PubMed
Omics approaches in effective selection and generation of potential plants for phytoremediation of heavy metal from contaminated resources
J Environ Manage. 2023 Mar 13;336:117730. doi: 10.1016/j.jenvman.2023.117730. Online ahead of print.ABSTRACTSoil and water pollution, rapid industrialization, contaminated irrigation-water, increased waste-production and surge in agricultural land leads to the accumulation of Heavy Metals (HM) with time. HM contamination has raised concern over the past years and new remediation strategies are required to deal with it. HM-contaminated soil is often used for the production of food, which makes a gateway for toxic metals into the food-chain, thereby affecting food security and human health. To avoid HM-toxicity, decontamination of important resources is essential. Therefore, exploring phytoremediation for the removal, decomposition and detoxification of hazardous metals from HM-contaminated sites is of great significance. Hyper-accumulator plants can efficiently remove HMs. However, despite many hyper-accumulator plant species, there is a research gap in the studies of phytotechnology. Hence biotechnological efforts advocating omics studies i.e. genomics, transcriptomics, proteomics, metabolomics and phenomics are in order, the purpose being to select and enhance a plant's potential for the process of phytoremediation to be more effective. There is a need to study newly developed high-efficiency hyper-accumulator plants as HM-decontaminator candidates for phytoremediation and phytomining. Therefore, this review focuses on various strategies and bio-technological methods for the removal of HM contaminants from sites, with emphasis on the advancement of phytoremediation, along with applications in cleaning up various toxic pollutants.PMID:36921476 | DOI:10.1016/j.jenvman.2023.117730
Serum Bile Acid Metabolites Predict the Therapeutic Effect of Mesalazine in Patients with Ulcerative Colitis
J Proteome Res. 2023 Mar 15. doi: 10.1021/acs.jproteome.2c00820. Online ahead of print.ABSTRACTUlcerative colitis (UC) is a systematic chronic disease characterized by insufficient intestinal absorption, and mesalazine is a common medical treatment. In the present study, 20 normal healthy controls (NC group), 10 unmedicated UC patients (UC group), and 20 mesalazine-responsive and 20 mesalazine-nonresponsive UC patients were recruited. A total of 42 serum BA metabolites, including 8 primary bile acids and 34 secondary bile acids (SBAs), were quantitatively measured. Compared with the NC group, serum SBAs in the UC patients were significantly lower but increased after mesalazine therapy. Differences in the serum TDCA, DCA, GDCA-3S, 12-keto LCA, and GCDCA-3S metabolites were found between the UC and NC groups, with AUC values of 0.777, 0.800, 0.815, 0.775, and 0.740, respectively. Furthermore, we identified 12-keto LCA as a specific BA marker of UC and BA biomarkers of mesalazine responsiveness. It was concluded that serum SBAs were decreased in UC patients, and TDCA, DCA, GDCA-3S, 12-keto LCA, and GCDCA-3S might aid in the diagnosis of UC. The abundance of SBAs increased after the mesalazine therapy, and serum 12-keto LCA was identified as an alternative invasive biomarker associated with UC diagnosis and therapeutic response, thereby providing a new approach for the prediction of response to mesalazine therapy in UC patients.PMID:36921116 | DOI:10.1021/acs.jproteome.2c00820
Colonization Mechanism of Endophytic <em>Enterobacter cloacae</em> TMX-6 on Rice Seedlings Mediated by Organic Acids Exudated from Roots
J Agric Food Chem. 2023 Mar 15. doi: 10.1021/acs.jafc.2c08647. Online ahead of print.ABSTRACTSmall molecular organic acids (SMOAs) in root exudates are critical for plant-microbe interaction, especially under environmental stresses. However, the dominant organic acids driving the process and promoting the colonization are unclear. Here, using a target metabolomics, 20 main SMOAs of rice root exudates were identified and analyzed in control and 10 mg/L thiamethoxam-treated groups. The composition of these SMOAs differed significantly between the two treatments. Among which, malic acid, citric acid, succinic acid, and proline induced a chemotactic response, swimming ability, and biofilm formation of Enterobacter cloacae TMX-6 in a dose-dependent manner. The maximal chemotactic response of TMX-6 was induced by proline at 10 mg/L, and a strong chemotactic response was even observed at 0.01 mg/L. The recruitment assay confirmed that the addition of these four compounds promoted the colonization of TMX-6. The results provide insight for directional regulation of plant-microbe interactions for beneficial outcomes.PMID:36921065 | DOI:10.1021/acs.jafc.2c08647
