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Systems biology aims to understand the nonlinear interactions of multiple biomolecular

components that characterize a living organism. One important aspect of systems biology

approaches is to identify the biological pathways or networks that connect the differing elements

of a system, and examine how they evolve with temporal and environmental changes. The utility

of this method becomes clear when applied to multifactorial diseases with complex etiologies,

such as inflammatory-related diseases, herein exemplified by atherosclerosis. In this paper, the

initial studies in this discipline are reviewed and examined within the context of the development

of the field. In addition, several different software tools are briefly described and a novel

application for the KEGG database suite called KegArray is presented. This tool is designed for

mapping the results of high-throughput omics studies, including transcriptomics, proteomics and

metabolomics data, onto interactive KEGG metabolic pathways. The utility of KegArray is

demonstrated using a combined transcriptomics and lipidomics dataset from a published study

designed to examine the potential of cholesterol in the diet to influence the inflammatory

component in the development of atherosclerosis. These data were mapped onto the KEGG

PATHWAY database, with a low cholesterol diet affecting 60 distinct biochemical pathways and

a high cholesterol exposure affecting 76 biochemical pathways. A total of 77 pathways were

differentially affected between low and high cholesterol diets. The KEGG pathways ‘‘Biosynthesis

of unsaturated fatty acids’’ and ‘‘Sphingolipid metabolism’’ evidenced multiple changes in

gene/lipid levels between low and high cholesterol treatment, and are discussed in detail.

Taken together, this paper provides a brief introduction to systems biology and the applications

of pathway mapping to the study of cardiovascular disease, as well as a summary of available

tools. Current limitations and future visions of this emerging field are discussed, with the

conclusion that combining knowledge from biological pathways and high-throughput omics data

will move clinical medicine one step further to individualize medical diagnosis and treatment.

Introduction

An organism is an individual living system capable of reacting

to stimuli, reproducing and maintaining a stable structure

over time. Organisms are composed of multiple individual

components, e.g. cells and their corresponding genes, proteins,

metabolites, etc., which are all governed by an intricate

network of interactions. This network is not static, and the

various components evolve and adapt dynamically to internal

and environmental changes. The study of this complex system

as a single entity is a challenge that has been traditionally

addressed by studying different components of the system

in isolation. Although such approaches have produced a

significant amount of knowledge and understanding, they

are limited in their ability to predict the effects of alterations

in single or multiple components upon the dynamics of the

whole system. This limitation may reflect why in some cases,

significant research advances do not translate, for example,
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into improved therapeutics or a ‘‘cure’’ for the disease under

study. The discipline of systems biology attempts to shift the

way in which an organism is perceived to address the

complexity of living systems. Multiple definitions for systems

biology exist, one of which describes it as a new field of study

that aims to understand the living cell as a complete system.1,2

In other words, systems biology seeks to understand how

system properties emerge from the nonlinear interactions of

multiple components.3,4

The applications of systems biology approaches are

increasing dramatically; however, the exact nature of what a

‘‘systems approach’’ entails remains diffuse in the literature.

The fundamental theme of systems biology is integration

across multiple high output platforms, systems and

disciplines.5 However, it should be noted that systems science

is not novel and has been advocated for many years in a

number of research fields. At the simplest level, a systems

approach signifies a study based upon examining the entire

‘‘system’’ simultaneously, as opposed to a reductionist

approach that focuses on a single gene, metabolite, pathway,

etc. In other words, a systems biology approach does not focus

on identifying a single target or mechanism for an observed

phenotype (e.g. disease). Systems biology instead seeks to

identify the biological networks or pathways that connect

the differing elements of a system, and in the process describe

the characteristics that define a shift in equilibrium, such as

metabolic fluxes or altered protein activities, which may cause

a shift from a healthy to a diseased state. The hypothesis then

becomes that those components of the network that are

associated with the observed shift are characteristic

and potentially descriptive of the disease, and accordingly

represent potential targets for intervention to return the

system to its original state (i.e. a healthy state). However, it

is important to realize that the concept of equilibrium may not

be as static as previously thought. It is more likely that

equilibrium is a steady state that represents a range of

fluctuations in the biological network that varies on an

interindividual basis. The normal or control state is more

appropriately categorized as one of dynamic stability in which

our concept of homeostasis is more correctly defined as

homeodynamics.3 Accordingly, by defining the parameters of

the network that determine disease from healthy state, inter-

ventions or treatments can be derived that are tailored for the

individual variability of the parameters for this steady state—

in other words, personalized medicine.

The era of personalized medicine has been heralded for a

number of years, and systems biology is a key component of

this new paradigm.6–8 The intent is to identify disease before

pathogenic manifestation, thereby initiating therapeutic inter-

vention prior to significant adverse effects. Current medical

practice is a reductionist approach that involves treating each

problem or symptom in isolation. By these standards, the relief

of symptoms as determined by clinical evaluations following a

treatment regimen embodies the definition of a cured or

maintained patient. A corresponding ‘‘limited’’ systems

biology approach, where a multitude of clinical and bio-

chemical variables are combined with multivariate statistical

analyses often reveals that the patient indeed has been

removed from the disease group following treatment, but

not necessarily back towards a healthy state as is often

assumed. Instead, the treated patient belongs to a novel

biological status, distinctly different from both healthy

individuals and peers in the disease group. This novel

pharmacological state is generally not discernable in classical

medicine, as the patient per definition is classified as belonging

to the ‘‘healthy’’ group as soon as the symptoms that define

the disease are no longer detectable. More importantly, the

classical reductionist approach does not reveal the novel

pharmaceutical state that the treatment regimen has induced,

and consequently implications on the patient’s future health

cannot be predicted. In contrast, a true systems biology

approach offers the ability to distinguish between multiple

disease, healthy, or pharmacological states, as well as

causative and adaptive responses and variables. However, in
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order to make conclusions regarding causative relationships, it

is necessary to have a sufficient number of variables and

observations. In addition, the quantitative quality and source

of the data, as well as the choice of multivariate statistical tools

both in the experimental design and the post-experimental

analyses, are vital for interpretation.

The increase in systems biology applications is a reflection

of a ‘‘perfect storm’’ of advances in analytical methodology,

computing power and data acquisition. The completion of the

human genome sequencing project heralded the age of

large-scale biology and data acquisition. This paradigm shift

coupled to commensurate developments in technology and

experimental techniques that can simultaneously interrogate

many elements of a system (i.e., microarrays, mass spectro-

metry, computational power and the Internet) has led to a

veritable explosion in ‘‘omics’’ science and systems biology

related research. The challenge for systems biology is to

integrate the disparate disciplines of biology, chemistry,

statistics, computer science and engineering into a cohesive

science. Towards this end, it is necessary to develop common

platforms for the analysis, presentation and archiving of data

to ensure inter-laboratory and cross-disciplinary compatibility

and accessibility of data sets. Significant steps have already

been taken in this direction, and it is not our aim to review the

status of the technological platforms or compatibility of

data formats, as these aspects have been covered in

detail elsewhere.9–17 In contrast, this review focuses on the

integration of different types of data sets, and aims to

summarize the current state of systems biology research into

cardiovascular disease as well as present a number of different

pathway mapping tools that have been developed. In addition,

an example of a pathway analysis of atherosclerosis is

presented using a novel tool for mapping of omics data to

the KEGG database suite.

