Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

Pulsatilla chinensis saponins ameliorated murine depression by inhibiting intestinal inflammation mediated IDO1 overexpression and rebalancing tryptophan metabolism

Thu, 11/05/2023 - 12:00
Phytomedicine. 2023 May 1;116:154852. doi: 10.1016/j.phymed.2023.154852. Online ahead of print.ABSTRACTBACKGROUND: Current antidepressant therapy remains unsatisfactory due to the complex pathogenesis. Emerging evidence suggested that depression is associated with inflammatory bowel disease (IBD), intestinal inflammation is an increasingly accepted factor that influences depression, but the mechanism is unclear.PURPOSE: In the current study, we determined whether Pulsatilla chinensis saponins (PRS), a phytomedicine from Pulsatilla chinensis (Bunge) Regel with excellent anti-IBD effect, could improve the depression. Furthermore, we investigated the mechanisms to explore the relationship between IBD and depression and provide new source for the urgent development of antidepressants from phytomedicine.METHODS: The antidepressant activity of PRS was accessed by behavioral test and multichannel technology in depression mice induced by Chronic Unpredictable Mild Stress (CUMS). 16S rDNA-based microbiota and RNA-seq in colon was used to explore potential intestinal metabolism affected by PRS. To illustrate the underlying mechanisms of anti-depression effect of PRS, targeted metabolomics, ELISA assay, immunofluorescence staining, Western Blot, and qPCR were carried out.RESULTS: The results clarified that CUMS induced depression with tryptophan (Trp) metabolism and intestinal inflammation. PRS effectively suppressed the depression and acted as a regulator of Trp/kynurenine (Kyn) metabolic and intestinal inflammation confirmed by analysis of microflora and colon RNA. Meanwhile PRS reduced interferon gamma (IFN-γ), inhibited JAK1-STAT1 phosphorylation, decreased IDO1 levels to protect against the overactivity of Trp/kyn path, suggesting that IFN-γ activated IDO1 probably a significant target for PRS to exert anti-depression effects. To further confirm the mechanism, this research expressed that PRS improved IDO1 activity and depressive behavior in mice with IFN-γ-induced depression. Furthermore, the therapeutic effect of 1-methyl-tryptophan (1-MT) well known as an IDO1 inhibitor in depression and clinically used anti-UC drug Mesalazine (MS) was demonstrated to confirm the potential mechanism.CONCLUSION: The study is the first to reveal the antidepressant effect of PRS and further demonstrate its potential therapeutic targets. In addition, it also clarifies that the Trp/kyn pathway is the crosstalk between IBD and depression and provides new choice for depression treatment. And it also provides an important basis for the follow-up development and exploration of anti-intestinal antidepressants.PMID:37167824 | DOI:10.1016/j.phymed.2023.154852

Wen-Shen-Jian-Pi-Hua-Tan decoction protects against early obesity-related glomerulopathy by improving renal bile acid composition and suppressing lipogenesis, inflammation, and fibrosis

Thu, 11/05/2023 - 12:00
Phytomedicine. 2023 May 4;116:154861. doi: 10.1016/j.phymed.2023.154861. Online ahead of print.ABSTRACTBACKGROUND: Obesity is an independent predictor of chronic kidney disease (CKD) development and may directly lead to kidney lesions such as obesity-related glomerulopathy (ORG) which might play a vital pathogenic role in obese patients with CKD. Wen-Shen-Jian-Pi-Hua-Tan decoction (WSHT) has been clinically used for the treatment of obesity and obesity-related metabolic diseases for years. However, the renoprotective effects and potential mechanism of action of WSHT against ORG remain unknown.PURPOSE: This study aimed to explore the potential effect of WSHT on ORG and reveal its mechanisms in high-fat diet (HFD)-induced obese rats.METHODS: An animal model of early stage ORG was established using HFD-induced obese rats. After treatment with WSHT for 6 weeks, an integrated metabolomics and molecular biology strategy was utilized to illustrate the effects and mechanism of WSHT on ORG. First, UPLC-ESI-MS/MS-based targeted metabolomics was used to analyze renal bile acid (BA) levels. Biochemical, histological, and immunofluorescence assays; electron microscopy; and western blotting were performed to evaluate the efficacy of WSHT against ORG and its underlying mechanisms in vivo.RESULTS: Our results showed that an HFD led to hyperlipidemia, proteinuria, renal lipid deposition, effacement of podocyte foot processes, and increased expression of proinflammatory factors and profibrotic growth factors in ORG rats. In addition, an HFD decreased the levels of renal BAs such as cholic acid, chenodeoxycholic acid, and lithocholic acid. After 6 weeks of treatment, WSHT markedly attenuated dyslipidemia and reduced body, kidney and epididymal fat weights in ORG rats. WSHT also significantly increased BA levels, suggesting that it altered BA composition; the effects of BAs are closely associated with farnesoid X receptor (FXR) activation. WSHT alleviated fat accumulation, podocyte loss and proteinuria, and reduced the expression of proinflammatory cytokines and profibrotic growth factors in the kidneys of ORG rats. Finally, WSHT remarkably upregulated the renal expression of FXR and salt-induced kinase 1 and blocked the renal expression of sterol regulatory element-binding protein-1c and its target genes.CONCLUSION: WSHT attenuated early renal lesions in ORG rats by improving renal BA composition and suppressing lipogenesis, inflammation and fibrosis. This study develops a new way to alleviate obesity-induced renal damages.PMID:37167823 | DOI:10.1016/j.phymed.2023.154861

