Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

Elevated ROS Levels Caused by Reductions in GSH and AsA Contents Lead to Grain Yield Reduction in Qingke under Continuous Cropping

Sat, 13/04/2024 - 12:00
Plants (Basel). 2024 Mar 31;13(7):1003. doi: 10.3390/plants13071003.ABSTRACTContinuous spring cropping of Qingke (Hordeum viilgare L. var. nudum Hook. f.) results in a reduction in grain yield in the Xizang autonomous region. However, knowledge on the influence of continuous cropping on grain yield caused by reactive oxygen species (ROS)-induced stress remains scarce. A systematic comparison of the antioxidant defensive profile at seedling, tillering, jointing, flowering, and filling stages (T1 to T5) of Qingke was conducted based on a field experiment including 23-year continuous cropping (23y-CC) and control (the first year planted) treatments. The results reveal that the grain yield and superoxide anion (SOA) level under 23y-CC were significantly decreased (by 38.67% and 36.47%), when compared to the control. The hydrogen peroxide content under 23y-CC was 8.69% higher on average than under the control in the early growth stages. The higher ROS level under 23y-CC resulted in membrane lipid peroxidation (LPO) and accumulation of malondialdehyde (MDA) at later stages, with an average increment of 29.67% and 3.77 times higher than that in control plants. Qingke plants accumulated more hydrogen peroxide at early developmental stages due to the partial conversion of SOA by glutathione (GSH) and superoxide dismutase (SOD) and other production pathways, such as the glucose oxidase (GOD) and polyamine oxidase (PAO) pathways. The reduced regeneration ability due to the high oxidized glutathione (GSSG) to GSH ratio resulted in GSH deficiency while the reduction in L-galactono-1,4-lactone dehydrogenase (GalLDH) activity in the AsA biosynthesis pathway, higher enzymatic activities (including ascorbate peroxidase, APX; and ascorbate oxidase, AAO), and lower activities of monodehydroascorbate reductase (MDHAR) all led to a lower AsA content under continuous cropping. The lower antioxidant capacity due to lower contents of antioxidants such as flavonoids and tannins, detected through both physiological measurement and metabolomics analysis, further deteriorated the growth of Qingke through ROS stress under continuous cropping. Our results provide new insights into the manner in which ROS stress regulates grain yield in the context of continuous Qingke cropping.PMID:38611531 | DOI:10.3390/plants13071003

Low Nitrogen Input Mitigates Quantitative but Not Qualitative Reconfiguration of Leaf Primary Metabolism in <em>Brassica napus</em> L. Subjected to Drought and Rehydration

Sat, 13/04/2024 - 12:00
Plants (Basel). 2024 Mar 27;13(7):969. doi: 10.3390/plants13070969.ABSTRACTIn the context of climate change and the reduction of mineral nitrogen (N) inputs applied to the field, winter oilseed rape (WOSR) will have to cope with low-N conditions combined with water limitation periods. Since these stresses can significantly reduce seed yield and seed quality, maintaining WOSR productivity under a wide range of growth conditions represents a major goal for crop improvement. N metabolism plays a pivotal role during the metabolic acclimation to drought in Brassica species by supporting the accumulation of osmoprotective compounds and the source-to-sink remobilization of nutrients. Thus, N deficiency could have detrimental effects on the acclimation of WOSR to drought. Here, we took advantage of a previously established experiment to evaluate the metabolic acclimation of WOSR during 14 days of drought, followed by 8 days of rehydration under high- or low-N fertilization regimes. For this purpose, we selected three leaf ranks exhibiting contrasted sink/source status to perform absolute quantification of plant central metabolites. Besides the well-described accumulation of proline, we observed contrasted accumulations of some "respiratory" amino acids (branched-chain amino acids, lysineand tyrosine) in response to drought under high- and low-N conditions. Drought also induced an increase in sucrose content in sink leaves combined with a decrease in source leaves. N deficiency strongly decreased the levels of major amino acids and subsequently the metabolic response to drought. The drought-rehydration sequence identified proline, phenylalanine, and tryptophan as valuable metabolic indicators of WOSR water status for sink leaves. The results were discussed with respect to the metabolic origin of sucrose and some amino acids in sink leaves and the impact of drought on source-to-sink remobilization processes depending on N nutrition status. Overall, this study identified major metabolic signatures reflecting a similar response of oilseed rape to drought under low- and high-N conditions.PMID:38611498 | DOI:10.3390/plants13070969

The Significance of Xylem Structure and Its Chemical Components in Certain Olive Tree Genotypes with Tolerance to <em>Xylella fastidiosa</em> Infection