A systems approach points to a therapeutic role for retinoids in asparaginase-associated pancreatitis
Sci Transl Med. 2023 Mar 15;15(687):eabn2110. doi: 10.1126/scitranslmed.abn2110. Epub 2023 Mar 15.ABSTRACTAmong drug-induced adverse events, pancreatitis is life-threatening and results in substantial morbidity. A prototype example is the pancreatitis caused by asparaginase, a crucial drug used to treat acute lymphoblastic leukemia (ALL). Here, we used a systems approach to identify the factors affecting asparaginase-associated pancreatitis (AAP). Connectivity Map analysis of the transcriptomic data showed that asparaginase-induced gene signatures were potentially reversed by retinoids (vitamin A and its analogs). Analysis of a large electronic health record database (TriNetX) and the U.S. Federal Drug Administration Adverse Events Reporting System demonstrated a reduction in AAP risk with concomitant exposure to vitamin A. Furthermore, we performed a global metabolomic screening of plasma samples from 24 individuals with ALL who developed pancreatitis (cases) and 26 individuals with ALL who did not develop pancreatitis (controls), before and after a single exposure to asparaginase. Screening from this discovery cohort revealed that plasma carotenoids were lower in the cases than in controls. This finding was validated in a larger external cohort. A 30-day dietary recall showed that the cases received less dietary vitamin A than the controls did. In mice, asparaginase administration alone was sufficient to reduce circulating and hepatic retinol. Based on these data, we propose that circulating retinoids protect against pancreatic inflammation and that asparaginase reduces circulating retinoids. Moreover, we show that AAP is more likely to develop with reduced dietary vitamin A intake. The systems approach taken for AAP provides an impetus to examine the role of dietary vitamin A supplementation in preventing or treating AAP.PMID:36921036 | DOI:10.1126/scitranslmed.abn2110
Mass spectrometry DDA parameters and global coverage of the metabolome: Spectral molecular networks of momordica cardiospermoides plants
Metabolomics. 2023 Mar 15;19(3):18. doi: 10.1007/s11306-023-01981-4.ABSTRACTINTRODUCTION: Molecular networking (MN) has emerged as a key strategy to organize and annotate untargeted tandem mass spectrometry (MS/MS) data generated using either data independent- or dependent acquisition (DIA or DDA). The latter presents a time-efficient approach where full scan (MS1) and MS2 spectra are obtained with shorter cycle times. However, there are limitations related to DDA parameters, some of which are (i) intensity threshold and (ii) collision energy. The former determines ion prioritization for fragmentation, and the latter defines the fragmentation of selected ions. These DDA parameters inevitably determine the coverage and quality of spectral data, which would affect the outputs of MN methods.OBJECTIVES: This study assessed the extent to which the quality of the tandem spectral data relates to MN topology and subsequent implications in the annotation of metabolites and chemical classification relative to the different DDA parameters employed.METHODS: Herein, characterising the metabolome of Momordica cardiospermoides plants, we employ classical MN performance indicators to investigate the effects of collision energies and intensity thresholds on the topology of generated MN and propagated annotations.RESULTS: We demonstrated that the lowest predefined intensity thresholds and collision energies result in comprehensive molecular networks. Comparatively, higher intensity thresholds and collision energies resulted in fewer MS2 spectra acquisition, subsequently fewer nodes, and a limited exploration of the metabolome through MN.CONCLUSION: Contributing to ongoing efforts and conversations on improving DDA strategies, this study proposes a framework in which multiple DDA parameters are utilized to increase the coverage of ions acquired and improve the global coverage of MN, propagated annotations, and the chemical classification performed.PMID:36920561 | DOI:10.1007/s11306-023-01981-4
Megalochelin, a Tridecapeptide Siderophore from a Talented Streptomycete