Networks in a nutshell

One of the recurrent concepts in system biology is that of the

network. Much of the early work in networks focused

on simple model organisms including bacteria, yeast and

nematodes;18–24 however, this work is expanding to the under-

standing of human diseases.25–28 A network type of represen-

tation formalizes the interaction of different components of a

system utilizing the infrastructure of a branch of mathematics

called graph theory. In the network paradigm, nodes represent

elements of the system while relations are symbolized by edges.

For example, in a metabolic network, enzymes and com-

pounds are nodes, and reactions are edges. In a protein–protein

interaction network, two nodes connected by an edge

represent interacting proteins. This formalism enables the

study of living systems in a way never thought possible before.

The individual elements are integrated in a network whose

properties can be analyzed globally: the number of edges per

node, the degree distribution (the probability that a node has a

specific number of edges), the cluster coefficient, etc. Barabasi

and Oltvai have reviewed these concepts in detail, and

provided a comprehensive review of the terminology and

concepts associated with network analysis.2 This new termi-

nology is increasingly prevalent in the biological literature,

requiring the life scientist to become familiar with this research

field. These technical properties provide information regarding

the global behavior of the network and therefore of the

biological system under study. For example, one important

finding was the scale-free topology nature of biological

networks. In this type of network, most nodes have few links,

whereas a few nodes have many links (called hubs or nexus

nodes). One of the translations of this characteristic into a

biological context is the hypothesis that hub nodes perform

key functions in the network. Accordingly, many fundamental

genes, proteins, enzymes and compounds have been identified

as hubs in their respective biological networks. Another

consequence derived from this finding is that because of the

sparse nature of scale-free networks (i.e. most nodes having a

few edges), they are very robust to environmental alterations.

However, although network analysis can help us understand

the behavior of the system as a whole, the importance of

individual elements is not lost in this global view. For example,

the study of biological networks shows that complex networks

are constructed of recurrent simple motifs.29 Initially described

in simple bacteria, these motifs are also found in the regulatory

networks of higher eukaryotes and are fundamental to

understanding the behavior of complex networks, including

biological networks. Moreover, the mathematical models used

to generate the network itself can be used to predict the

behavior of the network when specific elements are altered.

For example, what are the effects if a specific node of a gene

regulatory network is removed by a knockout mutation?

How does this change affect the global stability and robustness

of the network, and eventually, the phenotype of the

studied system? Systems biology seeks to answer these and

other questions by modeling the relationship between the

components.30

One critical step is how the network is constructed from the

raw data (transcriptomics, proteomics, metabolomics, etc.).

This is accomplished by using different mathematical

techniques, ranging from simple Pearson correlations to the

use of ordinary differential equations, Boolean networks, etc.

(reviewed in refs. 31 and 32). Through this modeling,

fundamental concepts in the understanding of biological

systems, like robustness, modularity, emergence, etc. are

incorporated. Unfortunately not of all these questions are

easily answered, even within the context of the systems biology

paradigm. Whereas most studies currently focus on individual

networks (i.e. a transcription network or a protein–protein

interaction network), in reality these different networks func-

tion as a connected system. Therefore, a change in the gene

regulatory network may have a corresponding effect in the

protein–protein interaction network, the metabolic network,

etc., which collectively may manifest changes in the observed

phenotype. To understand the whole system, it is critical to

integrate knowledge from different studies. However, the

crosstalk between different networks is not yet well understood

and although some progress has been made,33,34 the

integration of different types of data is still in its infancy.12

Through the generation of mathematical models that integrate

different types of data (e.g. transcriptomic, metabolomic, and

protein–protein interactions),2 we can explain the observed

phenotype, and hopefully make predictions regarding how the
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phenotype is altered when the network itself is modified

through the alteration of internal or environmental factors.

Data processing and statistical analysis

The pre-processing of data is crucial in network applications,

as well as other systems level analyses. It is important to

recognize that the nature of large scale omics data is very

different from that of reductionist approaches, and other

statistical methods should be utilized. The majority of the

univariate methods that have dominated biological sciences

for centuries (e.g. Student’s t-test) are not well-suited for a

number of reasons. For example, univariate statistical

methods employ repeated testing to evaluate whether the null

hypothesis for a certain variable can be rejected, i.e. if it is

significantly altered compared to the control group. Given the

cumulative nature of the error in repeated testing, these

methods are prone to high false positive rates, which become

particularly pronounced in omics analyses where a large

number of variables are tested simultaneously. Even though

a range of approaches have been developed to correct

for the resulting large false positive rates, most notably

Bonferroni35,36 and false discovery rate (FDR) corrections,37

the use of univariate methods remains a compromise. The fact

that univariate methods are very sensitive to missing data

points further decreases the robustness of network analyses

based solely on traditional statistical pre-processing of

the data.

Multivariate analysis (MVA) is a more suitable option for

these ‘‘short and fat’’ data sets that are typical for omics

studies (i.e. a large number of variables with few observations).

Instead of repeated testing of single variables, MVA aims to

create a model that reduces the complexity of multi-

dimensional data to a few latent variables that express the

majority of the variance of the data set. Exemplified

by principal component analysis (PCA), the most utilized

unsupervised method in omics applications, the model is

structured so that the first principal component (PC1) is

oriented so that it describes the largest possible portion of

the variance in the data set that can be described by a linear

vector. Accordingly, each subsequent PC contains a smaller

portion of the variance in the data set than the previous

component. Given that the MVA is based on all individual

variable data points for all observations, the resulting model is

robust both against false positives and missing data points.

Furthermore, a confidence interval representing all of the

variables is obtained, in contrast to univariate methods where

each variable is analyzed as a separate unit, and consequently

only confidence intervals for individual variables can be

obtained. MVA can also be utilized to perform regression

analysis between large data sets, most commonly through

partial least squares between latent structures (PLS). These

types of analyses are referred to as supervised methods,

since the user defines which variables belong to the X dataset

(dictating variables) and which belong to the Y dataset

(response variables).

While useful, multivariate statistical methods are not

without their own weaknesses. A major pitfall in MVA relates

to overfitting of the model to the data. If a sufficient number of

components is utilized, it is possible to build a model that can

describe any data set with a perfect correlation (i.e. R2 = 1.0;

Fig. 1). A comparison of the correlation coefficient to the

predictive power of the model is therefore essential. The

predictive power (Q2) can be calculated through the use of a

training set and a test set, or if the data set is too small to allow

this, through a cross-validation approach. A good rule of

thumb is to remove all components that do not contribute

to an increased predictive power of the model. If the data set is

sufficiently large, Q2 can be used as a measure to evaluate the

robustness of the model in relation to the whole population.

Another concern when utilizing MVA is that of strong

outliers. One should be cautious of any observation that is

located on either end of the axis of the first component

(strong outliers), as it is likely that characteristics that are

unique for this individual are influencing the entire model.

Interpretability represents another concern in MVA. MVA

summarizes the entire data set in a few latent variables, which

cannot be directly connected to the original measured

variables. As such, it can be difficult for the untrained eye to

interpret which variables are important or ‘‘significant’’ in

driving the separation of the different study groups. This

becomes particularly pronounced in more complex analyses

such as PLS. A recent addition to this group of analysis,

orthogonal PLS (OPLS), greatly simplifies the interpretability

by separating the variance in the data set according to the

correlation to the selected Y matrix (e.g. disease group).38 In

contrast, the ‘‘orthogonal’’ component pulls out the variance

that is not correlated to the Y-variables of interest, and thus

represents internal variance in the X-matrix. While this

approach is well-suited for motivating variable selection, it

should be used cautiously in this aspect, given that the

back-drop of the method is a supervised selection of the

Y-variables that determine the separation. When in doubt, it

is generally better to include all of the variables in subsequent

Fig. 1 Overfitting of data represents one of the main pitfalls

associated with multivariate analyses. With a sufficient number of

components, a model that explains 100% of the variance (R2 = 1.0)

can be built for any data set. In the above example, the simplest

(linear) model represents the most representative model for the data,

demonstrating that the simplest model provides optimal prediction,

even though the correlation coefficient is lower.
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analyses. Taken together, this section emphasized the point

that it is vital to employ the correct statistical analysis in both

experimental design as well as data processing. These

approaches require an in-depth knowledge of MVA in order

to correctly interpret the output of statistical models, prevent

overfitting of the data, apply multitest corrections, and achieve

an appropriate balance of false positives and power.