Sat, 13/04/2024 - 12:00
Plants (Basel). 2024 Mar 23;13(7):930. doi: 10.3390/plants13070930.ABSTRACTOlive quick decline syndrome (OQDS) is a devastating plant disease caused by the bacterium Xylella fastidiosa (Xf). Exploratory missions in the Salento area led to the identification of putatively Xf-resistant olive trees (putatively resistant plants, PRPs) which were pauci-symptomatic or asymptomatic infected plants belonging to different genetic clusters in orchards severely affected by OQDS. To investigate the defense strategies employed by these PRPs to contrast Xf infection, the PRPs were analyzed for the anatomy and histology of xylem vessels, patterns of Xf distribution in host tissues (by the fluorescent in situ hybridization technique-FISH) and the presence of secondary metabolites in stems. The xylem vessels of the PRPs have an average diameter significantly lower than that of susceptible plants for each annual tree ring studied. The histochemical staining of xylem vessels highlighted an increase in the lignin in the parenchyma cells of the medullary rays of the wood. The 3D images obtained from FISH-LSM (laser scanning microscope) revealed that, in the PRPs, Xf cells mostly appeared as individual cells or as small aggregates; in addition, these bacterial cells looked to be incorporated in the autofluorescence signal of gels and phenolic compounds regardless of hosts' genotypes. In fact, the metabolomic data from asymptomatic PRP stems showed a significant increase in compounds like salicylic acid, known as a signal molecule which mediates host responses upon pathogen infection, and luteolin, a naturally derived flavonoid compound with antibacterial properties and with well-known anti-biofilm effects. Findings indicate that the xylem vessel geometry together with structural and chemical defenses are among the mechanisms operating to control Xf infection and may represent a common resistance trait among different olive genotypes.PMID:38611461 | DOI:10.3390/plants13070930

Inhibition of Potato Fusarium Wilt by Bacillus subtilis ZWZ-19 and Trichoderma asperellum PT-29: A Comparative Analysis of Non-Targeted Metabolomics

Sat, 13/04/2024 - 12:00
Plants (Basel). 2024 Mar 22;13(7):925. doi: 10.3390/plants13070925.ABSTRACTPotato Fusarium Wilt is a soil-borne fungal disease that can seriously harm potatoes throughout their growth period and occurs at different degrees in major potato-producing areas in China. To reduce the use of chemical agents and improve the effect of biocontrol agents, the inhibitory effects of the fermentation broth of Bacillus subtilis ZWZ-19 (B) and Trichoderma asperellum PT-29 (T) on Fusarium oxysporum were compared under single-culture and co-culture conditions. Furthermore, metabolomic analysis of the fermentation broths was conducted. The results showed that the inhibitory effect of the co-culture fermentation broth with an inoculation ratio of 1:1 (B1T1) was better than that of the separately cultured fermentation broths and had the best control effect in a potted experiment. Using LC-MS analysis, 134 metabolites were determined and classified into different types of amino acids. Furthermore, 10 metabolic pathways had the most significant variations, and 12 were related to amino acid metabolism in the KEGG analysis. A correlation analysis of the 79 differential metabolites generated through the comprehensive comparison between B, T, and B1T1 was conducted, and the results showed that highly abundant amino acids in B1T1 were correlated with amino acids in B, but not in T.PMID:38611455 | DOI:10.3390/plants13070925

The Protective Effects of L-Theanine against Epigallocatechin Gallate-Induced Acute Liver Injury in Mice

Sat, 13/04/2024 - 12:00
Foods. 2024 Apr 7;13(7):1121. doi: 10.3390/foods13071121.ABSTRACTEpigallocatechin-3-gallate (EGCG) is a main bioactive constituent in green tea. Being a redox-active polyphenol, high-dose EGCG exhibits pro-oxidative activity and could cause liver injury. L-theanine is a unique non-protein amino acid in green tea and could provide liver-protective effects. The purpose of this study was to investigate the hepatoprotective effects of L-theanine on EGCG-induced liver injury and the underlying mechanisms. A total of 300 mg/kg L-theanine was administrated to ICR mice for 7 days. Then, the acute liver injury model was established through intragastric administration of 1000 mg/kg EGCG. Pretreatment with L-theanine significantly alleviated the oxidative stress and inflammatory response caused by high-dose EGCG through modulation of Nrf2 signaling and glutathione homeostasis. Furthermore, metabolomic results revealed that L-theanine protects mice from EGCG-induced liver injury mainly through the regulation of amino acid metabolism, especially tryptophan metabolism. These findings could provide valuable insights into the potential therapeutic applications of L-theanine and highlight the importance of the interactions between dietary components.PMID:38611425 | DOI:10.3390/foods13071121