ACS Chem Biol. 2023 Mar 15. doi: 10.1021/acschembio.2c00958. Online ahead of print.ABSTRACTStreptomycetes are bacteria known for their extraordinary biosynthetic capabilities. Herein, we describe the genome and metabolome of a particularly talented strain, Streptomyces ID71268. Its 8.4-Mbp genome harbors 32 bioinformatically predicted biosynthetic gene clusters (BGCs), out of which 10 are expressed under a single experimental condition. In addition to five families of known metabolites with previously assigned BGCs (nigericin, azalomycin F, ectoine, SF2766, and piericidin), we were able to predict BGCs for three additional metabolites: streptochlorin, serpetene, and marinomycin. The strain also produced two families of presumably novel metabolites, one of which was associated with growth inhibitory activity against the human opportunistic pathogen Acinetobacter baumannii in an iron-dependent manner. Bioassay-guided fractionation, followed by extensive liquid chromatography-mass spectrometry (LC-MS) and NMR analyses, established that the molecule responsible for the observed antibacterial activity is an unusual tridecapeptide siderophore with a ring-and-tail structure: the heptapeptide ring is formed through a C-C bond between a 2,3-dihydroxybenzoate (DHB) cap on Gly1 and the imidazole moiety of His7, while the hexapeptide tail is sufficient for binding iron. This molecule, named megalochelin, is the largest known siderophore. The megalochelin BGC encodes a 13-module nonribosomal peptide synthetase for the synthesis of the tridecapeptide, and a copper-dependent oxidase, likely responsible for the DHB-imidazole cross-link, whereas the genes for synthesis of the DHB starter unit are apparently specified in trans by a different BGC. Our results suggest that prolific producers of specialized metabolites may conceal hidden treasures within a background of known compounds.PMID:36920304 | DOI:10.1021/acschembio.2c00958
Evaluation of graphical models for multi-group metabolomics data
Brief Bioinform. 2023 Mar 15:bbad096. doi: 10.1093/bib/bbad096. Online ahead of print.ABSTRACTGaussian graphical model is a strong tool for identifying interactions from metabolomics data based on conditional correlation. However, data may be collected from different stages or subgroups of subjects with heterogeneity or hierarchical structure. There are different integrating strategies of graphical models for multi-group data proposed by data scientists. It is challenging to select the methods for metabolism data analysis. This study aimed to evaluate the performance of several different integrating graphical models for multi-group data and provide support for the choice of strategy for similar characteristic data. We compared the performance of seven methods in estimating graph structures through simulation study. We also applied all the methods in breast cancer metabolomics data grouped by stages to illustrate the real data application. The method of Shaddox et al. achieved the highest average area under the receiver operating characteristic curve and area under the precision-recall curve across most scenarios, and it was the only approach with all indicators ranked at the top. Nevertheless, it also cost the most time in all settings. Stochastic search structure learning tends to result in estimates that focus on the precision of identified edges, while BEAM, hierarchical Bayesian approach and birth-death Markov chain Monte Carlo may identify more potential edges. In the real metabolomics data analysis from three stages of breast cancer patients, results were in line with that in simulation study.PMID:36920069 | DOI:10.1093/bib/bbad096
Reversibility of thyroid hormone system-disrupting effects on eye and thyroid follicle development in zebrafish (Danio rerio) embryos
Environ Toxicol Chem. 2023 Mar 15. doi: 10.1002/etc.5608. Online ahead of print.ABSTRACTEarly vertebrate development is partially regulated by thyroid hormones (THs). Environmental pollutants that interact with the TH system (TH system disrupting chemicals; THSDCs) can have massively disrupting effects on this essential phase. Eye development of fish is directly regulated by THs and can, therefore, be used as a thyroid-related endpoint in endocrine disruptor testing. To evaluate the effects of THSDC-induced eye malformations during early development, zebrafish (Danio rerio) embryos were exposed for 5 days post fertilization (dpf) to either propylthiouracil, a TH synthesis inhibitor, or tetrabromobisphenol A, which interacts with TH receptors. Subsequently, one half of the embryos were exposed further to the THSDCs until 8 dpf, while the other half of the embryos was raised in clean water for 3 days to check for reversibility of effects. Continued THSDC exposure altered eye size and pigmentation and induced changes in the cellular structure of the retina. This correlated with morphological alterations of thyroid follicles as revealed by use of a transgenic zebrafish line. Interestingly, effects were partly reversible after a recovery period as short as 3 days. Results are consistent with changes in TH levels measured in different tissues of the embryos, e.g., in the eyes. Results show that eye development in zebrafish embryos is very sensitive to THSDC treatment, but able to recover quickly from early exposure by effective repair mechanisms. This article is protected by copyright. All rights reserved. Environ Toxicol Chem 2023;00:0-0. © 2023 SETAC.PMID:36920003 | DOI:10.1002/etc.5608