Amburana cearensis seed extract stimulates astrocyte glutamate homeostatic mechanisms in hippocampal brain slices and protects oligodendrocytes against ischemia

Thu, 11/05/2023 - 12:00
BMC Complement Med Ther. 2023 May 11;23(1):154. doi: 10.1186/s12906-023-03959-0.ABSTRACTBACKGROUND: Stroke is a leading cause of death and disability worldwide. A major factor in brain damage following ischemia is excitotoxicity caused by elevated levels of the neurotransmitter glutamate. In the brain, glutamate homeostasis is a primary function of astrocytes. Amburana cearensis has long been used in folk medicine and seed extract obtained with dichloromethane (EDAC) have previously been shown to exhibit cytoprotective activity in vitro. The aim of the present study was to analyse the activity of EDAC in hippocampal brain slices.METHODS: We prepared a dichloromethane extract (EDAC) from A. cearensis seeds and characterized the chemical constituents by 1H and 13C-NMR. Hippocampal slices from P6-8 or P90 Wistar rats were used for cell viability assay or glutamate uptake test. Hippocampal slices from P10-12 transgenic mice SOX10-EGFP and GFAP-EGFP and immunofluorescence for GS, GLAST and GLT1 were used to study oligodendrocytes and astrocytes.RESULTS: Astrocytes play a critical role in glutamate homeostasis and we provide immunohistochemical evidence that in excitotoxicity EDAC increased expression of glutamate transporters and glutamine synthetase, which is essential for detoxifying glutamate. Next, we directly examined astrocytes using transgenic mice in which glial fibrillary acidic protein (GFAP) drives expression of enhanced green fluorescence protein (EGFP) and show that glutamate excitotoxicity caused a decrease in GFAP-EGFP and that EDAC protected against this loss. This was examined further in the oxygen-glucose deprivation (OGD) model of ischemia, where EDAC caused an increase in astrocytic process branching, resulting in an increase in GFAP-EGFP. Using SOX10-EGFP reporter mice, we show that the acute response of oligodendrocytes to OGD in hippocampal slices is a marked loss of their processes and EDAC protected oligodendrocytes against this damage.CONCLUSION: This study provides evidence that EDAC is cytoprotective against ischemia and glutamate excitotoxicity by modulating astrocyte responses and stimulating their glutamate homeostatic mechanisms.PMID:37170258 | DOI:10.1186/s12906-023-03959-0

Bushen-Yizhi formula ameliorates mitochondrial dysfunction and oxidative stress via AMPK/Sirt1 signaling pathway in D-gal-induced aging rats

