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Introduction

The liver is an essential organ for metabolism in the human 
body.  Hepatocytes are the principal cells for metabolizing 
endogenous and exogenous compounds.1  Also, they are the 
gold-standard model for addressing the absorption, distribution, 
metabolism, and excretion (ADME) of drugs.2,3  Recently there 
has been massive progress in the establishment of micro-
physiological models of the human liver in microfluidic devices 
that can replicate the anatomical structure of the liver as well as 
its blood flow.4–7  Moreover, the generation of human pluripotent 
stem cells (hPSCs)-derived liver mini-organoids is another 
emerging trend that has the potential to replace the classical 
two-dimensional hepatocytes models.8,9  Although, the 
microscale size of the liver on a chip or the liver organoid is 
considered an advantage for high-throughput drug screening 
applications, it is also a challenge.  The culturing volume inside 
the microfluidic channels is of only a few microliters per 
sample.10  Conventional analysis tools for the determination of 
metabolic activities—such as the commercially available 
colorimetric and bioluminescent assays—require much higher 
sample volume to the initiate the reaction between the substrate 
and the target metabolite.  Furthermore, usually only a single 
metabolite is detected per assay.

LC-MS-based untargeted metabolomics can detect a vast array 
of metabolites in a single measurement with a relatively 
simple—yet efficient—sample preparation compared to other 
methods.11–13  Advances in metabolomics now enable single-cell 

measurements.14  However, for the cell culture medium (CCM), 
volumes of hundreds of microliters are still used for samples 
preparation.15  There is no established methodology for assessing 
the power of LC-MS-based untargeted metabolomics for 
detecting biological extracellular metabolites from a low micro-
scaled volume of in vitro extracellular samples.  Thus, the 
development of such a LC-MS-based untargeted metabolomics 
platform will help us to understand detailed metabolic activities 
and their corresponding biological pathways at the microscale 
level of in vitro cell models.  Here, we have investigated the 
capacity of LC-MS-based untargeted metabolomics for 
delivering temporal metabolite determination in micro-scaled 
volumes of extracellular metabolites secreted from the human 
hepatic cell line (HepG2).  One microliter of CCM at 0, 24 and 
72 h of cell culturing was extracted using 50 to 200 μL of 
acetonitrile.  Only 1 μL of CCM was needed for the detection of 
57 metabolites.  Moreover, the biological impact of metabolite 
shifts was evaluated in relationship with the functions of the 
HepG2 cell functions.

Experimental

Cell culture and extracellular metabolite collection
HepG2 cells (American Type Culture Collection, Manassas, 

VA, USA) were cultured in DMEM supplemented with 10% 
(v/v) FBS, 1% penicillin/streptomycin, and 1 mM nonessential 
amino acids.  The cells were passaged with trypsin-EDTA 
solutions at a 1:10 to 1:20 subculture ratio.  For the collection of 
extracellular metabolites 3 × 105 cells were seeded into T-25 
flasks in a final volume of 15 mL of the CCM.  Cells were then 
incubated at 37°C and 5% CO2.  At three timepoints (0-control, 
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24 and 72 h) 1 mL of extracellular CCM was taken and 
preserved at –80°C.

CCM sample preparation, LC-MS metabolomics data acquisition 
and analysis

CCM samples were thawed at room temperature and 1 μL of 
each sample was extracted using 50, 100, or 200 μL acetonitrile 
containing five technical internal standards (tIS), Table S1.  The 
samples were then centrifuged at 4°C for 15 min at 20000g.  
Forty microliters of the supernatant were transferred to a 96-well 
0.2 mL PCR plate PCR-96-MJ (BMBio, Tokyo, Japan).  The 
plate was sealed with a pierceable seal (4titude, Wotton, UK) for 
3 s at 180°C using a plate sealer (BioRad PX-1, CA, USA) and 
kept at 4°C during the LC-MS measurement.  The injection 
volume was 1 μL (injection sequence Table S2).  The LC-MS 
method was described in previous publications.16–18  Briefly, 
metabolite separation was performed on an Agilent 1290 Infinity 
II system using a SeQuant ZIC-HILIC (Merck, Darmstadt, 
Germany) column.  Sample analysis was performed using water 
with 0.1% formic acid (solvent A) and acetonitrile with 0.1% 
formic acid (solvent B).  The elution gradient was as follows: 
isocratic step at 95% B for 1.5 min, 95% B to 40% B in 12 min 
and maintained at 40% B for 2 min.  The flow rate was 0.4 mL/
min.  Data was acquired on an Agilent 6550 Q-TOF-MS system 
with a mass range of 40 – 1200 m/z in positive ionization all ion 
fragmentation modes (AIF) including three sequential 
experiments at alternating collision energies: one full scan at 
0 eV, followed by one MS/MS scan at 10 eV, and then followed 
by one MS/MS scan at 30 eV.  The data acquisition rate was 
6  scans/s.  Data were processed in MS-DIAL version 4.2019 
(detailed parameters in Tables S3 and S4).  An in-house MS2 
spectral library containing experimental MS2 spectra and 
retention times (RT) for 391 compounds obtained from 
standards16,18 was used for the annotation of detected features 
using three criteria: (i) accurate mass (AM) match (tolerance: 
0.01 Da), (ii) RT match (tolerance: 1 min), and (iii) MS2 
spectrum match (similarity > 70%).  The MS2 similarity was 
scored by the simple dot product without any weighting (at least 
two MS2 peaks match with the reference spectra).  The MS2 
similarities with reference spectra were matched to any of the 
CorrDec20 or the MS2Dec19 deconvoluted MS2 spectra of the 
three collision energies (0, 10, and 30 eV).  We used peak areas 
of the representative ion (usually [M+H]+) for the relative 
quantification of metabolites.  The dataset has been deposited to 
the EMBL-EBI MetaboLights repository with the identifier 
MTBLS1794.21