Rhynchophylline alleviates neuroinflammation and regulates metabolic disorders in a mouse model of Parkinson's disease
Food Funct. 2023 Mar 15. doi: 10.1039/d2fo02939a. Online ahead of print.ABSTRACTParkinson's disease (PD) is the second most prevalent neurodegenerative disorder with limited therapeutic agents. Rhynchophylline (RIN), a tetracyclic oxindole alkaloid isolated from Uncaria rhynchophylla, has multiple neuropharmacological activities, including anti-inflammatory, anti-depression, anti-neurodegenerative disease, and anti-drug addiction. Though it is reported that RIN exerts a neuroprotective effect against PD, the underlying protective mechanism remains obscure. In this study, a mass spectrometry-based metabolomic strategy combined with neurobehavioral tests, serum biochemical assays, and immunohistochemistry were employed to decipher the protective mechanism of RIN against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride (MPTP)-induced subacute PD in mice. Our results indicated that RIN significantly improved the MPTP-induced behavioral abnormalities, reduced the loss of dopaminergic neurons, and reversed the secretion of inflammatory cytokines and oxidative stress indicators. Further studies showed that RIN significantly suppressed the expression of toll-like receptor 4, NOD-like receptor protein 3, and cyclooxygenase 2 in the mouse striatum. The results of serum metabolomics showed that RIN could ameliorate metabolic disorders in PD mainly through the regulation of retinol metabolism, arachidonic acid metabolism, glycerophospholipid metabolism, and purine metabolism. These pieces of evidence revealed that RIN is a promising drug candidate for PD by alleviating neuroinflammation and maintaining metabolic homeostasis.PMID:36919954 | DOI:10.1039/d2fo02939a
Exploration of the Production of Three Thiodiketopiperazines by an Endophytic Fungal Strain of Cophinforma mamane
Chem Biodivers. 2023 Mar 15:e202201087. doi: 10.1002/cbdv.202201087. Online ahead of print.ABSTRACTEndophytic fungi possess a versatile metabolism which is related to their ability to live in diverse ecological niches. While culturing under laboratory conditions, their metabolism is mainly influenced by the culture media, time of incubation and other physicochemical factors. In this study, we focused on the production of 3 thiodiketopiperazines (TDKPs) botryosulfuranols A-C produced by an endophytic strain of Cophinforma mamane isolated from the leaves of Bixa orellana L collected in the Peruvian Amazon. We studied the time-course production of botryosulfuranols A-C during 28 days and evaluated the variations in the production of secondary metabolites, including the TDKPs, produced by C. mamane in response to different culture media, light versus dark conditions and different incubation times. We observed a short time-frame production of botryosulfuranol C while its production was significantly affected by the light conditions and nutrients of the culture media. Botryosulfuranols A and B showed a similar production pattern and a similar response to culturing conditions. Molecular networking allowed us to detect three compounds related to TDKPs that will be the focus of future experiments.PMID:36919620 | DOI:10.1002/cbdv.202201087
A simple and rapid LC-MS/MS method for the simultaneous determination of 15 bile acids in human serum and its application to patients with decompensated cirrhosis
Biomed Chromatogr. 2023 Mar 15:e5625. doi: 10.1002/bmc.5625. Online ahead of print.ABSTRACTLiver cirrhosis is currently the twelfth leading cause of death globally and the sixth leading cause of death in China. Its treatment is expensive. Changes in the composition of the serum bile acid pool are sensitive indicators of the severity of liver cirrhosis. In this study, a novel liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and used to simultaneously determine 15 bile acids in human serum in patients with decompensated cirrhosis. Sample preparation involved spiking with isotope internal standards (ISs) followed by protein precipitation and the analytical run time was 5 min. The LC-MS/MS method was fully validated according to CLSI C62A and the Consensus of method development and validation of liquid chromatography-tandem mass spectrometry in clinical laboratories. The method achieved an acceptable coefficient of variation for precision (0.83-14.80%) and accuracy (89.39-107.62%). Finally, as proof of applicability, the method was applied to patients with decompensated cirrhosis in routine clinical sample analysis. The degree of variation of different bile acids was clearly shown. These results indicated that abnormal metabolic pathways might play important roles in decompensated cirrhosis.PMID:36919355 | DOI:10.1002/bmc.5625