Systems biology in cardiovascular disease

The utility of systems biology becomes clear when applied

to multifactorial diseases whose etiology is complex. For

example, the etiology of inflammatory diseases such as

atherosclerosis and asthma has proven recalcitrant to

elucidation with reductionist approaches. It is possible that

part of the difficulty in identifying new therapeutics lies in the

inability of current approaches to visualize the complexity of

these biological systems.39 The development of lead drug

candidates would also benefit from a systems approach. For

example, drugs such as torcetrapib, statin + ezetimide and

rimonabant have been withdrawn from the market because

of side effects that were not predicted with reductionistic

thinking. Diseases and disorders such as cardiovascular

disease, diabetes, metabolic syndrome, asthma and chronic

obstructed pulmonary disorder (COPD) all involve

complicated developments that resist efforts to identify a single

gene or pathway responsible for disease onset and progression.

Numerous therapeutics have been successfully developed that

intervene in different stages of the disease; however, we are still

far from developing a true cure for any of these pathologies.

The cellular complexity of many of the affected organs

represents a major obstacle in the elucidation of the systems

biology behind these pathologies. The lung, for example,

consists of more than 40 different cell phenotypes, all of which

may elicit different responses to up- or down-regulation of a

certain factor. Add to that the spatial and temporal aspects of

the cellular response, and we are starting to approach the true

complexity of biological systems. Accordingly, while beyond

the scope of this review, sampling design and strategy can have

significant effects upon experimental observations. Given

the heterogeneity of many tissue types, it is challenging to

reproducibly sample tissue in such a way as to enable

intra- and interlab comparisons. The obstacles involved in

this area are not trivial and need to be addressed by the

research community.

Cardiovascular disease is the major cause of premature

death in Europe, resulting in 44 million deaths in the year

2000.40 In the United States, cardiovascular disease was

responsible for one of every five deaths in 2004, with an

average of one death every 37 seconds.41 The rapidly increasing

incidence of obesity and commensurate health effects

including atherosclerosis, metabolic syndrome and diabetes

is of epidemic proportions, with the potential for significant

increases in developing countries. It is anticipated that the

‘‘BRIC’’ countries (Brazil, Russia, India and China) will

significantly contribute to the global cardiovascular disease

burden such that by 2020 an additional B4% of deaths in the

world will be due to ischemic heart disease.42 The complexities

associated with cardiovascular disease and metabolic

syndrome are recalcitrant to current interventions and

challenge the ability of the pharmaceutical industry to produce

effective and inexpensive therapies. For example, in cardio-

vascular disease, each known risk factor is addressed

individually, whether it be hyperlipidemia or hypertension.3

However, given the complex etiology of this disease, it is

likely that multiple factors are responsible for the observed

pathology, resulting in a need for holistic treatment

approaches that address the underlying problems. Accord-

ingly, these diseases are logical targets for systems biology

approaches to understanding disease mechanism, progression

and pathogenesis.

Cardiovascular disease is multi-genic, multi-factorial

and linked to other systemic disorders,43,44 and the role of

inflammation in the development of atherosclerosis and

cardiovascular disease is firmly established.45,46 The onset

and development of cardiovascular disease has been shown

to involve multiple factors including lifestyle, diet, body

mass index, (epi)genetics, dyslipidemia, hypertension, and

inflammation among others. However, the current paradigm

of patient treatment involves addressing these individual

risk factors in isolation, even though they are known to

concomitantly contribute to disease pathogenesis. While

effective in many cases, this approach has not provided a cure

or even a full understanding of the disease, which remains a

major source of mortality and morbidity worldwide.

A number of studies have begun to address the issues

outlined above in a comprehensive fashion, and active

research is being performed to develop systems biology

approaches to cardiovascular disease.47 We present a few of

these studies in chronological order, but stress that this list is

not comprehensive. Many of the early studies that performed

systems biology-related investigations into cardiovascular

disease focused on a single omics profiling method (i.e.,

transcriptomics or metabolomics) and then included clinical

parameters using multivariate statistics to develop models of

disease. It is only recently that unifying systems biology

models employing multiple analytical platforms linked with

bioinformatics analyses have been produced. One of the

earliest attempts to bring systems biology to cardiovascular

function involved mapping important cardiovascular pheno-

types onto the human genome. Stoll et al. studied 239

cardiovascular and renal phenotypes in 113 male rats. They

identified and mapped a total of 81 cardiovascular phenotypes

from an F2 intercross onto the human genome using correla-

tion patterns (‘‘physiological profiles’’) and comparative

genomics.25 The resulting genomic-systems biology map

was applicable for gene hunting and mechanism-based physio-

logical studies of cardiovascular function. For example, the

authors presented a correlation matrix with phenotypic

ordering of 125 likely determinants of arterial blood pressure,

which could be used to assess the impact of allelic substitutions

on each of the traits in either the parental or F2 generation

of the intercross. The phenotypes were grouped into

functionally related clusters (vascular, heart, renal, endocrine

and morphometric) that impact on the control of

blood pressure, and ordered within the clusters by known

physiological relationships. All of the results of the linkage

analyses and the phenotypic physiological profiles for each
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microsatellite marker on the linkage map sorted by

genotype can be accessed on the project homepage

(http://brc.mcw.edu/phyprf/). A more diagnostic application

was presented by Brindle et al. who employed a supervised

partial least squares discriminant analysis (PLS-DA) approach

to analyze 1H NMR spectra of human serum to diagnose the

presence, as well as the severity of coronary heart disease.48

The PLS-DA model predicted the presence of coronary heart

disease with a sensitivity of 92% and a specificity of 93%

based on a 99% confidence limit. The major driving factor for

the observed separation in severe coronary heart disease

patients (triple vessel disease, TVD) was the presence of lipids,

particularly LDL and VLDL, whereas the most influential

loadings for the angiographically normal coronary arteries

(NVA) were HDL-associated (e.g., fatty acid chains and

phosphotidylcholine). Of particular importance is the fact that

the authors confirmed that the method was able to diagnose

coronary heart disease independently of the inevitable

associated gender bias. However, work by Kirschenlohr

et al. concluded that plasma-based 1H NMR analysis is a

weak predictor of coronary heart disease.49 They found that

the predictive power was significantly weaker, with NVA and

coronary heart disease groups identified 80.3% correctly for

patients not receiving statin therapy and 61.3% for patients

treated with statins. The main reason postulated for the

observed study discrepancy was the inclusion of additional

variables in the Kirschenlohr et al. study, including drug

treatment regimen. Statins significantly affect LDL levels,

which was a discriminating factor in the PLS-DA model.

