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Type 2-low asthma phenotypes by integration of sputum 
transcriptomics and serum proteomics

To the Editor,
Asthma is a complex heterogeneous disease that presents with var-
ying degrees of severity. Analysis of the transcriptome of sputum 
cells from asthma patients has defined one T2-high and two T2-
low clusters.1 To obtain a better granularity of the T2-low clusters, 
we have performed a combined analysis of sputum transcriptomics 
with serum proteomics using an integrative machine learning work-
flow (Figure S1). We studied 104 patients with asthma and 16 nor-
mal healthy controls from the U-BIOPRED cohort2 and re-analysed 
the 508 differentially expressed genes (DEGs) of sputum cell tran-
scriptomics between high eosinophil and low eosinophil counts 1 by 
applying consensus clustering and finite Gaussian mixture model 
(GMM) clustering (Table S1; Appendix S1). We identified four op-
timal clusters (TAC*1, TAC*2, TAC*3a and TAC*3b) (Figure S3), in 
agreement with our previous clustering1 where TAC*3a and TAC*3b 
were combined. Similar clusterings were generated using complete 
linkage hierarchical agglomerative clustering, K-means and parti-
tioning around medoids. TAC*1 patients were more severe asth-
matics with a greater use of oral corticosteroid therapy, more nasal 
polyps and a higher level of sputum eosinophils compared with 
TAC*2 (Table S2; Figure S4). TAC*3a included more severe asth-
matics on oral corticosteroid therapy, with a higher sputum neu-
trophilia, serum C-reactive protein levels compared with TAC*3b 
patients. Metacore pathway analysis (http://metac ore.com) using 
overrepresentation analysis and shrunken centroid method3 in-
dicated key-regulated immune pathways that distinguished the 4 
TAC*s. Gene set variation analysis (GSVA),4 an enrichment analysis 
of specific gene signatures shown in Table S3, indicated that TAC*1 
had the highest expression score (ES) for the T2-high gene signature 
while TAC*2 showed upregulation of cell-killing pathway via CD8+ 
T-cells, NK cells and macrophages, inflammasome activation and 
toll-like receptor (TLR) pathogen-sensing pathways. While TAC*3a 
showed upregulation of pathways similar to TAC*2, TAC*3b showed 
attenuation of TLR sensor pathway activation with downregulation 
of cellular responses in asthma, malignancy and autoimmunity com-
pared with TAC*3a.

GSVA indicated that the IL13 gene signature ES was highest 
in TAC*1 while the ILC1 signature was highly enriched in TAC*2 
followed by TAC*1 and also exhibited higher ES scores in TAC*3a 
compared with TAC*3b (Figure 1, Figures S5 and S6). The inflam-
masome pathway and activated neutrophil ES scores were highly 
enriched in TAC*2 and TAC*3a compared with TAC*3b. In contrast, 
the KEGG oxidative phosphorylation pathway showed higher ES 
score in TAC*3b compared to TAC*3a, with lower enrichment in 
both TAC*1 and TAC*2. The enrichment of activated polarised 

human peripheral blood Th17 cell ES was enhanced in TAC*3b, but 
there was no difference for ILC3 cell ES across the TAC*s while 
ILC2 cell ES were enriched in TAC*1 compared with other TAC*s 
(Figures S5 and S6). These clusters were validated in the indepen-
dent ADEPT5 and Australian6 asthma cohorts by comparing the 
ESs of the signature genes of each of the 4 TAC*s across the 3 
cohorts. The distribution of the ESs was not significantly different 
(Figure S7).

Sputum transcriptomics and serum proteomics from 92 
asthmatic subjects using SomaScan technology (SomaLogic)7 
and shot-gun proteomics using liquid chromatography-mass 
spectrometry (LC-MS/MS)8 were then integrated using similar-
ity network fusion (SNF) (Figure S2). SNF is an efficient inte-
grative method for different data sets that construct similarity 
networks based on each data set and then integrates these 
networks into a single network that represents all underlying 
data-types.9 By pre-selecting the number of clusters to 4, we 
reproduced these 4 TAC*s with a high degree of concordance 
(81%) when fusing with proteomic data, indicating the robust-
ness of the SNF approach. Allowing the data to freely cluster, we 
identified 9 proteomic- and transcriptomic-associated clusters 
(PTACs) derived from the 4 TAC* clusters (Figure 2; Figures S8 
and S9). PTAC2a (n = 14) showed autoimmune pathways re-
lated to multiple sclerosis and systemic lupus erythematosus 
(SLE) while PTAC2b (n = 7) enrichment of TLR pathways, type 
I interferon and inflammasome activation, responses associ-
ated with infective pathogens. PTAC2a subjects had evidence 
for macrophage, NK and TC1 cell activation with enhancement 
of IL-2, IL-6 and apoptotic pathways while PTAC2b was asso-
ciated with enhanced type I IFN and inflammasome activation. 
PTAC2a patients had the highest percentage of patients with se-
vere asthma who were smokers and had a more frequent history 
of pneumonia and prevalence of atopy, compared with PTAC2b. 
PTAC*3a1, PTAC*3a2 and PTAC*3a3 participants showed clear 
reduction in T2 pathways compared with TAC*1. Furthermore, 
PTAC3a1 (n = 14) and PTAC3a2 (n = 6) participants were dif-
ferentiated with respect to severe asthma, prevalence of nasal 
polyps, smoking history, prevalence of eczema and a history of 
pneumonia with PTAC3a2 with the highest percentage of severe 
asthma who were smokers or ex-smokers, with a more frequent 
history of pneumonia, prevalence of atopy and nasal polyps, 
compared with PTAC3a1 subjects. PTAC3b1 (n = 10), PTAC3b2 
(n = 6) and PTAC3b3 (n = 8) had different levels of blood leu-
kocytes, blood neutrophils and C-reactive protein, and those 
on oral corticosteroids. TAC*3 primarily comprised of subjects 
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associated with OXPHOS and ageing pathways but their delin-
eation remained less clear than PTAC2. Reduced OXPHOS com-
pared with healthy controls in TAC1, TAC2 and TAC3a indicate 
a potential switch to glycolytic processes but TAC3b with sig-
nificantly increased OXPHOS respond to distinct mitochondrial 
or metabolic treatment modalities (Figure S10). However, this 
analysis is limited by the small number of subjects within the 
PTAC groups and larger validation studies will be required to 
ascertain the identification of distinct pathways. Interestingly, 
TAC1 remains undivided, indicating that serum proteomics did 
not bring any factors that allowed for subclusters.