Thu, 11/05/2023 - 12:00
Chin Med. 2023 May 11;18(1):53. doi: 10.1186/s13020-023-00755-3.ABSTRACTBACKGROUND: As a major risk factor for neurodegenerative diseases, aging has become a heavy health care burden worldwide. Age-related decline in mitochondrial function and oxidative stress is strongly associated with neurodegeneration. The previous study demonstrated that Bushen-Yizhi formula (BSYZ), a traditional Chinese medicine formula, is effective in reducing neurodegeneration.METHODS: This study is the first to investigate the effect of BSYZ on D-gal-induced learning memory in rats. Secondly, the potential metabolic mechanism of BSYZ was explored by 1H-NMR metabolomics analysis. Then based on the comparison of differential metabolites implied that BSYZ ameliorated mitochondrial dysfunction through choline metabolic pathway in D-gal-treated rats. Finally, pharmacological validation was conducted to explore the effects of BSYZ on D-gal-induced oxidative stress, neuroinflammation, and neuronal apoptosis.RESULTS: Our data showed that BSYZ increased aspartate and betaine levels, while decreasing choline levels. Furthermore, BSYZ also increased the proteins level of CHDH and BHMT to regulate choline metabolic pathway. Meanwhile, BSYZ alleviated mitochondrial damage and oxidative stress, including enhanced ATP production and the ratio of NAD+/NADH, reduced the level of MDA, enhanced GSH and SOD activity, upregulated the expressions of p-AMPK, SIRT1 proteins. In addition, BSYZ downregulated the levels of inflammatory cytokines, such as TNF-α, IL-1β and IL-6, as well as suppressed Bcl-2 proteins family dependent apoptosis.CONCLUSION: BSYZ treatment effectively rescues neurobehavioral impairment by improving mitochondrial dysfunction, oxidative stress, neuroinflammation and neuroapoptosis via AMPK/SIRT1 pathway in D-gal-induced aging.PMID:37170155 | DOI:10.1186/s13020-023-00755-3

Multiomics strategies for decoding seed dormancy breakdown in Paris polyphylla

Thu, 11/05/2023 - 12:00
BMC Plant Biol. 2023 May 11;23(1):247. doi: 10.1186/s12870-023-04262-3.ABSTRACTBACKGROUND: The disruption of seed dormancy is a complicated process and is controlled by various factors. Among these factors, membrane lipids and plant hormones are two of the most important ones. Paris polyphylla is an important Chinese herbaceous species, and the dormancy trait of its seed limits the cultivation of this herb.RESULTS: In this study, we investigate the global metabolic and transcriptomic profiles of Paris polyphylla during seed dormancy breaking. Widely targeted metabolomics revealed that lysophospholipids (lysoPLs) increased during P. polyphylla seed dormancy breaking. The expression of phospholipase A2 (PLA2), genes correlated to the production of lysoPLs, up-regulated significantly during this process. Abscisic acid (ABA) decreased dramatically during seed dormancy breaking of P. polyphylla. Changes of different GAs varied during P. polyphylla seeds dormancy breaking, 13-OH GAs, such as GA53 were not detected, and GA3 decreased significantly, whereas 13-H GAs, such as GA15, GA24 and GA4 increased. The expression of CYP707As was not synchronous with the change of ABA content, and the expression of most UGTs, GA20ox and GA3ox up-regulated during seed dormancy breaking.CONCLUSIONS: These results suggest that PLA2 mediated production of lysoPLs may correlate to the seed dormancy breaking of P. polyphylla. The conversion of ABA to ABA-GE catalysed by UGTs may be the main cause of ABA degradation. Through inhibition the expression of genes related to the synthesis of 13-OH GAs and up-regulation genes related to the synthesis of 13-H GAs, P. polyphylla synthesized more bioactive 13-H GA (GA4) to break its seed dormancy.PMID:37170087 | DOI:10.1186/s12870-023-04262-3

Gut microbiome combined with metabolomics reveals biomarkers and pathways in central precocious puberty

Thu, 11/05/2023 - 12:00
J Transl Med. 2023 May 11;21(1):316. doi: 10.1186/s12967-023-04169-5.ABSTRACTBACKGROUND: Central precocious puberty (CPP) is a common disease in prepubertal children and results mainly from disorders in the endocrine system. Emerging evidence has highlighted the involvement of gut microbes in hormone secretion, but their roles and downstream metabolic pathways in CPP remain unknown.METHODS: To explore the gut microbes and metabolism alterations in CPP, we performed the 16S rRNA sequencing and untargeted metabolomics profiling for 91 CPP patients and 59 healthy controls. Bioinformatics and statistical analyses, including the comparisons of alpha and beta diversity, abundances of microbes, were undertaken on the 16S rRNA gene sequences and metabolism profiling. Classifiers were constructed based on the microorganisms and metabolites. Functional and pathway enrichment analyses were performed for identification of the altered microorganisms and metabolites in CPP.RESULTS: We integrated a multi-omics approach to investigate the alterations and functional characteristics of gut microbes and metabolites in CPP patients. The fecal microbiome profiles and fecal and blood metabolite profiles for 91 CPP patients and 59 healthy controls were generated and compared. We identified the altered microorganisms and metabolites during the development of CPP and constructed a machine learning-based classifier for distinguishing CPP. The Area Under Curves (AUCs) of the classifies were ranged from 0.832 to 1.00. In addition, functional analysis of the gut microbiota revealed that the nitric oxide synthesis was closely associated with the progression of CPP. Finally, we investigated the metabolic potential of gut microbes and discovered the genus Streptococcus could be a candidate molecular marker for CPP treatment.CONCLUSIONS: Overall, we utilized multi-omics data from microorganisms and metabolites to build a classifier for discriminating CPP patients from the common populations and recognized potential therapeutic molecular markers for CPP through comprehensive analyses.PMID:37170084 | DOI:10.1186/s12967-023-04169-5