Accordingly, as the most significant loadings associated with

diagnosis in both studies were related to lipid species, it is not

surprising that treatments affecting lipid levels influenced the

observed separation power of the model. In other words, statin

treatment partially resolves the incidence of coronary artery

disease, thus reducing the biomarker signal in these patients. It

would be interesting to further examine these patients to

determine if they were truly moving towards a ‘‘healthy’’

phenotype or were instead representative of a third pharma-

cological state as discussed above. This point demonstrates

one of the main challenges in developing diagnostic markers of

complex disease in that in many cases patients will present

distinct genotypes as well as personal therapeutic treatment

regimens that can potentially confound the use of biomarkers,

as reported by Brindle et al. At the very least, these studies

demonstrate the importance of including as much patient

metadata in the analyses as possible. The work of both

groups supports further research into exploring the potential

of applying metabolomics methods to identify plasma

(i.e., non-invasive) biomarkers of coronary heart disease. It

is possible that biomarkers could be identified in a study with

increased cohort size composed of the myriad of clinical

and interindividual variables. An important aspect of these

metabolomic analyses is that in order to correctly classify

individuals with coronary heart disease, it is not necessary

to fully understand the complex molecular differences

that underlie disease etiology.48 This methodology is an

important first step towards being able to identify individuals

at risk of disease development or in the early stages of

disease onset.

While useful for identifying potential markers of disease,

the previous studies do not represent a systems methodology.

One of the first comprehensive systems biology approaches

involving the integration of multiple omics platforms

(transcriptomics, proteomics and metabolomics) examined

changes in the apolipoprotein E3-Leiden transgenic

(ApoE*3Leiden) mouse model (a commonly used model of

atherosclerosis50). The authors integrated gene transcripts,

and protein and lipid data along with their putative relation-

ships to gain insight into the early onset of disease.51,52 As is

common with many systems approaches, the authors devel-

oped a number of their methods for data processing

and network analysis in-house, demonstrating a significant

obstacle in the advance of systems biology. It is challenging to

integrate bioanalytical results from multiple platforms and

between different research groups, making it difficult to

standardize results.12 The ApoE knockout mouse was used

in another investigation into atherosclerosis mechanisms

involving conjugated linoleic acids (CLAs) to determine how

individual CLA isomers differently affected pathways involved

in atherosclerosis.53 ApoE knockout mice were fed a diet

supplemented with 1% cis9, trans11-CLA, 1% trans10,

cis12-CLA or 1% linoleic acid for twelve weeks. The effects

upon lipid and glucose metabolism were measured, as well as

the regulation of hepatic proteins. Correlation analysis

between physiological and protein data identified two clusters

associated with glucose metabolism. The results showed that

cis9, trans11-CLA specifically increased expression of the

anti-inflammatory HSP 70, as well as decreased expression

of the pro-inflammatory macrophage migration inhibitory

factor, suggesting that consumption of cis9, trans11-CLA

could protect against the development of atherosclerosis.

A systems biology approach to elucidating biological

pathways in coronary atherosclerosis was published by King

et al. who performed custom microarray analysis of coronary

artery segments.54 A number of clinical variables were

examined, and diabetic states provided the most interesting

results, with 653 upregulated genes in the no diabetes class and

37 upregulated genes in the diabetes class, with an FDR of

0.08%. The top gene upregulated in the diabetes class was

IGF-1, followed by the IL-1 receptor and IL-2 receptor-a,
indicating that there were changes in cytokine-induced

immune and inflammatory responses. These results suggest

that inflammation is more prominent in diabetic than

nondiabetic coronary artery disease. Significant gene

expression profiles were then used to construct a novel

pathway based upon gene connectivity as determined by

language parsing of the published literature, and ranking as

determined by the significance of differentially regulated genes

in the network. The resulting gene subnets were visualized with

Cytoscape, an open-source bioinformatics resource (discussed

in more detail below55), to identify nexus genes in disease

severity. Results indicated that the key process in the

progression of atherosclerosis relates to smooth muscle cell

dedifferentiation, suggesting a focus on changes in the smooth

muscle phenotype as a target for atherosclerosis. The results

also provided insight into the severe form of coronary artery

disease associated with diabetes, reporting an overabundance

of immune and inflammatory signals in diabetics. This method
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for querying multiple search engines and/or databases

combined with parsing of the retrieved results (documents)

for biological associations is extremely powerful for generating

networks, and is used extensively in multiple software

applications for network generation.

Lipopolysaccharide (LPS) is a critical inducer of sepsis,

which is characterized by systemic inflammation, hypotension

and multiple organ failure.56 Tseng et al.57 examined the

molecular effects of late-phase LPS stimulation on primary

rat endothelial cells in an attempt to develop diagnostic

markers of inflammatory disease. A combination of cDNA

microarray, 2-DE and MALDI-TOF MS/MS, as well as

cytokine protein arrays were analyzed using custom bio-

informatics applications. Differentially expressed genes and

proteins were mapped onto their corresponding biological

pathways using BioCarta or KEGG, and the results were

ordered using the BGSSJ software (bulk gene search system

for Java) followed by analysis with ArrayXPath.58 The results

showed significant effects (p o 0.05) on the BioCarta path-

ways ‘‘LDL pathway during atherogenesis’’, ‘‘MSP/RON

receptor signaling pathway’’ (MSP, macrophage-stimulating

protein; RON, tyrosine kinase/receptor d’origine nantais),

‘‘signal transduction through IL-1R’’, and ‘‘IL-5 signaling

pathway’’, demonstrating that inflammatory pathways were

significantly affected by LPS treatment, as would be expected.

Overall, this study used a systems biology approach to

show that NF-kB-associated responses in endothelial cells

affected pathways involved in proliferation, atherogenesis,

inflammation and apoptosis, thereby providing information

on multiple pathways simultaneously. However, it should be

stressed that it is necessary to differentiate protein concentra-

tions from protein activities in order to make meaningful

deductions. Several studies using ‘‘focused’’ arrays to analyze

gene expression in human atherosclerotic tissue have

confirmed that short-term LPS exposure results in vivid

upregulation of a spectrum of proinflammatory genes

including IL-1b, IL-15, interferon-induced genes, and a series

of TNF superfamily members.59–62

Statins are an important therapeutic in the control of

hyperlipidemia, with demonstrated efficacy in lowering

cholesterol levels. However, there are concerns regarding the

development of statin-induced myopathy following aggressive

treatment. Laaksonen et al. employed a systems biology

approach to probe the cellular mechanisms leading to

myopathy and identify potential biomarkers.63 Muscle

biopsies were analyzed for whole genome expression and

plasma samples were profiled using a lipidomics approach.

The microarray analysis revealed modest changes in the

atorvastatin treatment group (five altered genes), but 111

genes were affected in the simvastatin group. The differences

in response are not necessarily unexpected given that the two

statins differ in their hydrophobicity/lipophilicity, and thus in

the extent that they affect the vasculature. The lipidomics

profiling identified 132 unique lipid molecular species

(however, this method does not allow for the unequivocal

identification of fatty acid substitution position on lipid head

groups). The gene expression data and the lipidomics data

were combined following gene set enrichment analysis (GSEA)

and further analyzed with PLS-DA to look for a plasma-based

biomarker of myopathy. The results showed that the arachi-

donate 5-lipoxygenase activating protein gene (ALOX5AP)

had high positive regression coefficients with plasma levels

of phosphatidylethanolamine(42:6) and negative regression

coefficients for cholesterol ester ChoE(18:0). These results

were particularly intriguing as the ALOX5 gene has been

previously shown to predispose humans to atherosclerosis.64,65

This systems biology approach successfully identified potential

plasma-based markers of the effects of statin treatment

and showed that observed effects upon pathways were

statin-specific. In particular it also provided mechanistic

insight into the development of atherosclerosis, demonstrating

the utility of a systems approach. A similar method was

employed by Pietiläinen et al. who examined obesity in

monozygotic twins discordant for obesity and found

obesity to be associated with deleterious alterations in lipid

metabolism pathways known to promote atherogenesis,

inflammation and insulin resistance.66 Intriguingly, they

reported that obesity primarily related to increases in

lyso-phosphatidylcholines and decreases in ether phospholipids.

