites was investigated through UPLC-Q-TOF/MS-based metabolomic analysis. Compared with the control, the concentration of titratable acidity, in particular citric acid, in the pulp of 'Harumi' tangor treated with the pesticide, was significantly reduced by 60.5%. The differences in metabolites between the pesticide-treated samples and the control were illustrated by Principal Component Analysis (PCA) and Partial Least Squares Discriminant Analysis (PLS-DA). The PLS-DA analysis demonstrated a clear discrimination, with R2Y and Q2 values of 0.982 and 0.933 in the positive mode and 0.984 and 0.900 in the negative mode, respectively. A total of 155 compounds were identified, and 63 characteristic components were screened out from the pesticide-treated samples compared to the control. Aside from the upregulation observed for a few metabolites, the majority of the compounds, including citric acid and various lipids, were down-regulated in the treated citrus fruits compared to the control. This study can serve as a basis for understanding the regulatory mechanism of organic acids in citrus and will be helpful in developing different strategies to improve citrus quality.PMID:37275389 | PMC:PMC10232657 | DOI:10.1016/j.crfs.2023.100523

Multi-omics study and ncRNA regulation of anti-BmNPV in silkworms, <em>Bombyx mori</em>: an update

Mon, 05/06/2023 - 12:00
Front Microbiol. 2023 May 18;14:1123448. doi: 10.3389/fmicb.2023.1123448. eCollection 2023.ABSTRACTBombyx mori silkworm is an important economic insect which has a significant contribution to the improvement of the economy. Bombyx mori nucleopolyhedrovirus (BmNPV) is a vitally significant purulent virus that impedes the sustainable and stable development of the silkworm industry, resulting in substantial economic losses. In recent years, with the development of biotechnology, transcriptomics, proteomics, metabolomics, and the related techniques have been used to select BmNPV-resistant genes, proteins, and metabolites. The regulatory networks between viruses and hosts have been gradually clarified with the discovery of ncRNAs, such as miRNA, lncRNA, and circRNA in cells. Thus, this paper aims to highlight the results of current multi-omics and ncRNA studies on BmNPV resistance in the silkworm, providing some references for resistant strategies in the silkworm to BmNPV.PMID:37275131 | PMC:PMC10232802 | DOI:10.3389/fmicb.2023.1123448

Pages