PubMed
Longitudinal metabolomics of increasing body-mass index and waist-hip ratio reveals two dynamic patterns of obesity pandemic
Int J Obes (Lond). 2023 Feb 23. doi: 10.1038/s41366-023-01281-w. Online ahead of print.ABSTRACTBACKGROUND/OBJECTIVE: This observational study dissects the complex temporal associations between body-mass index (BMI), waist-hip ratio (WHR) and circulating metabolomics using a combination of longitudinal and cross-sectional population-based datasets and new systems epidemiology tools.SUBJECTS/METHODS: Firstly, a data-driven subgrouping algorithm was employed to simplify high-dimensional metabolic profiling data into a single categorical variable: a self-organizing map (SOM) was created from 174 metabolic measures from cross-sectional surveys (FINRISK, n = 9708, ages 25-74) and a birth cohort (NFBC1966, n = 3117, age 31 at baseline, age 46 at follow-up) and an expert committee defined four subgroups of individuals based on visual inspection of the SOM. Secondly, the subgroups were compared regarding BMI and WHR trajectories in an independent longitudinal dataset: participants of the Young Finns Study (YFS, n = 1286, ages 24-39 at baseline, 10 years follow-up, three visits) were categorized into the four subgroups and subgroup-specific age-dependent trajectories of BMI, WHR and metabolic measures were modelled by linear regression.RESULTS: The four subgroups were characterised at age 39 by high BMI, WHR and dyslipidemia (designated TG-rich); low BMI, WHR and favourable lipids (TG-poor); low lipids in general (Low lipid) and high low-density-lipoprotein cholesterol (High LDL-C). Trajectory modelling of the YFS dataset revealed a dynamic BMI divergence pattern: despite overlapping starting points at age 24, the subgroups diverged in BMI, fasting insulin (three-fold difference at age 49 between TG-rich and TG-poor) and insulin-associated measures such as triglyceride-cholesterol ratio. Trajectories also revealed a WHR progression pattern: despite different starting points at the age of 24 in WHR, LDL-C and cholesterol-associated measures, all subgroups exhibited similar rates of change in these measures, i.e. WHR progression was uniform regardless of the cross-sectional metabolic profile.CONCLUSIONS: Age-associated weight variation in adults between 24 and 49 manifests as temporal divergence in BMI and uniform progression of WHR across metabolic health strata.PMID:36823293 | DOI:10.1038/s41366-023-01281-w
PHGDH arginine methylation by PRMT1 promotes serine synthesis and represents a therapeutic vulnerability in hepatocellular carcinoma
Nat Commun. 2023 Feb 23;14(1):1011. doi: 10.1038/s41467-023-36708-5.ABSTRACTSerine synthesis is crucial for tumor growth and survival, but its regulatory mechanism in cancer remains elusive. Here, using integrative metabolomics and transcriptomics analyses, we show a heterogeneity between metabolite and transcript profiles. Specifically, the level of serine in hepatocellular carcinoma (HCC) tissues is increased, whereas the expression of phosphoglycerate dehydrogenase (PHGDH), the first rate-limiting enzyme in serine biosynthesis pathway, is markedly downregulated. Interestingly, the increased serine level is obtained by enhanced PHGDH catalytic activity due to protein arginine methyltransferase 1 (PRMT1)-mediated methylation of PHGDH at arginine 236. PRMT1-mediated PHGDH methylation and activation potentiates serine synthesis, ameliorates oxidative stress, and promotes HCC growth in vitro and in vivo. Furthermore, PRMT1-mediated PHGDH methylation correlates with PHGDH hyperactivation and serine accumulation in human HCC tissues, and is predictive of poor prognosis of HCC patients. Notably, blocking PHGDH methylation with a TAT-tagged nonmethylated peptide inhibits serine synthesis and restrains HCC growth in an HCC patient-derived xenograft (PDX) model and subcutaneous HCC cell-derived xenograft model. Overall, our findings reveal a regulatory mechanism of PHGDH activity and serine synthesis, and suggest PHGDH methylation as a potential therapeutic vulnerability in HCC.PMID:36823188 | DOI:10.1038/s41467-023-36708-5
Author Correction: Glycobiology of rheumatic diseases