BnIR: a multi-omics database with various tools for Brassica napus research and breeding
Mol Plant. 2023 Mar 14:S1674-2052(23)00071-0. doi: 10.1016/j.molp.2023.03.007. Online ahead of print.ABSTRACTIn the post-GWAS era, multi-omics techniques have shown great power and potential for candidate gene mining and functional genomics research. However, due to the lack of effective data integration and multi-omics analysis platforms, such techniques have not still been applied widely in rapeseed, an important oil crop worldwide. Here, we constructed a rapeseed multi-omics database (BnIR; http://yanglab.hzau.edu.cn/BnIR), which provides datasets of six omics including genomics, transcriptomics, variomics, epigenetics, phenomics and metabolomics, as well as numerous "variation-gene expression-phenotype" associations by using multiple statistical methods. In addition, a series of multi-omics search and analysis tools are integrated to facilitate the browsing and application of these datasets. BnIR is the most comprehensive multi-omics database for rapeseed so far, and two case studies demonstrated its power to mine candidate genes associated with specific traits and analyze their potential regulatory mechanisms.PMID:36919242 | DOI:10.1016/j.molp.2023.03.007
Low dissolved oxygen supply functions as a global regulator of the growth and metabolism of Aurantiochytrium sp. PKU#Mn16 in the early stages of docosahexaenoic acid fermentation
Microb Cell Fact. 2023 Mar 15;22(1):52. doi: 10.1186/s12934-023-02054-w.ABSTRACTBACKGROUND: Thraustochytrids accumulate lipids with a high content of docosahexaenoic acid (DHA). Although their growth and DHA content are significantly affected by the dissolved oxygen (DO) supply, the role of DO on the transcriptional regulation of metabolism and accumulation of intracellular metabolites remains poorly understood. Here we investigate the effects of three different DO supply conditions (10%, 30%, and 50%) on the fed-batch culture of the Aurantiochytrium PKU#Mn16 strain to mainly reveal the differential gene expressions and metabolite profiles.RESULTS: While the supply of 10% DO significantly reduced the rates of biomass and DHA production in the early stages of fermentation, it achieved the highest amounts of biomass (56.7 g/L) and DHA (6.0 g/L) on prolonged fermentation. The transcriptome analyses of the early stage (24 h) of fermentation revealed several genes involved in the central carbon, amino acid, and fatty acid metabolism, which were significantly downregulated at a 10% DO level. The comparative metabolomics results revealed the accumulation of several long-chain fatty acids, amino acids, and other metabolites, supporting the transcriptional regulation under the influence of a low oxygen supply condition. In addition, certain genes involved in antioxidative systems were downregulated under 10% DO level, suggesting a lesser generation of reactive oxygen species that lead to oxidative damage and fatty acid oxidation.CONCLUSIONS: The findings of this study suggest that despite the slow growth and metabolism in the early stage of fermentation of Aurantiochytrium sp. PKU#Mn16, a constant supply of low dissolved oxygen can yield biomass and DHA content better than that with high oxygen supply conditions. The critical information gained in this study will help to further improve DHA production through bioprocess engineering strategies.PMID:36918882 | DOI:10.1186/s12934-023-02054-w
Determining the changes in metabolites of Dendrobium officinale juice fermented with starter cultures containing Saccharomycopsis fibuligera FBKL2.8DCJS1 and Lactobacillus paracasei FBKL1.3028 through untargeted metabolomics
BMC Microbiol. 2023 Mar 14;23(1):67. doi: 10.1186/s12866-023-02807-y.ABSTRACTBACKGROUND: The present study aimed to investigate the changes in volatile components and metabolites of Dendrobium officinale (D. officinale) juice fermented with starter cultures containing Saccharomycopsis fibuligera and Lactobacillus paracasei at 28 ℃ for 15 days and post-ripened at 4 ℃ for 30 days using untargeted metabolomics of liquid chromatography-mass spectrometry (LC-MS) and headspace solid-phase microextraction-gas chromatography (HS-SPME-GC-MS) before and after fermentation.RESULTS: The results showed that the alcohol contents in the S. fibuligera group before fermentation and after fermentation were 444.806 ± 10.310 μg/mL and 510.999 ± 38.431 μg/mL, respectively. Furthermore, the alcohol content in the fermentation broth group inoculated