A Novel Strategy for Mixed Jam Evaluation: Apparent Indicator, Sensory, Metabolomic, and GC-IMS Analysis

Sat, 13/04/2024 - 12:00
Foods. 2024 Apr 3;13(7):1104. doi: 10.3390/foods13071104.ABSTRACTJam is a popular traditional and modern food product for daily consumption. However, the benefits of mixed jams over single-fruit jams have not been thoroughly explored, with analyses limited to superficial indices. In this study, Xinjiang special Morus nigra L. and Prunus domestica L. were used as raw materials to prepare single-fruit and mixed jams, and their differences in antioxidants, organoleptic qualities, pH, texture, and color were analyzed. The dynamics of metabolites before and after thermal processing were assessed using untargeted metabolomics. The results indicate that the main metabolites were flavonoids, terpenoids, amino acids, phenolic acids, and carbohydrates. Flavonoid metabolites changed significantly after thermal processing, with 40 up-regulated and 13 down-regulated. During storage, polyphenols were the prominent differential metabolites, with fifty-four down-regulated and one up-regulated. Volatile aroma components were analyzed using gas chromatography-ion mobility spectrometry (GC-IMS); the aroma components E-2-hexenal, E-2-pentenal, 3-methylbutanal, 1-penten-3-ol, tetrahydro-linalool, 1-penten-3-one, hexyl propionate, isoamyl acetate, α-pinene, and propionic acid in mixed jam were significantly higher than in single-fruit jam. In this study, untargeted metabolomics and GC-IMS were used to provide a more comprehensive and in-depth evaluation system for jam analysis.PMID:38611408 | DOI:10.3390/foods13071104

Metabolomics Combined with Correlation Analysis Revealed the Differences in Antioxidant Activities of Lotus Seeds with Varied Cultivars

Sat, 13/04/2024 - 12:00
Foods. 2024 Apr 1;13(7):1084. doi: 10.3390/foods13071084.ABSTRACTFunctional foods have potential health benefits for humans. Lotus seeds (LS) as functional foods have excellent antioxidant activities. However, the differences in chemical composition of different LS cultivars may affect their antioxidant activities. This study comprehensively analyzed the differences among five LS cultivars based on metabolomics and further revealed the effects of metabolites on antioxidant activities by correlation analysis. A total of 125 metabolites were identified in LS using UPLC-Q/TOF-MS. Then, 15 metabolites were screened as differential metabolites of different LS cultivars by chemometrics. The antioxidant activities of LS were evaluated by DPPH•, FRAP, and ABTS•+ assays. The antioxidant activities varied among different LS cultivars, with the cultivar Taikong 66 showing the highest antioxidant activities. The correlation analysis among metabolites and antioxidant activities highlighted the important contribution of phenolics and alkaloids to the antioxidant activities of LS. Particularly, 11 metabolites such as p-coumaric acid showed significant positive correlation with antioxidant activities. Notably, 6 differential metabolites screened in different LS cultivars showed significant effects on antioxidant activities. These results revealed the important effects of phytochemicals on the antioxidant activities of different LS cultivars. This study provided evidence for the health benefits of different LS cultivars.PMID:38611388 | DOI:10.3390/foods13071084

Distinct Changes in Metabolic Profile and Sensory Quality with Different Varieties of Chrysanthemum (Juhua) Tea Measured by LC-MS-Based Untargeted Metabolomics and Electronic Tongue

Sat, 13/04/2024 - 12:00
Foods. 2024 Apr 1;13(7):1080. doi: 10.3390/foods13071080.ABSTRACTChrysanthemum tea, a typical health tea with the same origin as medicine and food, is famous for its unique health benefits and flavor. The taste and sensory quality of chrysanthemum (Juhua) tea are mainly determined by secondary metabolites. Therefore, the present research adopted untargeted metabolomics combined with an electronic tongue system to analyze the correlation between the metabolite profiles and taste characteristics of different varieties of chrysanthemum tea. The results of sensory evaluation showed that there were significant differences in the sensory qualities of five different varieties of chrysanthemum tea, especially bitterness and astringency. The results of principal component analysis (PCA) indicated that there were significant metabolic differences among the five chrysanthemum teas. A total of 1775 metabolites were identified by using untargeted metabolomics based on UPLC-Q-TOF/MS analysis. According to the variable importance in projection (VIP) values of the orthogonal projections to latent structures discriminant analysis (OPLS-DA), 143 VIP metabolites were found to be responsible for metabolic changes between Huangju and Jinsi Huangju tea; among them, 13 metabolites were identified as the key metabolites of the differences in sensory quality between them. Kaempferol, luteolin, genistein, and some quinic acid derivatives were correlated with the "astringency" attributes. In contrast, l-(-)-3 phenyllactic acid and L-malic acid were found to be responsible for the "bitterness" and "umami" attributes in chrysanthemum tea. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis showed that the flavonoid and flavonol biosynthesis pathways had important effects on the sensory quality of chrysanthemum tea. These findings provide the theoretical basis for understanding the characteristic metabolites that contribute to the distinctive sensory qualities of chrysanthemum tea.PMID:38611384 | DOI:10.3390/foods13071080