Nat Rev Rheumatol. 2023 Feb 23. doi: 10.1038/s41584-023-00922-8. Online ahead of print.NO ABSTRACTPMID:36823186 | DOI:10.1038/s41584-023-00922-8
Bile metabolites as diagnostic biomarkers for perihilar cholangiocarcinoma
Sci Rep. 2023 Feb 23;13(1):3177. doi: 10.1038/s41598-023-27603-6.ABSTRACTIt is difficult to directly obtain pathological diagnosis of perihilar cholangiocarcinoma (pCCA). Analysis of bile in the pCCA microenvironment, based on metabolomics and statistical methods, can help in clinical diagnosis. Clinical information, bile samples, blood liver function, blood CA199, CEA, and other indicators were collected from 33 patients with pCCA and 16 patients with gallstones. Bile samples were analyzed using untargeted metabolomics methods. A combination of multivariate and univariate analyses were used to screen for potential differential metabolites Through Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment and differential metabolite remodeling, we explored changes in the pCCA pathway and potential therapeutic targets. There were significant differences in patient blood TBIL, ALT, AST, TBA, CA19-9, and CEA indices (p < 0.05, |log2(fc)| ≥ 1) between two groups. A significant correlation was found between these different indicators by Spearman's analysis. The clinical parameters were correlated with mass-to-charge ratios of 305 (Positive Ion Mode, POS) and 246 (Negative Ion Mode, NEG) in the metabolic group (|r| ≥ 0.7, P ≤ 10-7). The result of this study indicated that bile untargeted metabolomics combined with statistical analysis techniques may be used for diagnose and treatment of pCCA.PMID:36823159 | DOI:10.1038/s41598-023-27603-6
Ketohexokinase-C regulates global protein acetylation to decrease carnitine palmitoyltransferase 1a-mediated fatty acid oxidation
J Hepatol. 2023 Feb 21:S0168-8278(23)00098-3. doi: 10.1016/j.jhep.2023.02.010. Online ahead of print.ABSTRACTBACKGROUND & AIMS: The consumption of sugar and high-fat diet (HFD) promotes the development of obesity and metabolic dysfunction. Despite their well-known synergy, the mechanisms by which sugar worsens the outcomes associated with a HFD intake is largely elusive.METHODS: Six week-old, male, C57 B l/6 J mice were fed either chow or HFD provided with regular, fructose- or glucose-sweetened water. Moreover, cultured AML12 hepatocytes were engineered to overexpress ketohexokinase C (KHK-C) using lentivirus or to knockdown CPT1α using CRISPR-Cas9. The cell culture experiments were complimented with in-vivo studies using mice with hepatic overexpression of KHK-C and in mice with liver-specific CPT1α knockout. We used comprehensive metabolomics, electron microscopy, mitochondrial substrate phenotyping, proteomics and acetylome analysis to investigate the underlying mechanism.RESULTS: Fructose supplementation of mice on normal chow, and fructose or glucose supplementation of mice on HFD increase KHK-C, an enzyme that catalyzes the first step of fructolysis. Elevated KHK-C is associated with an increase in lipogenic proteins, such as ACLY, without affecting their mRNA expression. An increase in KHK-C also correlates with acetylation of CPT1α at K508, and lower CPT1α protein in vivo. In vitro, KHK-C overexpression lowers CPT1α and increases triglyceride accumulation. The effects of KHK-C are, in part, replicated by a knockdown of CPT1α. An increase in KHK-C correlates negatively with CPT1α protein in mice fed sugar and HFD, but also in genetically obese db/db and lipodystrophic FIRKO mice. Mechanistically, overexpression of KHK-C in vitro increases global protein acetylation and decreases the major cytoplasmic deacetylase, SIRT2.CONCLUSIONS: KHK-C-induced acetylation is a novel mechanism by which dietary fructose augments lipogenesis and decreases fatty acid oxidation to support the development of metabolic complications.IMPACT AND IMPLICATIONS: Fructose is a highly lipogenic nutrient whose negative consequences have been largely attributed to increased de novo lipogenesis. Here we show that fructose upregulates ketohexokinase, which in turn modifies global protein acetylation, including acetylation of CPT1a, to decrease fatty acid oxidation. Our findings broaden the impact of dietary sugar beyond its lipogenic role and have implications on drug development aimed at reducing the harmful effects attributed to sugar metabolism.PMID:36822479 | DOI:10.1016/j.jhep.2023.02.010