Nikkilä et al.67 used this method to examine the gender-

dependent progression of systemic metabolic states in early

childhood. They were able to categorize children in terms of

metabolic state at a very young age (from birth to 4 years old).

Using lipidomics profiling methodology and hidden Markov

models, they found that the major developmental state differ-

ences between girls and boys can be attributed to sphingolipids.

They also found multiple previously unknown age- and gender-

related metabolome changes of potential medical significance.

In addition, they demonstrated the feasibility of state-based

alignment of personal metabolic trajectories, which is an

important proof-of-principle step for applications of meta-

bolomics towards systems biology and personalized medicine.

Children were shown to have different development rates at the

level of the metabolome and thus the state-based approach may

be advantageous when applying metabolome profiling in search

of markers for subtle (patho)physiological changes.

Skogsberg et al. examined the effects of lowering

plasma lipoproteins upon plaque formation using the

Ldlr�/�Apo100/100Mttpflox/floxMx1-Cre mouse model, which

has a plasma lipoprotein profile similar to that of familial

hypercholesterolemia and a genetic switch to block the hepatic

synthesis of lipoproteins.68 Transcriptional profiling of

atherosclerosis-prone mice with human-like hypercholestero-

lemia and reverse engineering of whole-genome expression

data provided a network of cholesterol-response atherosclerosis

target genes. This regulatory gene network appeared to

control foam cell formation, suggesting that these genes could

potentially serve as drug targets to prevent the transformation

of early lesions into advanced, clinically significant plaques.

Kleemann et al. employed a systems approach to examine

the effects of dietary cholesterol upon atherosclerosis.69 Of

particular interest in this study is the focus of the effects of

dietary cholesterol upon inflammation. The role of inflamma-

tion in cardiovascular disease and atherosclerosis in particular

has been established;70 however, the source of inflammation

and the exact mechanisms of how inflammation is evoked and

contributes to disease development and progression are still

unclear. The data of Kleeman et al. demonstrated that the liver

594 | Mol. BioSyst., 2009, 5, 588–602 This journal is �c The Royal Society of Chemistry 2009



is capable of absorbing moderate cholesterol-induced stress

(up to about 0.5% w/w in the diet), but a further increase

evoked the expression of hepatic pro-inflammatory genes

including a number of pro-atherosclerotic candidate genes.

These data also showed that dietary cholesterol can be a

trigger of hepatic inflammation (as reflected by elevated

plasma levels of acute phase genes) and that it may be involved

in the development of the inflammatory component of

atherosclerosis by switching on four distinct inflammatory

pathways (PDGF, IFNgamma, IL-1 and TNFalpha

pathways). Furthermore, the authors used a network

analysis approach to demonstrate that lipid metabolism and

inflammatory pathways are closely linked via specific

transcriptional regulators. They confirmed that targeting of

a prototype transcription factor of the inflammatory response

(NF-kB) affected plasma lipid levels and lowered plasma

cholesterol levels of ApoE*3Leiden mice. This study

demonstrated the strength of a systems approach in that

multiple analytical platforms were combined to build an

overall model of disease, which provided mechanistic

information across multiple biological pathways that suggest

potential new strategies for therapeutic interventions affecting

inflammation, as well as plasma lipids, in a beneficial way. The

results of this study are examined in greater detail using the

KegArray tool discussed below.

An expanding toolbox

An important bottleneck in the development of systems

approaches is the need for software capable of analyzing

collected omics data from multiple platforms. There are many

software packages and web resources available, all of which

are too numerous to describe in this review (see ref. 71 for a

comprehensive list of 4150 resources for systems biology).

A few resources worth briefly mentioning here include

KEGG,72 PathVisio,73 pSTIING,74 MetaCoret,75 Cytoscape,55

VANTED,76 Pathway-Express,77 Ingenuitys Systems and a

plethora of SBML applications78 (Table 1). Some of this

software is designed to map the results from omics experi-

ments onto existing pathway databases such as KEGG or

pSTIING. These types of tools enable the visualization of the

results integrated with the information provided in these

databases. Other tools enable the generation of networks that

are inferred from omics data, such as Cytoscape (through

several plugins), VANTED, some of the R/Bioconductor

packages79 and many of the commercial software packages.

Most of these tools can also be used to analyze and manipulate

networks. However, to date there is no perfect solution and

substantial effort is needed to integrate multiple datasets in a

comprehensive fashion. Herein we provide a brief overview of

some of the diverse options.

The Kyoto Encyclopedia of Genes and Genomes (KEGG)

is a web-based resource that contains a series of databases of

biological systems, consisting of genetic building blocks of

genes and proteins (KEGG GENES), chemical building

blocks of both endogenous and exogenous substances (KEGG

LIGAND), molecular wiring diagrams of interaction and

reaction networks (KEGG PATHWAY), and hierarchies

and relationships of various biological objects (KEGG

BRITE). KEGG provides a reference knowledge base for

linking genomes to biological systems, and also to environ-

ments, by the processes of PATHWAY mapping and BRITE

mapping. The visualization objects in the KEGG suite are

consistent, with the nodes of a pathway map shown as

rectangles that represent gene products, usually proteins, and

small circles representing chemical compounds and other

molecules. A large oval represents a link to another pathway

map, and a cluster of rectangles represents a protein complex.

Aoki and Kanehisa provide a comprehensive tutorial on

KEGG for interested readers.80

The Systems Biology Markup Language (SBML) is a

computer-readable format for representing models of

biochemical reaction networks in software. It is oriented

towards describing systems of biochemical reactions, including

cell signaling pathways, metabolic pathways, biochemical

reactions and gene regulation.78 The SBML project has

produced a KEGG2SBML tool that is useful for converting

KEGG-based metabolic pathways into SBML format. The

pSTIING resource consists of a web-based application

containing metabolic pathways, protein–protein, protein–lipid

Table 1 Network and pathway mapping software, including tools for network visualization/manipulation and network inference from
high-throughput dataa

Software Platform Data source License

Cytoscape http://www.cytoscape.org Java Various (plugins) Free
PathVisio http://www.pathvisio.org Java Various Free
MetaCoret http://www.genego.com/metacore.php Windows/Mac Various Commercial
CellDesignert http://www.systems-biology.org/cd/ SBMLb Various Free
VANTED http://vanted.ipk-gatersleben.de/ Windows/Mac Various Free
Ingenuitys Systems http://www.ingenuity.com/ Windows/Mac Various Commercial
pSTIING http://pstiing.licr.org/ Web Various Free
Cladist (pSTIING) http://pstiing.licr.org/software/ Java Microarray Free
KEGG (Kyoto Encyclopedia of Genes and Genomes) http://www.genome.jp/ Web Various Free
KegArray http://www.genome.jp/kegg/expression/ Java Various Free
MONET http://delsol.kaist.ac.kr/Bmonet/home/index.html Java/Cytoscape/Web Microarray Free
AgilentLiteratureSearch http://www.agilent.com/labs/research/litsearch.html Cytoscape Text mining Free
GeneNet http://strimmerlab.org/software/genenet/ R Microarray Free
Gaggle http://gaggle.systemsbiology.org R/Bioconductor/Cytoscape Same as Cytoscape Free
apComplex http://www.bioconductor.org R/Bioconductor AP-MSc Free

a This list is non-exhaustive and is solely provided to give an example of some of the available resources. See Ng et al. for a more comprehensive

list.71 b Systems biology markup language (see http://sbml.org/). c Affinity purification-Mass spectrometry.