Volatile Metabolites to Assess the Onset of Chilling Injury in Fresh-Cut Nectarines

Sat, 13/04/2024 - 12:00
Foods. 2024 Mar 29;13(7):1047. doi: 10.3390/foods13071047.ABSTRACTFresh-cut processing is a good strategy to enhance the commercialization of peaches and nectarines, which easily deteriorate during low-temperature storage mostly due to the occurrence of chilling injury. Although several studies have been performed to improve the shelf-life of fresh-cut stone fruit, the achievement of high-quality fresh-cut peaches and nectarines still constitutes a challenge. The present study aimed to gain insights into the evolution of the postharvest quality of fresh-cut nectarines (Prunus persica L. Batsch) Big Bang, cold-stored at two different storage temperatures (4 and 8 °C) for up to 10 days. Several aspects influencing the quality traits (sensory and postharvest quality parameters; the profile of phenolic and volatile organic compounds (VOCs)) were explored to predict the marketable life of the fresh-cut nectarines. The respiration rate was higher in samples stored at 4 °C, while the browning process was more evident in fruit stored at 8 °C. Partial Least Squares Regression performed on VOCs showed that samples stored at 4 °C and 8 °C presented a different time evolution during the experiment and the trajectories depended on the interaction between time and temperature. Moreover, Multiple Linear Regression analysis discovered that the 17 VOCs affected by the storage conditions seemed to suggest that no chilling injury was detected for nectarines Big Bang. In conclusion, this approach could also be used with other nectarine cultivars and/or different stone fruits.PMID:38611352 | DOI:10.3390/foods13071047

Influence of the Different Maturation Conditions of Cocoa Beans on the Chemical Profile of Craft Chocolates

Sat, 13/04/2024 - 12:00
Foods. 2024 Mar 28;13(7):1031. doi: 10.3390/foods13071031.ABSTRACTCocoa beans (Theobroma cacao L.) can be used for craft chocolate production, which arouses consumer interest due to their perceived better quality. This study aimed to evaluate the chemical profile of 80% artisanal chocolate samples produced with cocoa beans subjected to different maturation conditions. In the first maturation process, beans were matured under no-oxygen conditions, and in the second, the toasted beans were matured in oak barrels. The volatile compounds of the chocolate samples were extracted by the solid-phase microextraction method in headspace mode and analyzed by gas chromatography/mass spectrometer. The non-volatile compounds were extracted with methanol and analyzed through paper spray mass spectrometry. Overall, 35 volatile compounds belonging to different chemical classes (acids, alcohols, aldehydes, ketones, esters, and pyrazines) were identified, such as propanoic acid and butane-2,3-diol. In addition, 37 non-volatile compounds, such as procyanidin A pentoside and soyasaponin B, were listed. Tannins, flavonoids, and phenylpropanoids were the main chemical classes observed, varying between the two samples analyzed. Therefore, it was possible to verify that maturation conditions affected the metabolomic profile of the 80% artisanal chocolate samples, being able to influence the sensory characteristics and bioactive compounds profile. Given these results, the sensory evaluation of these chocolates is suggested as the next step.PMID:38611338 | DOI:10.3390/foods13071031

Investigating the Role of β-Disodium Glycerophosphate and Urea in Promoting Growth of <em>Streptococcus thermophilus</em> from Omics-Integrated Genome-Scale Models

Sat, 13/04/2024 - 12:00
Foods. 2024 Mar 26;13(7):1006. doi: 10.3390/foods13071006.ABSTRACTThis study investigates the impact of urea and β-GP on the growth of Streptococcus thermophilus S-3, a bacterium commonly used in industrial fermentation processes. Through a series of growth experiments, transcriptome, metabolome, and omics-based analyses, the research demonstrates that both urea and β-GP can enhance the biomass of S. thermophilus, with urea showing a more significant effect. The optimal urea concentration for growth was determined to be 3 g/L in M17 medium. The study also highlights the metabolic pathways influenced by urea and β-GP, particularly the galactose metabolism pathway, which is crucial for cell growth when lactose is the substrate. The integration of omics data into the genome-scale metabolic model of S. thermophilus, iCH502, allowed for a more accurate prediction of metabolic fluxes and growth rates. The study concludes that urea can serve as a viable substitute for β-GP in the cultivation of S. thermophilus, offering potential cost and efficiency benefits in industrial fermentation processes. The findings are supported by validation experiments with 11 additional strains of S. thermophilus, which showed increased biomass in UM17 medium.PMID:38611312 | DOI:10.3390/foods13071006