We have defined 9 molecular clusters, distinguished by differ-
ent combinations of ES of distinct pathways that included T2-high 
and T2-low pathways, and associated with differences in clinical 
and inflammatory characteristics. T2-low asthma is a heteroge-
neous condition of 8 clusters compared with the homogeneity of 
the single T2-high cluster. Thus, the addition of the 2 proteomic 
platforms to the analysis has allowed us to provide a greater gran-
ularity of the T2-low clusters. The existence of multiple T2-low 
asthma phenotypes is challenging with requirements for specific 
biomarkers and different targeted therapies compared to the sin-
gle T2-high cluster.

Another important finding in this analysis is the repartition 
of various potential pathways involved in asthma in the subclus-
ters generated in this study, as assessed by GSVA. Although the 
IL-13-T2-signature that we used indicated the highest expression 
in TAC1, it was also seen in individuals in TAC2. Other pathways 
that could potentially drive asthma pathobiology include ILC1 in 
TAC1 and TAC2, inflammasome, neutrophil and IL-17 activation in 
TAC2, OXPHOS in TAC3a and TAC3b and IFNγ activation in TAC2 
or TAC3a.

Finally, one limitation of our study is the unknown effects of 
corticosteroid therapy particularly oral prednisolone on different 
inflammatory pathways such as the T2-high, thus representing a 
confounding factor. There is also a degree of corticosteroid insensi-
tivity since that T2-high TAC1 cluster had the highest level of eosin-
ophilia despite 58% of the group being on daily oral corticosteroids 
(OCS). Alternatively, this might represent the most severe patients 
with asthma. The effect of this therapy on molecular clustering can 
only be determined by studying the effect of OCS in this population.

KE Y WORDS
asthma, bioinformatics, endotypes, precision medicine, systems 
biology

F I G U R E  1   Gene set variation analysis. Dot plot enrichment scores with box-and-whisker plots showing median and interquartile range 
for 7 different gene signatures in the transcriptome-associated clusters: TAC*1 (n = 26), TAC*2 (n = 26), TAC*3a (n = 19) and TAC*3b 
(n = 33). The signatures reflect activation pathways for IL-13 activation of human airway epithelial cells (IL-13-stimulated human bronchial 
epithelial cells), innate lymphoid cells (ILC1 cells), inflammasome activation, oxidative phosphorylation (OXPHOS), neutrophil activation, 
lipopolysaccharide (LPS)-stimulated macrophage and interferon-γ-stimulated macrophage. ****P < .0001, ***P < .001, **P < .01, *P < .05
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F I G U R E  2   Integration of sputum 
transcriptomics and serum proteomics. 
(A) Principal component analysis plot 
identified 9 transcriptomic-associated 
clusters. The dots represent patients and 
colour code based on cluster subgroups. 
TAC*1 remains intact shown as PTAC*1; 
TAC*2 is divided into two subgroups 
PTAC*2a and PTAC*3b. TAC*3a and 
TAC*3b were divided into 3 subgroups 
each. (B) shows patients in each subgroup. 
(C) Sankey diagram of the directed flow 
of patients based on the granulocytic 
state (Level A), transcriptomic-associated 
clusters (TAC*s) (Level B), proteomics- and 
transcriptomic-associated clusters (PTACs) 
(Level C) and PTACs with 9 clusters 
(Level D) 
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2S albumins and 11S globulins, two storage proteins involved in 
pumpkin seeds allergy

To the Editor,
Members from Cucurbitaceae family have been reported to induce 
food allergy.1 Pumpkin (Cucurbita maxima) pulp has been mostly the 
allergenic source but few studies are focused on the allergenic po-
tential of its seeds.2 Pumpkin seed may be consumed as snacks or 
as components in other food products, becoming hidden allergens, 
eliciting infrequent but severe cases of allergy with life-threaten-
ing reactions.3 The nature of those allergens has not been inves-
tigated in detail so far. This study aimed to identify two allergens, 
from pumpkin seeds a 2S albumin and an 11S globulin, involved in 

severe allergic reactions of four patients allergic to these seeds and 
evaluate the cross-reactivity with other seeds and nuts containing 
homologous proteins. General characteristics of selected individu-
als, extracted from their clinical histories, are shown in Table S1. 
All patients described immediate allergic reactions with severe and 
systemic symptoms as anaphylaxis, showing a positive specific IgE 
(ImmunoCAP, Thermo Fisher) and Skin prick testing (SPT) to pump-
kin seeds extract.

Immunological profiles of allergic patients were obtained by 
testing their sera with pumpkin seed extract under reducing and 
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