Identification of dietary supplements associated with blood metabolites in the Hispanic Community Health Study / Study of Latinos cohort study
J Nutr. 2023 Feb 21:S0022-3166(23)12678-2. doi: 10.1016/j.tjnut.2023.02.021. Online ahead of print.ABSTRACTBACKGROUND: Metabolomics approaches have been widely used to define consumption of foods but have less often been used to study exposure to dietary supplements.OBJECTIVE: To identify dietary supplements associated with metabolite levels, and to examine whether those metabolites predicted incident diabetes risk.METHODS: We studied 3972 participants from a prospective cohort study of 18 to 74 year old Hispanic/Latino adults. At a baseline examination we ascertained use of dietary supplements using recall methods and concurrently, a serum metabolomic panel. After adjustment for potential confounders, we identified dietary supplements associated with metabolites. We then examined the association of these metabolites with incident diabetes at the six-year study examination.RESULTS: We observed a total of 110 dietary supplement - metabolite associations that met criteria for statistical significance adjusted for age, sex, field center, Hispanic/Latino background, body mass index, diet, smoking, physical activity and number of medications (adjusted P < 0.05). This included 13 metabolites uniquely associated with only one dietary supplement ingredient. Vitamin C had the most associated metabolites (n=15), including positive associations with oxalate, tartronate, threonate and isocitrate which were each in turn protective for risk of incident diabetes. Vitamin C also was associated with higher N-acetylvaline level, which was an unfavorable diabetes risk factor. Other findings related to branched chain amino acid (BCAA) related compounds including alpha-hydroxyisovalerate and 2-hydroxy-3-methylvalerate, which were inversely associated with thiamin or riboflavin intake and also predicted higher diabetes risk. Vitamin B12 had an inverse association with gamma-glutamylvaline, levels of which were inversely associated with risk of diabetes.CONCLUSIONS: Our data point to potential metabolite changes associated with Vitamin C and B vitamins which may have favorable metabolic effects. Knowledge of blood metabolites that can be modified by dietary supplement intake may aid understanding of health effects of dietary supplements and identify potential biological mediators.PMID:36822396 | DOI:10.1016/j.tjnut.2023.02.021
Antioxidant/protective effects of carob pod (Ceratonia siliqua L.) water extract against deltamethrin-induced oxidative stress/toxicity in zebrafish larvae
Comp Biochem Physiol C Toxicol Pharmacol. 2023 Feb 21:109584. doi: 10.1016/j.cbpc.2023.109584. Online ahead of print.ABSTRACTIn our study, the antioxidant capacity of carob pods water extract (CPWE) against deltamethrin (DM)-induced oxidative stress, a widely used pesticide around the world, was investigated in vitro and in vivo in a zebrafish model. The in vitro antioxidant capacity of the obtained extract was evaluated with different methods using trolox, BHA and BHT standard antioxidants. For in vivo experiments, 4hpf zebrafish embryos were exposed to 10 ppb and 25 ppb DM for 120 h and the larvae were treated with 1-10 and 100 ppm CPWE for 4 h at 72th hours. According to the results obtained, it has been determined that the exposure of zebrafish to DM during the developmental period causes important body malformations, decrease in survival rate, reduction in eye size, shortening in body length and decrease in locomotor activity in the dark period. In addition, according to the results of whole-mount staining, it was determined that DM caused a significant increase in the amount of free oxygen radicals and apoptotic cells. It was also confirmed by metabolome analysis that CPWE application for 4 h reduced DM-induced toxicity and oxidative stress. As a result, it can be said that CPWE has an important antioxidant capacity in eliminating DM-induced oxidative stress.PMID:36822298 | DOI:10.1016/j.cbpc.2023.109584