Cisplatin-Resistant Urothelial Bladder Cancer Cells Undergo Metabolic Reprogramming beyond the Warburg Effect

Sat, 13/04/2024 - 12:00
Cancers (Basel). 2024 Apr 5;16(7):1418. doi: 10.3390/cancers16071418.ABSTRACTAdvanced urothelial bladder cancer (UBC) patients are tagged by a dismal prognosis and high mortality rates, mostly due to their poor response to standard-of-care platinum-based therapy. Mediators of chemoresistance are not fully elucidated. This work aimed to study the metabolic profile of advanced UBC, in the context of cisplatin resistance. Three isogenic pairs of parental cell lines (T24, HT1376 and KU1919) and the matching cisplatin-resistant (R) sublines were used. A set of functional assays was used to perform a metabolic screening on the cells. In comparison to the parental sublines, a tendency was observed towards an exacerbated glycolytic metabolism in the cisplatin-resistant T24 and HT1376 cells; this glycolytic phenotype was particularly evident for the HT1376/HT1376R pair, for which the cisplatin resistance ratio was higher. HT1376R cells showed decreased basal respiration and oxygen consumption associated with ATP production; in accordance, the extracellular acidification rate was also higher in the resistant subline. Glycolytic rate assay confirmed that these cells presented higher basal glycolysis, with an increase in proton efflux. While the results of real-time metabolomics seem to substantiate the manifestation of the Warburg phenotype in HT1376R cells, a shift towards distinct metabolic pathways involving lactate uptake, lipid biosynthesis and glutamate metabolism occurred with time. On the other hand, KU1919R cells seem to engage in a metabolic rewiring, recovering their preference for oxidative phosphorylation. In conclusion, cisplatin-resistant UBC cells seem to display deep metabolic alterations surpassing the Warburg effect, which likely depend on the molecular signature of each cell line.PMID:38611096 | DOI:10.3390/cancers16071418

Racial Differences in Vaginal Fluid Metabolites and Association with Systemic Inflammation Markers among Ovarian Cancer Patients: A Pilot Study

Sat, 13/04/2024 - 12:00
Cancers (Basel). 2024 Mar 23;16(7):1259. doi: 10.3390/cancers16071259.ABSTRACTThe vaginal microbiome differs by race and contributes to inflammation by directly producing or consuming metabolites or by indirectly inducing host immune response, but its potential contributions to ovarian cancer (OC) disparities remain unclear. In this exploratory cross-sectional study, we examine whether vaginal fluid metabolites differ by race among patients with OC, if they are associated with systemic inflammation, and if such associations differ by race. Study participants were recruited from the Ovarian Cancer Epidemiology, Healthcare Access, and Disparities Study between March 2021 and September 2022. Our study included 36 study participants with ovarian cancer who provided biospecimens; 20 randomly selected White patients and all 16 eligible Black patients, aged 50-70 years. Acylcarnitines (n = 45 species), sphingomyelins (n = 34), and ceramides (n = 21) were assayed on cervicovaginal fluid, while four cytokines (IL-1β, IL-10, TNF-α, and IL-6) were assayed on saliva. Seven metabolites showed >2-fold differences, two showed significant differences using the Wilcoxon rank-sum test (p < 0.05; False Discovery Rate > 0.05), and 30 metabolites had coefficients > ±0.1 in a Penalized Discriminant Analysis that achieved two distinct clusters by race. Arachidonoylcarnitine, the carnitine adduct of arachidonic acid, appeared to be consistently different by race. Thirty-eight vaginal fluid metabolites were significantly correlated with systemic inflammation biomarkers, irrespective of race. These findings suggest that vaginal fluid metabolites may differ by race, are linked with systemic inflammation, and hint at a potential role for mitochondrial dysfunction and sphingolipid metabolism in OC disparities. Larger studies are needed to verify these findings and further establish specific biological mechanisms that may link the vaginal microbiome with OC racial disparities.PMID:38610937 | DOI:10.3390/cancers16071259

Integrated proteogenomic and metabolomic characterization of papillary thyroid cancer with different recurrence risks