Data visualization and statistical analysis
Data are represented as triplicate preparations and LC-MS 

measurements of samples.  The unpaired multiple t test was 
performed using GraphPad prism 8 (GraphPad Software, La 
Jolla California, USA).  Orange 3 software (Ver. 3.23.1; 
Bioinformatics Laboratory, Faculty of Computer and Information 
Science, University of Ljubljana, Slovenia)22 was used for data 
mining.  The biological pathways analysis was performed using 
the MetaboAnalyst platform.23

Results and Discussion

For the development of micro-physiological models of the liver, 
the determination of the in situ metabolic activity is of critical 
importance.  The measurement of extracellular metabolites in 
CCM enables longitudinal monitoring of the same cell culture.  
However, a huge obstacle in these models is the low micro-

scaled volume in the cell culturing chambers which limits the 
number of detected metabolites.  In this study, by using a single 
LC-MS method we have confidently identified 57 metabolites 
(Table S5) corresponding to the Metabolomics Standard 
Initiative MSI annotation level 1;24 32 were identified using 
accurate mass, retention time and MS2 spectral match 
(AMRT+MS2) and 25 were AMRT-matched.  Four of the five 
tIS showed the coefficient of variation (CV) of peak areas <15% 
across all CCM samples (Table S5).  Median CV of all detected 
metabolites in the triplicate measurements was 8% (Table S5).

The analysis showed distinct trajectories of metabolite 
abundances in CCM during 72 h of the samples extracted using 
100 μL acetonitrile (Table 1).  Eight metabolites showed >2-fold 
shifts between the 0 and 24 h samples and 27 metabolites 
showed >2-fold shifts between the 0 and 72 h samples (Figs. 1A 
and 1B).  Comparable shifts were also observed in samples 
extracted using 50 and 200 μL acetonitrile (Table S5).  
Extraction using 100 μL acetonitrile makes two measurement 

Fig. 1　LC-MS-based metabolome analysis of extracellular 
metabolites in CCM from HepG2 hepatocytes.  One microliter of 
CCM at 0, 24 and 72 h were extracted using 100 μL of acetonitrile.  
Volcano plots of the 57 annotated extracellular metabolite shifts after 
(A) 24 h and (B) 72 h of incubation (black > 2-fold increase; grey >2-
fold decrease; empty <2-fold shift).
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aliquots (40 μL) possible and provides reasonable signal 
intensities.  While after 24 and 72 h most of the metabolites (49 
and 30 out of 57, respectively) shifted <2-fold, amino acids 
decreased over time, indicating consumption, and modified 
purines as well as pyrimidines increased reflecting DNA 

metabolism.  We could observe similar metabolite shifts over 
time (e.g. increase of N2-dimethylguanosine) in HCE-T cells 
grown in a microdevice (data not shown).  Biological pathways 
assigned by MetaboAnalyst related to these compounds confirm 
these observations by highlighting the significant involvement 
of aminoacyl-tRNA biosynthesis pathways, valine, leucine, 
isoleucine biosynthesis-degradation pathway, and purine 
metabolism pathway (Fig. 1C).  These pathways are essential in 
hepatocytes for maintaining their characteristics as well as the 
metabolic activities within.  For instance, amino acids are 
essential elements for the TCA cycle (tricarboxylic acid cycle) 
as energy generator in aerobic organisms.25  These results 
indicate that LC-MS-based untargeted metabolomics can be 
used for micro-scaled extracellular samples, such as in organ-
on-the-chip applications, where only small sample volumes are 
available.  We therefore envision the application of our methods 
for the in situ analysis of the metabolic activities in micro-
physiological models of human organs in microfluidic devices.
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