Male microbiota-associated metabolite restores macrophage efferocytosis in female lupus-prone mice via activation of PPARγ/LXR signaling pathways
J Leukoc Biol. 2023 Jan 10;113(1):41-57. doi: 10.1093/jleuko/qiac002.ABSTRACTSystemic lupus erythematosus development is influenced by both sex and the gut microbiota. Metabolite production is a major mechanism by which the gut microbiota influences the immune system, and we have previously found differences in the fecal metabolomic profiles of lupus-prone female and lupus-resistant male BWF1 mice. Here we determine how sex and microbiota metabolite production may interact to affect lupus. Transcriptomic analysis of female and male splenocytes showed genes that promote phagocytosis were upregulated in BWF1 male mice. Because patients with systemic lupus erythematosus exhibit defects in macrophage-mediated phagocytosis of apoptotic cells (efferocytosis), we compared splenic macrophage efferocytosis in vitro between female and male BWF1 mice. Macrophage efferocytosis was deficient in female compared to male BWF1 mice but could be restored by feeding male microbiota. Further transcriptomic analysis of the genes upregulated in male BWF1 mice revealed enrichment of genes stimulated by PPARγ and LXR signaling. Our previous fecal metabolomics analyses identified metabolites in male BWF1 mice that can activate PPARγ and LXR signaling and identified one in particular, phytanic acid, that is a very potent agonist. We show here that treatment of female BWF1 splenic macrophages with phytanic acid restores efferocytic activity via activation of the PPARγ and LXR signaling pathways. Furthermore, we found phytanic acid may restore female BWF1 macrophage efferocytosis through upregulation of the proefferocytic gene CD36. Taken together, our data indicate that metabolites produced by BWF1 male microbiota can enhance macrophage efferocytosis and, through this mechanism, could potentially influence lupus progression.PMID:36822162 | DOI:10.1093/jleuko/qiac002
Herba Origani alleviated DSS-induced ulcerative colitis in mice through remolding gut microbiota to regulate bile acid and short-chain fatty acid metabolisms
Biomed Pharmacother. 2023 Feb 21;161:114409. doi: 10.1016/j.biopha.2023.114409. Online ahead of print.ABSTRACTThis study aimed to investigate the protective effect of Herba Origani, the dried whole herb of Origanum vulgare L., on dextran sodium sulfate (DSS)-induced ulcerative colitis in mice and explore its mechanisms of action through analyzing the intestinal microbiota in cecum contents and metabolites in colonic tissues. HOEP alleviated colitis symptoms, colonic inflammation and pathological injury as well as repaired intestinal barrier function in DSS-induced UC mice. The intestinal microbiota analysis showed that HOEP restored the gut microbiota dysbiosis in DSS-treated mice by increasing the alpha diversity of the intestinal microbiota, increasing the abundance of the Bacteroidota community and adjusting short-chain fatty acids (SCFAs), which maintain mucosal immunity and intestinal barrier. Metabolomic analysis revealed that HOEP promoted bile acids absorption and regulated bile acids metabolism in the intestine, thereby maintaining intestinal mucosal immune homeostasis. In addition, HOEP might also regulate the intestinal immune system through the phosphatidylinositol signaling system. These findings suggested that HOEP exerted promising protection against DSS-induced ulcerative mice through remolding gut microbiota to regulate bile acid and SCFA metabolism, and that HOEP have a potential to be utilized for the treatment of inflammatory intestinal diseases.PMID:36822021 | DOI:10.1016/j.biopha.2023.114409
Metabolome-wide association study of four groups of persistent organic pollutants and abnormal blood lipids