with the co-culture of L. paracasei + S. fibuligera was 504.758 ± 77.914 μg/mL, containing a significant amount of 3-Methyl-1-butanol, Linalool, Phenylethyl alcohol, and 2-Methyl-1-propanol. Moreover, the Ethyl L (-)-lactate content was higher in the co-culture of L. paracasei + S. fibuligera group (7.718 ± 6.668 μg/mL) than in the L. paracasei (2.798 ± 0.443 μg/mL) and S. fibuligera monoculture groups (0 μg/mL). The co-culture of L. paracasei + S. fibuligera significantly promoted the metabolic production of ethyl L (-)-lactate in D. officinale juice. The differential metabolites screened after fermentation mainly included alcohols, organic acids, amino acids, nucleic acids, and their derivatives. Twenty-three metabolites, including 11 types of acids, were significantly up-regulated in the ten key metabolic pathways of the co-culture group. Furthermore, the metabolic pathways, such as pentose and glucuronate interconversions, the biosynthesis of alkaloids derived from terpenoid and polyketide, and aminobenzoate degradation were significantly up-regulated in the co-culture group. These three metabolic pathways facilitate the synthesis of bioactive substances, such as terpenoids, polyketides, and phenols, and enrich the flavor composition of D. officinale juice.CONCLUSIONS: These results demonstrate that the co-culture of L. paracasei + S. fibuligera can promote the flavor harmonization of fermented products. Therefore, this study provides a theoretical basis for analyzing the flavor of D. officinale juice and the functional investigation of fermentation metabolites.PMID:36918762 | DOI:10.1186/s12866-023-02807-y
A multi-organoid platform identifies CIART as a key factor for SARS-CoV-2 infection
Nat Cell Biol. 2023 Mar;25(3):381-389. doi: 10.1038/s41556-023-01095-y. Epub 2023 Mar 13.ABSTRACTCOVID-19 is a systemic disease involving multiple organs. We previously established a platform to derive organoids and cells from human pluripotent stem cells to model SARS-CoV-2 infection and perform drug screens1,2. This provided insight into cellular tropism and the host response, yet the molecular mechanisms regulating SARS-CoV-2 infection remain poorly defined. Here we systematically examined changes in transcript profiles caused by SARS-CoV-2 infection at different multiplicities of infection for lung airway organoids, lung alveolar organoids and cardiomyocytes, and identified several genes that are generally implicated in controlling SARS-CoV-2 infection, including CIART, the circadian-associated repressor of transcription. Lung airway organoids, lung alveolar organoids and cardiomyocytes derived from isogenic CIART-/- human pluripotent stem cells were significantly resistant to SARS-CoV-2 infection, independently of viral entry. Single-cell RNA-sequencing analysis further validated the decreased levels of SARS-CoV-2 infection in ciliated-like cells of lung airway organoids. CUT&RUN, ATAC-seq and RNA-sequencing analyses showed that CIART controls SARS-CoV-2 infection at least in part through the regulation of NR4A1, a gene also identified from the multi-organoid analysis. Finally, transcriptional profiling and pharmacological inhibition led to the discovery that the Retinoid X Receptor pathway regulates SARS-CoV-2 infection downstream of CIART and NR4A1. The multi-organoid platform identified the role of circadian-clock regulation in SARS-CoV-2 infection, which provides potential therapeutic targets for protection against COVID-19 across organ systems.PMID:36918693 | DOI:10.1038/s41556-023-01095-y
National and sub-national burden and trend of type 1 diabetes in 31 provinces of Iran, 1990-2019
Sci Rep. 2023 Mar 14;13(1):4210. doi: 10.1038/s41598-023-31096-8.ABSTRACTThe aim of the study was to report the burden of type one diabetes mellitus (T1DM) by sex, age, year, and province in Iran over the past 30 years, according to data provided by the global burden of disease (GBD) study. Incidence, prevalence, death, disability-adjusted life-years (DALYs), years of life lost, and years lived with disability due to T1DM by age groups and sex was reported for 31 provinces of Iran from 1990 to 2019 with their 95% uncertainty intervals (UI). In 2019, national age-standardized incidence (11.0 (95% UI: 8.9-13.5)), prevalence (388.9 (306.1-482.1)), death (0.7 (0.6-0.8)), and DALYs (51.7 (40.9-65.1)) rates per 100,000 wre higher than 1990 except for death. Also, the mortality to incidence ratio reduced in all provinces over time particularly after 2014 as well. GBD data analysis showed that age-standardized incidence and prevalence rates of T1DM have increased, the death rate reduced, and DALYs remained unchanged during the past 30 years in Iran and its 31 provinces. death rate reduced and DALYs remained unchanged during the past 30 years in Iran and its 31 provinces.PMID:36918650 | DOI:10.1038/s41598-023-31096-8