This journal is �c The Royal Society of Chemistry 2009 Mol. BioSyst., 2009, 5, 588–602 | 595



and protein–small molecule interactions, as well as

transcriptional regulatory associations. It is focused on

regulatory networks relevant to chronic inflammation, cell

migration and cancer, therefore, making it a useful resource

for inflammatory-related applications. The pSTIING web site

also features a tool for inferring networks (Cladist). VANTED

is a multiplatform tool for the manipulation of graphs that

represent either biological pathways or functional hierarchies.

It also allows the mapping of experimental data into

the network and is capable of processing flux data. Graph

information is loaded in SBML format, but it also has a

KEGG interface.81 Cytoscape is an open source platform for

visualizing molecular interaction networks and biological

pathways. One of its most useful features is the ability to

accept custom plugins to perform specific tasks, extending the

number of initial features. A number of useful plugins are

already available, includingMONET,82 a method for inferring

gene regulatory networks from gene expression data, and

the AgilentLiteratureSearch plugin,83 which enables the

generation of association networks from literature mining

(see below). R and Bioconductor are a platform extensively

used for the analysis of high-throughput data.84 In addition,

there are several free resources available related to the

analysis of networks, including packages such as GeneNet,85

apComplex86 and Rgraphivz,87 (for creating and visualizing

networks). The package Gaggle88 enables interaction between

Cytoscape and R.

The two main commercial packages are MetaCoret and

Ingenuitys Systems. MetaCoret (GeneGo, Inc.) is an

integrated suite of software applications that is designed for

functional analysis of experimental data, including omics data,

CGH arrays, SNPs, SAGE gene expression and pathway

analysis. MetaCoret is based on a proprietary manually

curated database of human protein–protein, protein–DNA

and protein–compound interactions, metabolic and signaling

pathways, and the effects of bioactive molecules on gene

expression. GeneGo is also in the process of creating a systems

biology and pathway analysis platform specific for cardio-

vascular diseases (MetaMiner Cardiac Consortium). Ingenuity

Pathways Analysis (IPA) enables researchers to model and

analyze biological and chemical systems. The IPA suite

contains a series of modules including IPA-Biomarkert

Analysis, IPA-Toxt Analysis and IPA-Metabolomicst

Analysis. IPA-Biomarkert identifies the most promising and

relevant biomarker candidates within experimental data.

IPA-Toxt delivers a focused toxicity and safety assessment

of candidate compounds, elucidates toxicity mechanisms and

identifies potential markers of toxicity, with a focus on

cardiovascular toxicity, nephrotoxicity, and hepatotoxicity.

IPA-Metabolomicst analyzes metabolomics data in the

context of metabolic and signaling pathways. This module

can integrate transcriptomics, proteomics and metabolomics

data in a systems biology approach to biomarker discovery,

molecular toxicology, and mechanism of action studies.

Multiple efforts are currently under way to synchronize the

data being collected by research groups around the world. In

order to advance the field, it is therefore necessary to develop

databases with defined metrics for evaluating the quality of the

global data sets. This area is beyond the scope of this review,

but interested readers are suggested to examine work by the

Institute for Systems Biology SBEAMS (Systems Biology

Experiment Analysis Management System, http://www.

sbeams.org/), a framework for collecting, storing, and

accessing data produced by these and other experiments.89

Other efforts in this area include the Biological Networks

server, which is a systems biology software platform with

multiple visualization and analysis functions including:

visualization of molecular interaction networks, sequence

and 3D structure information, integration with other graph-

structured data such as ontologies (e.g., gene ontology) and

taxonomies (e.g., enzyme classification system), integration of

interactions with experimental data (e.g., gene expression),

and extraction of biologically meaningful relations, as well as

dynamical modeling and simulation.90 The Biological

Networks server provides querying services and an information

management framework over PathSys, which is a graph-based

system for creating a combined database of biological

pathways, gene regulatory networks and protein interaction

maps, which integrates over 14 curated and publicly contributed

data sources for eight representative organisms.91 There is also

currently a significant amount of effort to determine standards

for storing microarray data (MAGE-OM/ML, GeneX,

ArrayExpress, SMD, etc.),89 as well as proteomics92

and metabolomics standards initiatives.93 Data-integration

techniques for omics data sets have been reviewed in detail

by Joyce and Palsson,12 and references therein.

One of the long-range goals of systems biology approaches

is to develop models capable of predicting clinical phenotypes,

as well as patient treatment regimens and associated outcomes.

However, the complexity of cardiovascular disease and other

inflammatory-related diseases makes model development

challenging. A number of different groups are working on

developing in silico models of inflammation, with the majority

of efforts focused on the acute inflammatory response.94–97

However, it is likely that these models can eventually be

adapted for diseases of chronic inflammation. Recent reviews

have addressed the status of cardiac systems biology, with a

number of promising developments.5,47,98–100 These models

represent the logical extension of the systems biology tools

discussed above and as the amount of data increases, our

ability to develop interactive models of individual pathologies

will increase. This translational systems biology approach will

make it feasible to develop patient-specific modeling based

upon known disease mechanisms.97 These models will be

useful in clinical settings to predict and optimize the outcome

from surgery and non-interventional therapy.101

KegArray

To address the need for software capable of analyzing data

from multiple omics platforms, KEGG has recently intro-

duced a new application called KegArray that is designed to

map omics data onto the KEGG suite of databases. KegArray

is a Java application that provides an environment for

analyzing transcriptomics or proteomics (expression profiles)

and metabolomics data (compound profiles) individually or

simultaneously. The application is tightly integrated with the

KEGG database, and maps input data to KEGG resources
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including PATHWAY, BRITE and genome maps. KegArray

is available for running in Mac, Windows or Linux

environments and can be downloaded freely from the KEGG

homepage (http://www.genome.jp/download/).

The KegArray tool is designed to facilitate integrated

mapping of omics results onto a KEGG application of choice.

The statistical evaluation of systems biology data is a complex

and highly debated subject (see Data Processing and Statistical

Analysis). As such, the KegArray tool itself does not impose

any statistical evaluation on the inputted data, but is rather

intended as a link between processed data and the interactive

KEGG environment. This conceptual solution allows the user

to have full control over the choice of statistical methods, data

transformation and data selection prior to mapping onto the

KEGG tool of choice. KegArray allows full flexibility in

determining the significance or cut-off levels, as well as the

corresponding color coding for the mapping. KegArray can

thus be described as a visualization tool, but with the added

advantage of a sustained interactive environment with the vast

KEGG database. It is not necessary to pre-select the pathways

of interest and the output is formatted as a list of links

to all affected pathways, organized in the order of highest

number of mapped genes/proteins/compounds per pathway.

KegArray can be configured to display any combination

of ‘up-regulated’, ‘down-regulated’, or ‘non-regulated’

genes/proteins/compounds. In this case, the ranking represents

how well the respective pathways have been covered by the

experimental analyses. Subsequently, by only including the

up- and down-regulated entries in the mapping, a ranking

based on biological effects on the pathway can be achieved.