Environ Int. 2023 Feb 13;173:107817. doi: 10.1016/j.envint.2023.107817. Online ahead of print.ABSTRACTEnvironmental exposure increases the risk of dyslipidemia, which affects human health. Research has shown that persistent organic pollutants (POPs), including per- and polyfluoroalkyl substances (PFASs), polychlorinated biphenyls, polybrominated diphenyl ethers, and phthalate metabolites, are associated with a higher risk of abnormal blood lipid levels in humans. However, the key molecules involved in dyslipidemia and the mechanisms are not fully understood. This study aims to investigate the biomarkers that mediate the relationships between blood lipids and four groups of POPs and revealed their potential mechanisms. Specifically, in 278 male blood samples, blood lipid and POPs levels were measured and metabolites were detected using untargeted metabolomics. Spearman's correlation analysis and binary logistic regression were employed to assess the relationship between POPs and lipid indexes. We observed that PFASs were associated with a higher risk of abnormal total cholesterol (TC) and low-density lipoprotein (LDL), while other POPs displayed little association with abnormal lipid indexes. Among all the PFASs, 6:2Cl-PFESA was associated with the fewest metabolites. A metabolome-wide association study combined with a meet-in-the-middle approach was used to identify potential biomarkers that mediate the association between POPs and abnormal blood lipids. The mediation analysis pointed to 105 significant mediators as potential biomarkers mediating the association between PFASs and TC, and 82 significant mediators were potential biomarkers that mediated the association between PFASs and LDL. 24-Hydroxycholesterol, 3alpha,7alpha-dihydroxy-5beta-cholestan-26-al, PC(18:0/0:0), PC(22:5/0:0), GPCho(18:1/18:1), LysoPC(22:2(13Z,16Z)), LysoPC(16:0), 9(S)-HODE, 9,10-DHOME, l-glutamate, 4-hydroxybutyric acid, cytosine, PC(14:1(9Z)/18:0), sphinganine, and (S)-beta-aminoisobutyrate were identified as important biomarkers. The mechanism may mainly involves glycerophospholipid metabolism, primary bile acid biosynthesis, and linoleic acid metabolism. PPARγ likely plays a role in the associations between PFASs and abnormal cholesterol metabolism. Overall, our study provides clues for the early detection of PFAS-induced dyslipidemia and brings forth a theoretical framework for further research into this mechanism.PMID:36822003 | DOI:10.1016/j.envint.2023.107817
Proliferation toxicity and mechanism of novel mixed bromine/chlorine transformation products of tetrabromobisphenol A on human embryonic stem cell
J Hazard Mater. 2023 Feb 20;449:131050. doi: 10.1016/j.jhazmat.2023.131050. Online ahead of print.ABSTRACTMixed bromine/chlorine transformation products of tetrabromobisphenol A (ClyBrxBPAs) are mixed halogenated-type compounds recently identified in electronic waste dismantling sites. There are a lack of toxicity data on these compounds. To study their development toxicity, the proliferation toxicity was investigated using human embryonic stem cells (hESC) exposed to the lowest effective dose of two ClyBrxBPA analogues (2-chloro-2',6-dibromobisphenol A and 2,2'-dichloro-6-monobromobisphenol A). For comparison, tetrabromobisphenol A, 2,2',6-tribromobisphenol A, and bisphenol A were also assessed. It was observed that ClyBrxBPAs inhibited hESCs proliferation in a concentration-dependent manner. The cell bioaccumulation efficiency of ClyBrxBPAs was higher than that of tetrabromobisphenol A. Also, ClyBrxBPAs were more toxic than tetrabromobisphenol A, with 2,2'-dichloro-6-monobromobisphenol A exhibiting the most potent toxicity. Furthermore, flow cytometry and oxidative stress results showed that increased reactive oxygen species raised the degree of apoptosis and reduced DNA synthesis. Metabolomics analysis on the effect of ClyBrxBPAs on metabolic pathway alteration showed that ClyBrxBPAs mainly interfered with four metabolic pathways related to amino acid metabolism and biosynthesis. These results provide an initial perspective on the proliferation toxicity of ClyBrxBPAs, indicating development toxicity in children.PMID:36821903 | DOI:10.1016/j.jhazmat.2023.131050
An integrated strategy to explore the wine-processed mechanism of Corni Fructus on chronic renal failure based on metabolomics, network analysis and bioinformatics approaches