Fri, 12/04/2024 - 12:00
Nat Commun. 2024 Apr 12;15(1):3175. doi: 10.1038/s41467-024-47581-1.ABSTRACTAlthough papillary thyroid cancer (PTC) has a good prognosis, its recurrence rate is high and remains a core concern in the clinic. Molecular factors contributing to different recurrence risks (RRs) remain poorly defined. Here, we perform an integrative proteogenomic and metabolomic characterization of 102 Chinese PTC patients with different RRs. Genomic profiling reveals that mutations in MUC16 and TERT promoter as well as multiple gene fusions like NCOA4-RET are enriched by the high RR. Integrative multi-omics analyses further describe the multi-dimensional characteristics of PTC, especially in metabolism pathways, and delineate dominated molecular patterns of different RRs. Moreover, the PTC patients are clustered into four subtypes (CS1: low RR and BRAF-like; CS2: high RR and metabolism type, worst prognosis; CS3: high RR and immune type, better prognosis; CS4: high RR and BRAF-like) based on the omics data. Notably, the subtypes display significant differences considering BRAF and TERT promoter mutations, metabolism and immune pathway profiles, epithelial cell compositions, and various clinical factors (especially RRs and prognosis) as well as druggable targets. This study can provide insights into the complex molecular characteristics of PTC recurrences and help promote early diagnosis and precision treatment of recurrent PTC.PMID:38609408 | DOI:10.1038/s41467-024-47581-1

Infection with SARS-CoV-2 can cause pancreatic impairment

Fri, 12/04/2024 - 12:00
Signal Transduct Target Ther. 2024 Apr 12;9(1):98. doi: 10.1038/s41392-024-01796-2.ABSTRACTEvidence suggests associations between COVID-19 patients or vaccines and glycometabolic dysfunction and an even higher risk of the occurrence of diabetes. Herein, we retrospectively analyzed pancreatic lesions in autopsy tissues from 67 SARS-CoV-2 infected non-human primates (NHPs) models and 121 vaccinated and infected NHPs from 2020 to 2023 and COVID-19 patients. Multi-label immunofluorescence revealed direct infection of both exocrine and endocrine pancreatic cells by the virus in NHPs and humans. Minor and limited phenotypic and histopathological changes were observed in adult models. Systemic proteomics and metabolomics results indicated metabolic disorders, mainly enriched in insulin resistance pathways, in infected adult NHPs, along with elevated fasting C-peptide and C-peptide/glucose ratio levels. Furthermore, in elder COVID-19 NHPs, SARS-CoV-2 infection causes loss of beta (β) cells and lower expressed-insulin in situ characterized by islet amyloidosis and necrosis, activation of α-SMA and aggravated fibrosis consisting of lower collagen in serum, an increase of pancreatic inflammation and stress markers, ICAM-1 and G3BP1, along with more severe glycometabolic dysfunction. In contrast, vaccination maintained glucose homeostasis by activating insulin receptor α and insulin receptor β. Overall, the cumulative risk of diabetes post-COVID-19 is closely tied to age, suggesting more attention should be paid to blood sugar management in elderly COVID-19 patients.PMID:38609366 | DOI:10.1038/s41392-024-01796-2

Cyanotoxins in food: Exposure assessment and health impact

Fri, 12/04/2024 - 12:00
Food Res Int. 2024 May;184:114271. doi: 10.1016/j.foodres.2024.114271. Epub 2024 Mar 30.ABSTRACTThe intricate nature of cyanotoxin exposure through food reveals a complex web of risks and uncertainties in our dietary choices. With the aim of starting to unravel this intricate nexus, a comprehensive review of 111 papers from the past two decades investigating cyanotoxin contamination in food was undertaken. It revealed a widespread occurrence of cyanotoxins in diverse food sources across 31 countries. Notably, 68% of the studies reported microcystin concentrations exceeding established Tolerable Daily Intake levels. Cyanotoxins were detected in muscles of many fish species, and while herbivorous fish exhibited the highest recorded concentration, omnivorous species displayed a higher propensity for cyanotoxin accumulation, exemplified by Oreochromis niloticus. Beyond fish, crustaceans and bivalves emerged as potent cyanotoxin accumulators. Gaps persist regarding contamination of terrestrial and exotic animals and their products, necessitating further exploration. Plant contamination under natural conditions remains underreported, yet evidence underscores irrigation-driven cyanotoxin accumulation, particularly affecting leafy vegetables. Finally, cyanobacterial-based food supplements often harbored cyanotoxins (57 % of samples were positive) warranting heightened scrutiny, especially for Aphanizomenon flos-aquae-based products. Uncertainties surround precise concentrations due to methodological variations (chemical and biochemical) and extraction limitations, along with the enigmatic fate of toxins during storage, processing, and digestion. Nonetheless, potential health consequences of cyanotoxin exposure via contaminated food include gastrointestinal and neurological disorders, organ damage (e.g. liver, kidneys, muscles), and even elevated cancer risks. While microcystins received significant attention, knowledge gaps persist regarding other cyanotoxins' accumulation, exposure, and effects, as well as combined exposure via multiple pathways. Intriguing and complex, cyanotoxin exposure through food beckons further research for our safer and healthier diets.PMID:38609248 | DOI:10.1016/j.foodres.2024.114271