Table 2 An example for expression ratios between two channels for
the input of transcriptomics data into KegArraya

#organism:mmu
x y Ratio#ORF

mmu:19156 1.37
mmu:18946 2.52
mmu:109791 2.79
mmu:20250 3
mmu:20397 1.39
mmu:21991 1
mmu:20249 1.14
mmu:71780 1.15
mmu:110611 1.04
mmu:56703 1.11
mmu:11532 �1.07
mmu:18194 �6.7
mmu:12520 1.09
mmu:19210 �1.12
mmu:18563 �1.17
mmu:11430 �1.41
mmu:18476 1

a Data are the high cholesterol (HC) treatment shown in Fig. 2.

Table 3 KegArray input format for metabolomics dataa

#Compound Ratio

C00219 0.58
C06429 0.67
C01530 0.63
C00249 0.59
C06424 0.56
C01595 0.67
C01712 0.67
C03242 0.76

a Data are the high cholesterol (HC) treatment shown in Fig. 2.

Fig. 2 Venn diagram displaying the number of metabolic pathways

significantly affected following treatment with either low cholesterol

(LC) or high cholesterol (HC) relative to control in n ApoE*3Leiden

mouse model of atherosclerosis. In addition, the changes between HC

and LC were compared, evidencing five pathways that were specifically

affected between these two treatments (mmu00010 glycolysis/

gluconeogenesis, mmu00641 3-chloroacrylic acid degradation, mmu00680

methane metabolism, mmu00980 metabolism of xenobiotics by cyto-

chrome P450, and mmu00982 drug metabolism-cytochrome P450).

Data are from a KegArray-based analysis of quantified lipid and

transcriptomics data from Kleemann et al.69 A complete list of all

pathways affected is provided in the ESI, Tables S1–S3.w

Table 4 Metabolic pathways significantly affected in high cholesterol
exposure relative to low cholesterol exposurea

mmu01040 Biosynthesis of unsaturated fatty acids
mmu03320 PPAR signaling pathway
mmu00564 Glycerophospholipid metabolism
mmu00071 Fatty acid metabolism
mmu04920 Adipocytokine signaling pathway
mmu00565 Ether lipid metabolism
mmu00590 Arachidonic acid metabolism
mmu00100 Biosynthesis of steroids
mmu00120 Bile acid biosynthesis
mmu00561 Glycerolipid metabolism
mmu00600 Sphingolipid metabolism
mmu00591 Linoleic acid metabolism
mmu00592 alpha-Linolenic acid metabolism

a Data are from a KegArray-based analysis of quantified lipid and

transcriptomics data from Kleemann et al.69 Pathways are from

KEGG PATHWAY and are listed with pathway name and KEGG

ID number (e.g.mmu for mouse). The pathways are ranked in order of

greatest number of components significantly affected in the pathway.

A total of 77 different pathways were affected, of which the top 13 are

shown here. A complete list of all 77 affected pathways is provided in

Table S3. In addition, those pathways significantly affected by low and

high cholesterol exposure are provided in Table S1 and S2, respec-

tively. It is not possible to state whether an entire pathway is positively

or negatively affected, but these individual pathways can be visualized

following mapping to KEGG and inspected for specific fluctuations in

the data. Examples of this are shown in Fig. 3 and Fig. 4.

This journal is �c The Royal Society of Chemistry 2009 Mol. BioSyst., 2009, 5, 588–602 | 597



The expected mapping format is that of ratios between e.g. a

treated and control group, and a specific tab-delimited format

to facilitate the automatic calculation of ratios from raw data

is available (KEGG EXPRESSION format). However, in

order to increase the versatility of the tool, an additional

generic file input format has also been constructed (RATIO

format) to allow other aspects of the data to be evaluated

through the KegArray tool (e.g. weighting according to

statistical significance, ranking etc.). Both formats, described

in detail in the ReadMe file available for download with

KegArray (http://www.genome.jp/kegg/expression/), can be

used for the input of transcriptomics or proteomics data.

Organism-specific mapping of the results is facilitated by the

organism information provided on the first line of the input

file, in the format ‘#organism:’ followed by the organism

three- or four-letter organism identifier code used in KEGG.

(e.g., ‘hsa’ for human and ‘mmu’ for mouse). If organism-

specific mapping is not desirable, the abbreviation for the

all-inclusive generic pathway can be used (‘map’). Since the

interactive environment of KEGG is maintained, it is easy to

scroll between the many different organism-specific pathways

available. Additional information regarding experimental

descriptions, reference information, etc., can also be included

in the input file by simply adding the ‘#’ character at the

beginning of the line, which will result in that line being

skipped by KegArray (other than the ‘#organism:’ or

‘#source:’ line).

The lines in tab-delimited format below the ‘#’-delimited

section contain omics profiling data. The first column must

contain the KEGG GENES ID, which is the unique identifier

of the organism-specific gene. The second and third columns

are aimed for entering X- and Y-coordinates, e.g. those

derived from a microarray experiment, to facilitate a

schematic view of the microarray through the ‘‘ArrayViewer’’

application. If the data are from a proteomics experiment, the

second and third columns can be left blank. Accordingly, it is

not necessary to input the microarray coordinate information,

and the KEGG ID and data columns are sufficient. If the

RATIO file format is utilized, the fourth column contains the

data value of interest, as exemplified by the ratios between

control channel and target channel in Table 2. In contrast, if

the EXPRESSION file format is utilized, the fourth through

Fig. 3 Results of KegArray-based analysis of quantified lipid and transcriptomics data from Kleemann et al.69 The KEGG metabolic pathway

‘‘Biosynthesis of unsaturated fatty acids’’ (map01040) was the pathway that evidenced the greatest number of changes between low and high

cholesterol treatment. KegArray was run with a 1.1-fold threshold, with red and orange indicating a 10% and 5% increase, respectively, yellow

indicating no change (grey indicates that the enzyme/metabolite is present in the organism), and light green and dark green indicating a 5% and

10% decrease, respectively. Table 4 provides a list of the top 13 pathways that differed between low and high cholesterol treatment.
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seventh columns contain the total signal from the treated/

diseased sample, background signal from the treated sample,

total signal from control sample, and background signal from

the control sample in the indicated order. KegArray then

performs the background subtraction and calculates the ratio

between treated and control sample upon submission of the

data file.

The data format for metabolomics data is similar to the

gene/protein data; however, only the ratio format can be used.

All metabolites (compounds) must be assigned KEGG

COMPOUND ID numbers in order to be recognized by

KegArray. In the data file, the first column contains the

KEGG COMPOUND ID (e.g., C00219 for arachidonic acid)

and the second column contains the pre-processed data value

of interest, e.g. ratios of the target compound relative to the

control (Table 3).

Because entry IDs must be in KEGG GENES ID format,

an ID converter has also been created. Currently, the

following external databases are supported: NCBI GI, NCBI

Entrez Gene, GenBank, UniGene, UniProt and IPI. When

using KegArray, a number of parameters can be customized,

including the threshold, normalization and color scheme.

The output can be viewed as significantly either up-

regulated, down-regulated or all data that were input into

KegArray. These data are then visualized onto interactive

KEGG PATHWAY maps as well as KEGG BRITE and

KEGG DAS for further analysis. These data can also be

mapped onto the KEGG DISEASE pathways.