J Pharm Pharmacol. 2023 Feb 23:rgad001. doi: 10.1093/jpp/rgad001. Online ahead of print.ABSTRACTOBJECTIVES: Corni Fructus is one of the most famous traditional Chinese medicines (TCMs) for the treatment of various chronic kidney diseases. Wine-processed Corni Fructus (WCF) is the main processed form of Crude Corni Fructus (CCF). In this study, potential mechanisms of action of CCF and WCF on chronic renal failure (CRF) model were developed to explore wine-processed mechanism of Corni Fructus.METHODS: An integrated strategy combining metabolomics, network analysis and bioinformatics analysis has been established to investigate the therapeutic mechanisms of WCF and CCF in rats with CRF.KEY FINDINGS: The histopathological results showed that both WCF and CCF improved kidney injury and dysfunction of CRF rats, but WCF was more effective than CCF. Metabolic pathway analysis indicated that 24 metabolites and 5 major disturbed pathways associated with CCF, while WCF regulated 27 metabolites and 2 metabolic pathways. Bioinformatic analysis and network analysis revealed that 8 genes and 7 genes were regulated by CCF and WCF on CRF rats, respectively. The quantitative real-time polymerase chain reaction experiments verified the regulatory ability of CCF and WCF on the expression of 4 genes.CONCLUSIONS: An integrated strategy combined metabolomics, network analysis and bioinformatics was established to provide valuable holistic insight to explore the processing mechanism of TCMs.PMID:36821628 | DOI:10.1093/jpp/rgad001
Metabolic Signatures of Youth Exposure to Mixtures of Per- and Polyfluoroalkyl Substances: A Multi-Cohort Study
Environ Health Perspect. 2023 Feb;131(2):27005. doi: 10.1289/EHP11372. Epub 2023 Feb 22.ABSTRACTBACKGROUND: Exposure to per- and polyfluoroalkyl substances (PFAS) is ubiquitous and has been associated with an increased risk of several cardiometabolic diseases. However, the metabolic pathways linking PFAS exposure and human disease are unclear.OBJECTIVE: We examined associations of PFAS mixtures with alterations in metabolic pathways in independent cohorts of adolescents and young adults.METHODS: Three hundred twelve overweight/obese adolescents from the Study of Latino Adolescents at Risk (SOLAR) and 137 young adults from the Southern California Children's Health Study (CHS) were included in the analysis. Plasma PFAS and the metabolome were determined using liquid-chromatography/high-resolution mass spectrometry. A metabolome-wide association study was performed on log-transformed metabolites using Bayesian regression with a g-prior specification and g-computation for modeling exposure mixtures to estimate the impact of exposure to a mixture of six ubiquitous PFAS (PFOS, PFHxS, PFHpS, PFOA, PFNA, and PFDA). Pathway enrichment analysis was performed using Mummichog and Gene Set Enrichment Analysis. Significance across cohorts was determined using weighted Z-tests.RESULTS: In the SOLAR and CHS cohorts, PFAS exposure was associated with alterations in tyrosine metabolism (meta-analysis p=0.00002) and de novo fatty acid biosynthesis (p=0.03), among others. For example, when increasing all PFAS in the mixture from low (∼30th percentile) to high (∼70th percentile), thyroxine (T4), a thyroid hormone related to tyrosine metabolism, increased by 0.72 standard deviations (SDs; equivalent to a standardized mean difference) in the SOLAR cohort (95% Bayesian credible interval (BCI): 0.00, 1.20) and 1.60 SD in the CHS cohort (95% BCI: 0.39, 2.80). Similarly, when going from low to high PFAS exposure, arachidonic acid increased by 0.81 SD in the SOLAR cohort (95% BCI: 0.37, 1.30) and 0.67 SD in the CHS cohort (95% BCI: 0.00, 1.50). In general, no individual PFAS appeared to drive the observed associations.DISCUSSION: Exposure to PFAS is associated with alterations in amino acid metabolism and lipid metabolism in adolescents and young adults. https://doi.org/10.1289/EHP11372.PMID:36821578 | DOI:10.1289/EHP11372
Liquid chromatography and differential mobility spectrometry-data-independent mass spectrometry for comprehensive multidimensional separations in metabolomics