Sodium butyrate induces ferroptosis in endometrial cancer cells via the RBM3/SLC7A11 axis

Thu, 11/05/2023 - 12:00
Apoptosis. 2023 May 11. doi: 10.1007/s10495-023-01850-4. Online ahead of print.ABSTRACTFerroptosis is a form of programmed cell death with important biological functions in the progression of various diseases, and targeting ferroptosis is a new tumor treatment strategy. Studies have shown that sodium butyrate plays a tumor-suppressing role in the progression of various tumors, however, the mechanism of NaBu in endometrial cancer is unclear. Cell viability, clone formation, proliferation, migration, invasion abilities and cell cycle distribution were assessed by CCK8 assay, Clone formation ability assay, EdU incorporation, Transwell chambers and flow cytometry. The level of ferroptosis was assayed by the levels of ROS and lipid peroxidation, the ratio of GSH/GSSG and the morphology of mitochondria. Molecular mechanisms were explored by metabolome, transcriptome, RNA-pulldown and mass spectrometry. The in-vivo mechanism was validated using subcutaneous xenograft model. In this study, NaBu was identified to inhibit the progression of endometrial cancer in vitro and in vivo. Mechanistically, RBM3 has a binding relationship with SLC7A11 mRNA. NaBu indirectly downregulates the expression of SLC7A11 by promoting the expression of RBM3, thereby promoting ferroptosis in endometrial cancer cells. In conclusion, Sodium butyrate can promote the expression of RBM3 and indirectly downregulate the expression of SLC7A11 to stimulate ferroptosis, which may be a promising cancer treatment strategy.PMID:37170022 | DOI:10.1007/s10495-023-01850-4

Maternal separation leads to dynamic changes of visceral hypersensitivity and fecal metabolomics from childhood to adulthood

Thu, 11/05/2023 - 12:00
Sci Rep. 2023 May 11;13(1):7670. doi: 10.1038/s41598-023-34792-7.ABSTRACTWe assessed dynamic changes in visceral hypersensitivity and fecal metabolomics through a mouse model of irritable bowel syndrome (IBS) from childhood to adulthood. A mouse model of IBS was constructed with maternal separation (MS) in early life. Male mice aged 25, 40, and 70 days were used. Visceral sensitivity was assessed by recording the reaction between the abdominal withdrawal reflex and colorectal distension. Metabolomics was identified and quantified by liquid chromatography-tandem mass spectrometry. The visceral sensitivity of the MS group was significantly higher than that of the non-separation (NS) group in the three age groups. The top four fecal differential metabolites in the different age groups were lipids, lipid molecules, organic heterocyclic compounds, organic acids and derivatives, and benzenoids. Five identical differential metabolites were detected in the feces and ileal contents of the MS and NS groups at different ages, namely, benzamide, taurine, acetyl-L-carnitine, indole, and ethylbenzene. Taurine and hypotaurine metabolism were the most relevant pathways at P25, whereas histidine metabolism was the most relevant pathway at P40 and P70. Visceral hypersensitivity in the MS group lasted from childhood to adulthood. The different metabolites and metabolic pathways detected in MS groups of different ages provide a theoretical basis for IBS pathogenesis.PMID:37169847 | DOI:10.1038/s41598-023-34792-7

Multi-omics resources for targeted agronomic improvement of pigmented rice

Thu, 11/05/2023 - 12:00
Nat Food. 2023 May 11. doi: 10.1038/s43016-023-00742-9. Online ahead of print.ABSTRACTPigmented rice (Oryza sativa L.) is a rich source of nutrients, but pigmented lines typically have long life cycles and limited productivity. Here we generated genome assemblies of 5 pigmented rice varieties and evaluated the genetic variation among 51 pigmented rice varieties by resequencing an additional 46 varieties. Phylogenetic analyses divided the pigmented varieties into four varietal groups: Geng-japonica, Xian-indica, circum-Aus and circum-Basmati. Metabolomics and ionomics profiling revealed that black rice varieties are rich in aromatic secondary metabolites. We established a regeneration and transformation system and used CRISPR-Cas9 to knock out three flowering time repressors (Hd2, Hd4 and Hd5) in the black Indonesian rice Cempo Ireng, resulting in an early maturing variety with shorter stature. Our study thus provides a multi-omics resource for understanding and improving Asian pigmented rice.PMID:37169820 | DOI:10.1038/s43016-023-00742-9