Metabolomics assisted by transcriptomics analysis to reveal metabolic characteristics and potential biomarkers associated with treatment response of neoadjuvant therapy with TCbHP regimen in HER2 + breast cancer

Fri, 12/04/2024 - 12:00
Breast Cancer Res. 2024 Apr 12;26(1):64. doi: 10.1186/s13058-024-01813-w.ABSTRACTBACKGROUND: This study aimed to explore potential indicators associated with the neoadjuvant efficacy of TCbHP regimen (taxane, carboplatin, trastuzumab, and pertuzumab) in HER2 + breast cancer (BrCa) patients.METHODS: A total of 120 plasma samples from 40 patients with HER2 + BrCa were prospectively collected at three treatment times of neoadjuvant therapy (NAT) with TCbHP regimen. Serum metabolites were analyzed based on LC-MS and GC-MS data. Random forest was used to establish predictive models based on pre-therapeutic differentially expressed metabolites. Time series analysis was used to obtain potential monitors for treatment response. Transcriptome analysis was performed in nine available pre‑therapeutic specimens of core needle biopsies. Integrated analyses of metabolomics and transcriptomics were also performed in these nine patients. qRT-PCR was used to detect altered genes in trastuzumab-sensitive and trastuzumab-resistant cell lines.RESULTS: Twenty-one patients achieved pCR, and 19 patients achieved non-pCR. There were significant differences in plasma metabolic profiles before and during treatment. A total of 100 differential metabolites were identified between pCR patients and non-pCR patients at baseline; these metabolites were markedly enriched in 40 metabolic pathways. The area under the curve (AUC) values for discriminating the pCR and non-PCR groups from the NAT of the single potential metabolite [sophorose, N-(2-acetamido) iminodiacetic acid, taurine and 6-hydroxy-2-aminohexanoic acid] or combined panel of these metabolites were greater than 0.910. Eighteen metabolites exhibited potential for monitoring efficacy. Several validated genes might be associated with trastuzumab resistance. Thirty-nine altered pathways were found to be abnormally expressed at both the transcriptional and metabolic levels.CONCLUSION: Serum-metabolomics could be used as a powerful tool for exploring informative biomarkers for predicting or monitoring treatment efficacy. Metabolomics integrated with transcriptomics analysis could assist in obtaining new insights into biochemical pathophysiology and might facilitate the development of new treatment targets for insensitive patients.PMID:38610016 | DOI:10.1186/s13058-024-01813-w

Non-traumatic osteonecrosis of the femoral head induced by steroid and alcohol exposure is associated with intestinal flora alterations and metabolomic profiles

Fri, 12/04/2024 - 12:00
J Orthop Surg Res. 2024 Apr 12;19(1):236. doi: 10.1186/s13018-024-04713-z.ABSTRACTOBJECTIVE: Osteonecrosis of the femoral head (ONFH) is a severe disease that primarily affects the middle-aged population, imposing a significant economic and social burden. Recent research has linked the progression of non-traumatic osteonecrosis of the femoral head (NONFH) to the composition of the gut microbiota. Steroids and alcohol are considered major contributing factors. However, the relationship between NONFH caused by two etiologies and the microbiota remains unclear. In this study, we examined the gut microbiota and fecal metabolic phenotypes of two groups of patients, and analyzed potential differences in the pathogenic mechanisms from both the microbial and metabolic perspectives.METHODS: Utilizing fecal samples from 68 NONFH patients (32 steroid-induced, 36 alcohol-induced), high-throughput 16 S rDNA sequencing and liquid chromatography with tandem mass spectrometry (LC-MS/MS) metabolomics analyses were conducted. Univariate and multivariate analyses were applied to the omics data, employing linear discriminant analysis effect size to identify potential biomarkers. Additionally, functional annotation of differential metabolites and associated pathways was performed using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Subsequently, Spearman correlation analysis was employed to assess the potential correlations between differential gut microbiota and metabolites.RESULTS: High-throughput 16 S rDNA sequencing revealed significant gut microbial differences. At the genus level, the alcohol group had higher Lactobacillus and Roseburia, while the steroid group had more Megasphaera and Akkermansia. LC-MS/MS metabolomic analysis indicates significant differences in fecal metabolites between steroid- and alcohol-induced ONFH patients. Alcohol-induced ONFH (AONFH) showed elevated levels of L-Lysine and Oxoglutaric acid, while steroid-induced ONFH(SONFH) had increased Gluconic acid and Phosphoric acid. KEGG annotation revealed 10 pathways with metabolite differences between AONFH and SONFH patients. Correlation analysis revealed the association between differential gut flora and differential metabolites.CONCLUSIONS: Our results suggest that hormones and alcohol can induce changes in the gut microbiota, leading to alterations in fecal metabolites. These changes, driven by different pathways, contribute to the progression of the disease. The study opens new research directions for understanding the pathogenic mechanisms of hormone- or alcohol-induced NONFH, suggesting that differentiated preventive and therapeutic approaches may be needed for NONFH caused by different triggers.PMID:38609952 | DOI:10.1186/s13018-024-04713-z