In order to demonstrate the utility of KegArray, we

have applied it to a dataset of gene and metabolite data

taken from Kleemann et al.69 This study was designed to

examine the potential of increasing doses of dietary cholesterol

to evoke the inflammatory component that is necessary for the

onset of atherosclerosis. Towards this end, ApoE*3Leiden

mice were fed either a control diet (cholesterol-free),

low cholesterol (LC, 0.25% w/w) or high cholesterol

(HC, 1.0% w/w) diet for ten weeks (to achieve early mild

atherosclerotic plaques), with the amount of cholesterol being

the only dietary variable in the study. At the end of the study,

the mice were sacrificed, scored for atherosclerosis and

profiled using microarray analysis (livers) and lipidomics

quantification (liver and plasma). The results showed that

only the HC diet evoked hepatic inflammation and induced

atherosclerosis strongly (only mild atherosclerosis was

observed with the LC diet). A total of 264 genes involved in

lipid metabolism were measured, with 23 genes differentially

expressed in the LC diet, and 64 in the HC diet. In addition,

a range of intrahepatic fatty acids were quantified, of which

27 free fatty acids were mapped along with the gene data

onto the KEGG database using KegArray. The KegArray

Fig. 4 Results of KegArray-based analysis of quantified lipid and transcriptomics data from Kleemann et al.69 The KEGG metabolic pathway

‘‘Sphingolipid metabolism’’ (map00600) evidenced a number of changes between low and high cholesterol treatment. KegArray was run with a

1.1-fold threshold, with red and orange indicating a 10% and 5% increase, respectively, yellow indicating no change (grey indicates that the

enzyme/metabolite is present in the organism), and light green and dark green indicating a 5% and 10% decrease, respectively. Table 4 provides a

list of the top 13 pathways that differed between low and high cholesterol treatment.
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parameters were set to display a 1.1-fold difference and

non-affected pathways were excluded. For the LC exposure,

60 biochemical pathways were affected (ESI, Table S1w) as

opposed to 76 pathways for the HC exposure (ESI, Table S2w),
which included all 60 pathways from the LC dosing. This

suggests that already with LC, a very pronounced adaptation

of liver lipid metabolism occurs. With these adaptations,

the liver is capable of dealing with cholesterol as there is

very little development of early atherosclerotic lesions and

there is no significant inflammation. However, when the

dose of dietary cholesterol is increased (HC condition),

16 additional lipid pathways are activated. These data suggest

that a very low dose of cholesterol affects a significant part of

the pathways involved in lipid handling. It appears that with

HC, the quality of the lipids changes and increased number of

unsaturated or proatherogenic lipids such as sphinogomyelin

are significantly impacted. Of particular interest was the

difference in affected pathways between LC and HC diets.

A total of 77 pathways were differentially affected (ESI,

Table S3w), of which the top 13 pathways affected are provided

in Table 4. These differences are shown on treatment-specific

basis in Fig. 2. A total of 59 pathways were affected in both

LC and HC treatment, as well as between treatments. Of

particular interest are the five pathways that differ between LC

and HC treatment, but did not evidence changes in LC or HC

treatment alone (mmu00010 glycolysis/gluconeogenesis,

mmu00641 3-chloroacrylic acid degradation, mmu00680

methane metabolism, mmu00980 metabolism of xenobiotics

by cytochrome P450, and mmu00982 drug metabolism-

cytochrome P450). Examples of affected metabolic pathways

are shown for the biosynthesis of unsaturated fatty acids

(Fig. 3) and sphingolipid metabolism (Fig. 4). Kleemann

et al.69 reported that with increasing cholesterol uptake, the

liver switched from an adaptive state to an inflammatory

pro-atherosclerotic state (with LC there is primarily an

adaptive response of key metabolic pathways required to

cope with lipids). At the gene expression level, there is

clearly a further adaptation of the pathways switched on/off

with LC when animals receive HC. These effects were

in accordance with the metabolite levels, with significant

(p o 0.05) decreases in myristic, palmitic, stearic, arachidonic,

docosapentaenoic and docosahexaenoic acids. This finding

is supported by the observation that the biosynthesis

of unsaturated fatty acids was the metabolic pathway with

the greatest number of changes between LC and HC

treatment. Specific decreases were observed in unsaturated

fatty acids in the HC treatment: a decrease in arachidonic

acid was observed at p o 0.05 and docosahexaenoic

acid (DHA) at p o 0.07). This pathway is a potential source

of the unsaturated fatty acid substrates for the many of

the pro-inflammatory lipids involved in the development of

atherosclerosis (e.g., observed reductions in arachidonic acid

levels). Accordingly, mapping of these data to KEGG was

a rapid method for providing information on which

pathways were most affected by cholesterol treatment and

provided a mechanistic insight into the disease process. This

new tool for the KEGG suite will be a useful compliment

to existing strategies for network analysis and pathway

reconstruction.

Conclusions

One of the main current obstacles in systems biology is the

heterogeneity of available datasets. The field requires the

creation of legacy databases of omics data that are formatted

to enable inter-study comparison. Many existing methodologies

require significant computational knowledge for data

manipulation and analysis. In order to increase the utility

and availability of these tools, it is necessary to either develop

simplified web-based applications that are equally useable for

cross-disciplinary users and/or shift the educational paradigm

to place increased emphasis on the acquisition of computer

skills. Future advances in understanding complex medical

problems are highly dependent on methodological advances

and integration of the computational systems biology

community with biologists and clinicians.97

Although commercial tools are more complete in terms of

features, they are often closed platforms that do not allow for

the development and interchange of analysis tools and data

beyond their supported applications. In addition, these tools

can be expensive, which can be prohibitive for the academic

and/or clinical settings. It is desirable that developments in

these fields be based upon open standards that allow the easy

interchange of multiple types of data and the subsequent

analyses. The adoption of standard file formats should reduce

the difficulties in the integration of data derived from different

analysis tools.

The ultimate goal for translational systems biology

approaches is to bring forth an understanding of the

pathogenesis and disease etiology at the organism level that

goes beyond what traditional minimalistic approaches have to

offer. Such an in depth understanding of the differences

between the healthy and diseased states can help solve crucial

clinical issues, and provide markers and insights that aid

clinicians in making prognostic and diagnostic evaluations.

In terms of atherosclerosis, one of the most important clinical

dilemmas is determining if and when a patient is at risk of

developing symptomatic disease. A systems biology approach

could potentially identify alterations in molecular pathways

and targets that precede plaque instability, and thus assist in

developing molecular tools that can substitute imaging

modalities such as MRI or PET CT to more accurate identi-

fication of vulnerable lesions. Accordingly, systems biology

tools can be utilized to develop concrete clinical applications

that will help improve patient selection, monitoring of

stroke preventive intervention, and other needs of the medical

community.

The advent of systems biology is bringing forth a change in

the philosophy of medicine, and is rapidly changing the way

we view the disease process. However, in order to realize the

promise of systems biology, i.e. the understanding of the

organism as a whole, the next major challenge is to facilitate

integrated analysis of data from multiple sources.102 Without

the integration of individual networks and biochemical

pathways into the entire system, the observed effects of

individual components remain without meaning and context,

and cannot provide understanding of pathological processes at

the systems level. Some steps in the direction of integrated

analyses have already been made,33 but increased integration
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of heterogeneous data and networks is non-trivial. The

potential of combining the knowledge from multiple networks

with high-throughput data, as exemplified herein by the

KegArray tool and the KEGG database, will move us one

step further towards a true understanding of the living

organism. The rapid advances in computer sciences and

high-throughput technologies, coupled with paradigm shifts

in the way clinical and pre-clinical researchers perceive science,

holds the key to understanding the intricate systems that

dictate the switch from healthy to diseased, and represents

the path that will lead us to true personalized medicine.
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