Comprehensive insights from composition to functional microbe-based biodiversity of the infant human gut microbiota

Thu, 11/05/2023 - 12:00
NPJ Biofilms Microbiomes. 2023 May 11;9(1):25. doi: 10.1038/s41522-023-00392-6.ABSTRACTDuring infancy, gut microbiota development is a crucial process involved in the establishment of microbe-host interactions which may persist throughout adulthood, and which are believed to influence host health. To fully understand the complexities of such interactions, it is essential to assess gut microbiota diversity of newborns and its associated microbial dynamics and relationships pertaining to health and disease. To explore microbial biodiversity during the first 3 years of human life, 10,935 shotgun metagenomic datasets were taxonomically and functionally classified. Microbial species distribution between infants revealed the presence of eight major Infant Community State Types (ICSTs), being dominated by 17 bacterial taxa, whose distribution was shown to correspond to the geographical origin and infant health status. In total, 2390 chromosomal sequences of the predominant taxa were reconstructed from metagenomic data and used in combination with 44,987 publicly available genomes to trace the distribution of microbial Population Subspecies (PS) within the different infant groups, revealing patterns of multistrain coexistence among ICSTs. Finally, implementation of a metagenomic- and metatranscriptomic-based metabolic profiling highlighted different enzymatic expression patterns of the gut microbiota that allowed us to acquire insights into mechanistic aspects of health-gut microbiota interplay in newborns. Comparison between metagenomic and metatranscriptomic data highlights how a complex environment like the human gut must be investigated by employing both sequencing methodologies and possibly supplemented with metabolomics approaches. While metagenomic analyses are very useful for microbial classification aimed at unveiling key players driving microbiota balances, using these data to explain functionalities of the microbiota is not always warranted.PMID:37169786 | DOI:10.1038/s41522-023-00392-6

Transcriptome and Metabolomics Integrated Analysis Reveals <em>MdMYB94</em> Associated with Esters Biosynthesis in Apple (<em>Malus</em> × <em>domestica</em>)

Thu, 11/05/2023 - 12:00
J Agric Food Chem. 2023 May 11. doi: 10.1021/acs.jafc.2c07719. Online ahead of print.ABSTRACTVolatile esters are major aromas contributing to the organoleptic quality of apple fruit. However, the molecular mechanisms underlying the regulation of volatile ester biosynthesis in apple remain elusive. This study investigated the volatile profiles and transcriptomes of 'Qinguan' (QG) apple fruit during development and/or postharvest storage. Although the constitution of volatiles varied widely between the peel and flesh, the volatile profiles of the peel and flesh of ripening QG fruit were dominated by volatile esters. WGCNA results suggested that 19 genes belonging to ester biosynthesis pathways and 11 hub transcription factor genes potentially participated in the biosynthesis and regulation of esters. To figure out key regulators of ester biosynthesis, correlation network analysis, dual-luciferase assays, and yeast one-hybrid assay were conducted and suggested that MdMYB94 trans-activated the MdAAT2 promoter and participated in the regulation of ester biosynthesis. This study provides a framework for understanding ester biosynthesis and regulation in apple.PMID:37167631 | DOI:10.1021/acs.jafc.2c07719

Combination of metabolomics and network pharmacology analysis to decipher the mechanisms of total flavonoids of Litchi seed against prostate cancer