Driving role of head and neck cancer cell secretome on the invasion of stromal fibroblasts: Mechanistic insights by phosphoproteomics
Biomed Pharmacother. 2023 Feb;158:114176. doi: 10.1016/j.biopha.2022.114176. Epub 2023 Jan 9.ABSTRACTBACKGROUND: Cancer-associated fibroblasts (CAFs) are major players in tumor-stroma communication, and participate in several cancer hallmarks to drive tumor progression and metastatic dissemination. This study investigates the driving effects of tumor-secreted factors on CAF biology, with the ultimate goal of identifying effective therapeutic targets/strategies for head and neck squamous cell carcinomas (HNSCC).METHODS: Functionally, conditioned media (CM) from different HNSCC-derived cell lines and normal keratinocytes (Kc) were tested on the growth and invasion of populations of primary CAFs and normal fibroblasts (NFs) using 3D invasion assays in collagen matrices. The changes in MMPs expression were evaluated by RT-qPCR and kinase enrichment was analyzed using mass spectrometry phosphoproteomics.RESULTS: Our results consistently demonstrate that HNSCC-secreted factors (but not Kc CM) specifically and robustly promoted pro-invasive properties in both CAFs and NFs, thereby reflecting the plasticity of fibroblast subtypes. Concomitantly, HNSCC-secreted factors massively increased metalloproteinases levels in CAFs and NFs. By contrast, HNSCC CM and Kc CM exhibited comparable growth-promoting effects on stromal fibroblasts. Mechanistically, phosphoproteomic analysis predominantly revealed phosphorylation changes in fibroblasts upon treatment with HNSCC CM, and various promising kinases were identified: MKK7, MKK4, ASK1, RAF1, BRAF, ARAF, COT, PDK1, RSK2 and AKT1. Interestingly, pharmacologic inhibition of RAF1/BRAF using sorafenib emerged as the most effective drug to block tumor-promoted fibroblast invasion without affecting fibroblast viability CONCLUSIONS: Our findings demonstrate that HNSCC-secreted factors specifically fine tune the invasive potential of stromal fibroblasts, thereby generating tumor-driven pro-invasive niches, which in turn to ultimately facilitate cancer cell dissemination. Furthermore, the RAF/BRAF inhibitor sorafenib was identified as a promising candidate to effectively target the onset of pro-invasive clusters of stromal fibroblasts in the HNSCC microenvironment.PMID:36916400 | DOI:10.1016/j.biopha.2022.114176
Metabolomic interplay between gut microbiome and plasma metabolome in cardiac surgery-associated acute kidney injury
Rapid Commun Mass Spectrom. 2023 Mar 14:e9504. doi: 10.1002/rcm.9504. Online ahead of print.ABSTRACTRATIONAL: Cardiac surgery-associated acute kidney injury (CSA-AKI) is a prevalent complication of cardiac surgery, which may be associated with a great risk of developing chronic kidney disease and mortality. This study aimed to investigate the possible links between gut microbiota metabolism and CSA-AKI.METHODS: A prospective cohort of patients who underwent cardiac surgery was continuously recruited, who were further divided into CSA-AKI group and Non-AKI group based on the clinical outcomes. Their faecal and plasma samples were collected before the surgery and were separately analysed by non-targeted and targeted metabolomics. The differential metabolites related to CSA-AKI were screened out using statistical methods, and altered metabolic pathways were determined by examining the Kyoto Encyclopedia of Genes and Genomes database.RESULTS: Nearly 1000 faecal metabolites were detected through high-resolution mass spectrometry (MS) and bioinformatics at high and mid confidence levels, and 49 differential metabolites at high confidence level may perform essential biological functions and provide potential diagnostic indicators. Compared with the Non-AKI group, the patients in the CSA-AKI group displayed dramatic changes in gut microbiota metabolism, including amino acid metabolism, nicotinate and nicotinamide metabolism, purine metabolism, and ABC transporters. Meanwhile, 188 plasma metabolites were identified and quantified by tandem MS, and 34 differential plasma metabolites were screened out between the two groups using univariate statistical analysis. These differential plasma metabolites were primarily enriched in the following metabolic pathways: sulphur metabolism, amino acid biosynthesis, tryptophan metabolism, and ABC transporters. Furthermore, the content of indole metabolites in the faecal and plasma samples of the CSA-AKI group was higher than that of the Non-AKI group.CONCLUSIONS: Patients with CSA-AKI may have dysbiosis of their intestinal microbiota and metabolic abnormalities in their gut system before cardiac surgery. Thus, some metabolites and related metabolic pathways may be potential biomarkers and new therapeutic targets for the disease.PMID:36918294 | DOI:10.1002/rcm.9504