Transcriptomic and targeted metabolomic analyses provide insights into the flavonoids biosynthesis in the flowers of Lonicera macranthoides

Fri, 12/04/2024 - 12:00
BMC Biotechnol. 2024 Apr 12;24(1):19. doi: 10.1186/s12896-024-00846-5.ABSTRACTBACKGROUND: Flavonoids are one of the bioactive ingredients of Lonicera macranthoides (L. macranthoides), however, their biosynthesis in the flower is still unclear. In this study, combined transcriptomic and targeted metabolomic analyses were performed to clarify the flavonoids biosynthesis during flowering of L. macranthoides.RESULTS: In the three sample groups, GB_vs_WB, GB_vs_WF and GB_vs_GF, there were 25, 22 and 18 differentially expressed genes (DEGs) in flavonoids biosynthetic pathway respectively. A total of 339 flavonoids were detected and quantified at four developmental stages of flower in L. macranthoides. In the three sample groups, 113, 155 and 163 differentially accumulated flavonoids (DAFs) were detected respectively. Among the DAFs, most apigenin derivatives in flavones and most kaempferol derivatives in flavonols were up-regulated. Correlation analysis between DEGs and DAFs showed that the down-regulated expressions of the CHS, DFR, C4H, F3'H, CCoAOMT_32 and the up-regulated expressions of the two HCTs resulted in down-regulated levels of dihydroquercetin, epigallocatechin and up-regulated level of kaempferol-3-O-(6''-O-acetyl)-glucoside, cosmosiin and apigenin-4'-O-glucoside. The down-regulated expressions of F3H and FLS decreased the contents of 7 metabolites, including naringenin chalcone, proanthocyanidin B2, B3, B4, C1, limocitrin-3,7-di-O-glucoside and limocitrin-3-O-sophoroside.CONCLUSION: The findings are helpful for genetic improvement of varieties in L.macranthoides.PMID:38609923 | DOI:10.1186/s12896-024-00846-5

Different profiles of soil phosphorous compounds depending on tree species and availability of soil phosphorus in a tropical rainforest in French Guiana

Fri, 12/04/2024 - 12:00
BMC Plant Biol. 2024 Apr 12;24(1):278. doi: 10.1186/s12870-024-04907-x.ABSTRACTBACKGROUND: The availability of soil phosphorus (P) often limits the productivities of wet tropical lowland forests. Little is known, however, about the metabolomic profile of different chemical P compounds with potentially different uses and about the cycling of P and their variability across space under different tree species in highly diverse tropical rainforests.RESULTS: We hypothesised that the different strategies of the competing tree species to retranslocate, mineralise, mobilise, and take up P from the soil would promote distinct soil 31P profiles. We tested this hypothesis by performing a metabolomic analysis of the soils in two rainforests in French Guiana using 31P nuclear magnetic resonance (NMR). We analysed 31P NMR chemical shifts in soil solutions of model P compounds, including inorganic phosphates, orthophosphate mono- and diesters, phosphonates, and organic polyphosphates. The identity of the tree species (growing above the soil samples) explained > 53% of the total variance of the 31P NMR metabolomic profiles of the soils, suggesting species-specific ecological niches and/or species-specific interactions with the soil microbiome and soil trophic web structure and functionality determining the use and production of P compounds. Differences at regional and topographic levels also explained some part of the the total variance of the 31P NMR profiles, although less than the influence of the tree species. Multivariate analyses of soil 31P NMR metabolomics data indicated higher soil concentrations of P biomolecules involved in the active use of P (nucleic acids and molecules involved with energy and anabolism) in soils with lower concentrations of total soil P and higher concentrations of P-storing biomolecules in soils with higher concentrations of total P.CONCLUSIONS: The results strongly suggest "niches" of soil P profiles associated with physical gradients, mostly topographic position, and with the specific distribution of species along this gradient, which is associated with species-specific strategies of soil P mineralisation, mobilisation, use, and uptake.PMID:38609866 | DOI:10.1186/s12870-024-04907-x

Pages