Thu, 11/05/2023 - 12:00
J Pharm Pharmacol. 2023 May 11:rgad035. doi: 10.1093/jpp/rgad035. Online ahead of print.ABSTRACTOBJECTIVES: To explore the underlying mechanism of total flavonoids of Litchi seed (TFLS) in treating prostate cancer (PCa).METHODS: Cell Counting Kit-8 (CCK-8), EdU incorporation assay, trypan blue dye assay and colony formation assay were employed to evaluate the effect of TFLS on PCa in vitro. The xenograft mouse model was established to explore the anti-tumour effect of TFLS in vivo. Alterations in the metabolic profiles of the PC3 cells and mouse serum were obtained by untargeted metabolomics. Combination with metabolomics analysis and network pharmacology strategies, the potential targets were predicted and further validated by RT-qPCR.KEY FINDINGS: TFLS attenuated PCa progression both in vitro and in vivo. Metabolomics results yielded from cells and serum indicated that the anti-cancer effect of TFLS was correlated with synergistic modulation of five common metabolic pathways including glycerophospholipid metabolism, arginine and proline metabolism, glycine, serine and threonine metabolism, tryptophan metabolism and steroid biosynthesis. Using in silico prediction and RT-qPCR analysis, we further revealed that TFLS exerted anti-PCa activities via regulating the expressions of nine genes, including MAOA, ACHE, ALDH2, AMD1, ARG1, PLA2G10, PLA2G1B, FDFT1 and SQLE.CONCLUSIONS: TFLS suppressed tumour proliferation in PCa, which may be associated with regulating lipid and amino acid metabolisms.PMID:37167442 | DOI:10.1093/jpp/rgad035

Metabolic Adaptations Correlated with Antibody Response after Immunization with Inactivated SARS-CoV-2 in Brazilian Subjects

Thu, 11/05/2023 - 12:00
J Proteome Res. 2023 May 11. doi: 10.1021/acs.jproteome.3c00014. Online ahead of print.ABSTRACTThe adsorbed vaccine SARS-CoV-2 (inactivated) produced by Sinovac (SV) was the first vaccine against COVID-19 to be used in Brazil. To understand the metabolic effects of SV in Brazilian subjects, NMR-based metabolomics was used, and the immune response was studied in Brazilian subjects. Forty adults without (group-, n = 23) and with previous COVID-19 infection (group+, n = 17) were followed-up for 90 days postcompletion of the vaccine regimen. After 90 days, our results showed that subjects had increased levels of lipoproteins, lipids, and N-acetylation of glycoproteins (NAG) as well as decreased levels of amino acids, lactate, citrate, and 3-hydroxypropionate. NAG and threonine were the highest correlated metabolites with N and S proteins, and neutralizing Ab levels. This study sheds light on the immunometabolism associated with the use of SV in Brazilian subjects from Rio de Janeiro and identifies potential metabolic markers associated with the immune status.PMID:37167433 | DOI:10.1021/acs.jproteome.3c00014

Urolithin A Alleviates Colitis in Mice by Improving Gut Microbiota Dysbiosis, Modulating Microbial Tryptophan Metabolism, and Triggering AhR Activation

Thu, 11/05/2023 - 12:00
J Agric Food Chem. 2023 May 11. doi: 10.1021/acs.jafc.3c00830. Online ahead of print.ABSTRACTUrolithin A (UroA) is a microbial metabolite derived from ellagitannins and ellagic acid with good bioavailability. In this study, we explored the anticolitis activity of UroA and clarified the mechanism by 16S rDNA sequencing and metabonomics. UroA alleviated dextran sulfate sodium (DSS)-induced colitis in mice, characterized by a decreased disease activity index, increased colon length, and improved colonic histopathological lesions, along with inhibited phosphorylation of the mitogen-activated protein kinase signaling pathway. In addition, UroA improved gut microbiota dysbiosis and modulated the microbiota metabolome. Furthermore, targeted metabolomics focused on tryptophan catabolites showed that UroA significantly increased the production of indole-3-aldehyde (IAld) and subsequently led to increased colonic expression of aryl hydrocarbon receptor (AhR) and promoted the serum content of IL-22 in mice with colitis. Collectively, our data identified a novel anticolitis mechanism of UroA by improving gut microbiota dysbiosis, modulating microbial tryptophan metabolism, promoting IAld production, and triggering AhR/IL-22 axis activation. However, a limitation noted in this study is that these beneficial effects of UroA were found at 50 μM in vitro and 20 mg/kg in vivo, which were nonphysiological concentrations.PMID:37167350 | DOI:10.1021/acs.jafc.3c00830

The mycorrhizal root-shoot axis elicits Coffea arabica growth under low phosphate conditions