Metformin Monotherapy Alters the Human Plasma Lipidome Independent of Clinical Markers of Glycemic Control and Cardiovascular Disease Risk in a Type 2 Diabetes Clinical Cohort
J Pharmacol Exp Ther. 2023 Mar 14:JPET-AR-2022-001493. doi: 10.1124/jpet.122.001493. Online ahead of print.ABSTRACTType 2 diabetes (T2D) is a rising pandemic worldwide. Diet and lifestyle changes are typically the first intervention for T2D. When this intervention fails, the biguanide, metformin, is the most common pharmaceutical therapy. Yet, it's full mechanisms of action remain unknown. In this work, we applied an ultrahigh resolution, mass spectrometry-based platform for untargeted plasma metabolomics to human plasma samples from a case-control observational study of non-diabetic and well-controlled T2D subjects, the latter treated conservatively with metformin or diet and lifestyle changes only. No statistically significant differences existed in baseline demographic parameters, glucose control, or clinical markers of cardiovascular disease risk between the two T2D groups, which we hypothesized would allow the identification of circulating metabolites independently associated with treatment modality. Over 3000 blank-reduced metabolic features were detected, with the majority of annotated features being lipids or lipid-like molecules. Altered abundance of multiple fatty acids and phospholipids were found in T2D subjects treated with diet and lifestyle changes as compared to non-diabetic subjects: changes that were often reversed by metformin. Our findings provide direct evidence that metformin monotherapy alters the human plasma lipidome independent of T2D disease control and support a potential cardioprotective effect of metformin worthy of future study. Significance Statement This work provides important new information on the systemic effects of metformin in type 2 diabetic subjects. We observed significant changes in the plasma lipidome with metformin therapy, with metabolite classes previously associated with cardiovascular disease risk significantly reduced as compared to diet and lifestyle changes. While cardiovascular disease risk was not a primary outcome of our study, our results provide a jumping-off point for future work into the cardioprotective effects of metformin, even in well-controlled type 2 diabetes.PMID:36918276 | DOI:10.1124/jpet.122.001493
Oxidative stress involves phenotype modulation of morbid soreness symptoms in fibromyalgia
RMD Open. 2023 Mar;9(1):e002741. doi: 10.1136/rmdopen-2022-002741.ABSTRACTOBJECTIVES: Muscle soreness occurs after exercise and also in musculoskeletal diseases, such as fibromyalgia (FM). However, the nosography and pathoetiology of morbid soreness in FM remain unknown. This study aimed to investigate the morbid soreness of FM, evaluate its therapeutic responses and probe its pathophysiology with metabolomics profiling.METHODS: Patients with newly diagnosed FM were prospectively recruited and completed self-report questionnaires pertaining to musculoskeletal symptoms. The phenotypes and metabotypes were assessed with variance, classification and correlation analyses.RESULTS: Fifty-one patients and 41 healthy controls were included. Soreness symptoms were prevalent in FM individuals (92.2%). In terms of manifestations and metabolomic features, phenotypes diverged between patients with mixed pain and soreness symptoms (FM-PS) and those with pain dominant symptoms. Conventional treatment for FM did not ameliorate soreness severity despite its efficacy on pain. Moreover, despite the salient therapeutic efficacy on pain relief in FM-PS cases, conventional treatment did not improve their general disease severity. Metabolomics analyses suggested oxidative metabolism dysregulation in FM, and high malondialdehyde level indicated excessive oxidative stress in FM individuals as compared with controls (p=0.009). Contrary to exercise-induced soreness, lactate levels were significantly lower in FM individuals than controls, especially in FM-PS. Moreover, FM-PS cases exclusively featured increased malondialdehyde level (p=0.008) and a correlative trend between malondialdehyde expression and soreness intensity (r=0.337, p=0.086).CONCLUSIONS: Morbid soreness symptoms were prevalent in FM, with the presentation and therapeutic responses different from FM pain conditions. Oxidative stress rather than lactate accumulation involved phenotype modulation of the morbid soreness in FM.TRIAL REGISTRATION NUMBER: NCT04832100.PMID:36918228 | DOI:10.1136/rmdopen-2022-002741