Thu, 11/05/2023 - 12:00
New Phytol. 2023 May 11. doi: 10.1111/nph.18946. Online ahead of print.ABSTRACTCoffee is one of the most traded commodities world-wide. As with 70% of land plants, coffee is associated with arbuscular mycorrhizal (AM) fungi, but the molecular bases of this interaction are unknown. We studied the mycorrhizal phenotype of two commercially important Coffea arabica cultivars ('Typica National' and 'Catimor Amarillo'), upon Funnelliformis mosseae colonisation grown under phosphorus limitation, using an integrated functional approach based on multi-omics, physiology and biochemistry. The two cultivars revealed a strong biomass increase upon mycorrhization, even at low level of fungal colonisation, improving photosynthetic efficiency and plant nutrition. The more important iconic markers of AM symbiosis were activated: We detected two gene copies of AM-inducible phosphate (Pt4), ammonium (AM2) and nitrate (NPF4.5) transporters, which were identified as belonging to the C. arabica parental species (C. canephora and C. eugenioides) with both copies being upregulated. Transcriptomics data were confirmed by ions and metabolomics analyses, which highlighted an increased amount of glucose, fructose and flavonoid glycosides. In conclusion, both coffee cultivars revealed a high responsiveness to the AM fungus along their root-shoot axis, showing a clear-cut re-organisation of the major metabolic pathways, which involve nutrient acquisition, carbon fixation, and primary and secondary metabolism.PMID:37167003 | DOI:10.1111/nph.18946

MicrobiomeAnalyst 2.0: comprehensive statistical, functional and integrative analysis of microbiome data

Thu, 11/05/2023 - 12:00
Nucleic Acids Res. 2023 May 11:gkad407. doi: 10.1093/nar/gkad407. Online ahead of print.ABSTRACTMicrobiome studies have become routine in biomedical, agricultural and environmental sciences with diverse aims, including diversity profiling, functional characterization, and translational applications. The resulting complex, often multi-omics datasets demand powerful, yet user-friendly bioinformatics tools to reveal key patterns, important biomarkers, and potential activities. Here we introduce MicrobiomeAnalyst 2.0 to support comprehensive statistics, visualization, functional interpretation, and integrative analysis of data outputs commonly generated from microbiome studies. Compared to the previous version, MicrobiomeAnalyst 2.0 features three new modules: (i) a Raw Data Processing module for amplicon data processing and taxonomy annotation that connects directly with the Marker Data Profiling module for downstream statistical analysis; (ii) a Microbiome Metabolomics Profiling module to help dissect associations between community compositions and metabolic activities through joint analysis of paired microbiome and metabolomics datasets; and (iii) a Statistical Meta-Analysis module to help identify consistent signatures by integrating datasets across multiple studies. Other important improvements include added support for multi-factor differential analysis and interactive visualizations for popular graphical outputs, updated methods for functional prediction and correlation analysis, and expanded taxon set libraries based on the latest literature. These new features are demonstrated using a multi-omics dataset from a recent type 1 diabetes study. MicrobiomeAnalyst 2.0 is freely available at microbiomeanalyst.ca.PMID:37166960 | DOI:10.1093/nar/gkad407

The potential of metabolomics in assessing global compositional changes resulting from the application of CRISPR/Cas9 technologies

Thu, 11/05/2023 - 12:00
Transgenic Res. 2023 May 11. doi: 10.1007/s11248-023-00347-9. Online ahead of print.ABSTRACTExhaustive analysis of genetically modified crops over multiple decades has increased societal confidence in the technology. New Plant Breeding Techniques are now emerging with improved precision and the ability to generate products containing no foreign DNA and mimic/replicate conventionally bred varieties. In the present study, metabolomic analysis was used to compare (i) tobacco genotypes with and without the CRISPR associated protein 9 (Cas9), (ii) tobacco lines with the edited and non-edited DE-ETIOLATED-1 gene without phenotype and (iii) leaf and fruit tissue from stable non-edited tomato progeny with and without the Cas9. In all cases, multivariate analysis based on the difference test using LC-HRMS/MS and GC-MS data indicated no significant difference in their metabolomes. The variations in metabolome composition that were evident could be associated with the processes of tissue culture regeneration and/or transformation (e.g. interaction with Agrobacterium). Metabolites responsible for the variance included quantitative changes of abundant, well characterised metabolites such as phenolics (e.g. chlorogenic acid) and several common sugars such as fructose. This study provides fundamental data on the characterisation of gene edited crops, that are important for the evaluation of the technology and its assessment. The approach also suggests that metabolomics could contribute to routine product-based analysis of crops/foods generated from New Plant Breeding approaches.PMID:37166587 | DOI:10.1007/s11248-023-00347-9

Serine metabolism during differentiation of human iPSC-derived astrocytes

Thu, 11/05/2023 - 12:00
FEBS J. 2023 May 11. doi: 10.1111/febs.16816. Online ahead of print.ABSTRACTAstrocytes are essential players in development and functions, being particularly relevant as regulators of brain energy metabolism, ionic homeostasis, and synaptic transmission. They are also the major source of L-serine in the brain, which is synthesized from the glycolytic intermediate 3-phosphoglycerate through the phosphorylated pathway. L-serine is the precursor of the two main co-agonists of the N-methyl-D-aspartate receptor, glycine and D-serine. Strikingly, dysfunctions in both L- and D-serine metabolism are associated with neurological and psychiatric disorders. Here, we exploited a differentiation protocol, based on the generation of human mature astrocytes from neural stem cells, and investigated the modification of the proteomic and metabolomic profile during the differentiation process. We show that differentiated astrocytes are more similar to mature rather than to reactive ones, and that axogenesis and pyrimidine metabolism increase up to 30 days along with the folate cycle and sphingolipid metabolism. Consistent with the proliferation and cellular maturation processes that are taking place, also the intracellular level of L-serine, glycine, threonine, L- and D-aspartate (which level is unexpectedly higher than that of D-serine) show the same biosynthetic time course. A significant utilization of L-serine from the medium is apparent while glycine is first consumed and then released with a peak at 30 days, parallel to its intracellular level. These results underline how metabolism changes during astrocytes differentiation, highlight that D-serine synthesis is restricted in differentiated astrocytes, and provide a valuable model for developing potential novel therapeutic approaches to address brain diseases, especially the ones related to serine metabolism alterations.PMID:37166453 | DOI:10.1111/febs.16816

Blood Biomarkers for Healthy Aging

Thu, 11/05/2023 - 12:00
Gerontology. 2023 Apr 25. doi: 10.1159/000530795. Online ahead of print.ABSTRACTMeasuring the abundance of biological molecules and their chemical modifications in blood and tissues has been the cornerstone of research and medical diagnoses for decades. Although the number and variety of molecules that can be measured have expanded exponentially, the blood biomarkers routinely assessed in medical practice remain limited to a few dozen, which have not substantially changed over the last 30-40 years. The discovery of novel biomarkers would allow, for example, risk stratification or monitoring of disease progression or the effectiveness of treatments and interventions, improving clinical practice in myriad ways. In this review, we combine the biomarker discovery concept with geroscience. Geroscience bridges aging research and translation to clinical applications by combining the framework of medical gerontology with high-technology medical research. With the development of geroscience and the rise of blood biomarkers, there has been a paradigm shift from disease prevention and cure to promoting health and healthy aging. New -omic technologies have played a role in the development of blood biomarkers, including epigenetic, proteomic, metabolomic, and lipidomic markers, which have emerged as correlates or predictors of health status, from disease and exceptional health.PMID:37166337 | DOI:10.1159/000530795

Mitochondrial Glycerol-3-Phosphate Dehydrogenase Restricts HBV Replication via the TRIM28-Mediated Degradation of HBx

Thu, 11/05/2023 - 12:00
J Virol. 2023 May 11:e0058023. doi: 10.1128/jvi.00580-23. Online ahead of print.ABSTRACTHepatitis B virus (HBV) infection affects hepatic metabolism. Serum metabolomics studies have suggested that HBV possibly hijacks the glycerol-3-phosphate (G3P) shuttle. In this study, the two glycerol-3-phosphate dehydrogenases (GPD1 and GPD2) in the G3P shuttle were analyzed for determining their role in HBV replication and the findings revealed that GPD2 and not GPD1 inhibited HBV replication. The knockdown of GPD2 expression upregulated HBV replication, while GPD2 overexpression reduced HBV replication. Moreover, the overexpression of GPD2 significantly reduced HBV replication in hydrodynamic injection-based mouse models. Mechanistically, this inhibitory effect is related to the GPD2-mediated degradation of HBx protein by recruiting the E3 ubiquitin ligase TRIM28 and not to the alterations in G3P metabolism. In conclusion, this study revealed GPD2, a key enzyme in the G3P shuttle, as a host restriction factor in HBV replication. IMPORTANCE The glycerol-3-phosphate (G3P) shuttle is important for the delivery of cytosolic reducing equivalents into mitochondria for oxidative phosphorylation. The study analyzed two key components of the G3P shuttle and identified GPD2 as a restriction factor in HBV replication. The findings revealed a novel mechanism of GPD2-mediated inhibition of HBV replication via the recruitment of TRIM28 for degrading HBx, and the HBx-GPD2 interaction could be another potential therapeutic target for anti-HBV drug development.PMID:37166302 | DOI:10.1128/jvi.00580-23

Pages