Anal Bioanal Chem. 2023 Feb 23. doi: 10.1007/s00216-023-04602-0. Online ahead of print.ABSTRACTThe benefits of combining drift time ion mobility (DTIMS) with liquid chromatography-high-resolution mass spectrometry (HRMS) have been reported for metabolomics but the use of differential time mobility spectrometry (DMS) is less obvious due to the need for rapid scanning of the DMS cell. Drift DTIMS provides additional precursor ion selectivity and collisional cross-section information but the separation resolution between analytes remains cell- and component-dependent. With DMS, the addition of 2-propanol modifier can improve the selectivity but on cost of analyte MS response. In the present work, we investigate the liquid chromatography-mass spectrometry (LC-MS) analysis of a mix of 50 analytes, representative for urine and plasma metabolites, using scanning DMS with the single modifiers cyclohexane (Ch), toluene (Tol), acetonitrile (ACN), ethanol (EtOH), and 2-propanol (IPA), and a binary modifier mixture (cyclohexane/2-propanol) with emphasis on selectivity and signal sensitivity. 1.5% IPA in the N2 stream was found to suppress the signal of 50% of the analytes which could be partially recovered with the use of IPA to 0.05% as a Ch/IPA mixture. The potential to use the separation voltage/compensation voltage/modifier (SV/CoV/Mod) feature as an additional analyte identifier for qualitative analysis is also presented and applied to a data-independent LCxDMS-SWATH-MS workflow for the analysis of endogenous metabolites and drugs of abuse in human urine samples from traffic control.PMID:36820908 | DOI:10.1007/s00216-023-04602-0
Ferroptosis in Rat Lung Tissue during Severe Acute Pancreatitis-Associated Acute Lung Injury: Protection of Qingyi Decoction
Oxid Med Cell Longev. 2023 Feb 11;2023:5827613. doi: 10.1155/2023/5827613. eCollection 2023.ABSTRACTQingyi decoction (QYD) has anti-inflammatory pharmacological properties and substantial therapeutic benefits on severe acute pancreatitis (SAP) in clinical practice. However, its protective mechanism against SAP-associated acute lung injury (ALI) remains unclear. In this study, we screened the active ingredients of QYD from the perspective of network pharmacology to identify its core targets and signaling pathways against SAP-associated ALI. Rescue experiments were used to determine the relationship between QYD and ferroptosis. Then, metabolomics and 16s rDNA sequencing were used to identify differential metabolites and microbes in lung tissue. Correlation analysis was utilized to explore the relationship between core targets, signaling pathways, metabolic phenotypes, and microbial flora, sorting out the potential molecular network of QYD against SAP-associated lung ALI. Inflammatory damage was caused by SAP in the rat lung. QYD could effectively alleviate lung injury, improve respiratory function, and significantly reduce serum inflammatory factor levels in SAP rats. Network pharmacology and molecular docking identified three key targets: ALDH2, AnxA1, and ICAM-1. Mechanistically, QYD may inhibit ferroptosis by promoting the ALDH2 expression and suppress neutrophil infiltration by blocking the cleavage of intact AnxA1 and downregulating ICAM-1 expression. Ferroptosis activator counteracts the pulmonary protective effect of QYD in SAP rats. In addition, seven significant differential metabolites were identified in lung tissues. QYD relatively improved the lung microbiome's abundance in SAP rats. Further correlation analysis determined the correlation between ferroptosis, differential metabolites, and differential microbes. In this work, the network pharmacology, metabolomics, and 16s rDNA sequencing were integrated to uncover the mechanism of QYD against SAP-associated ALI. This novel integrated method may play an important role in future research on traditional Chinese medicine.PMID:36820405 | PMC:PMC9938780 | DOI:10.1155/2023/5827613
Deoxycholic acid exacerbates intestinal inflammation by modulating interleukin-1<em>β</em> expression and tuft cell proportion in dextran sulfate sodium-induced murine colitis
PeerJ. 2023 Feb 15;11:e14842. doi: 10.7717/peerj.14842. eCollection 2023.ABSTRACTBACKGROUND: The etiology of inflammatory bowel disease (IBD) remains unclear. However, intestinal metabolism is known to be critical in the pathogenesis of IBD. Bile acid is one of the main intestinal metabolites, and its role in the pathogenesis of IBD is worthy of investigation. This study investigated the role of deoxycholic acid (DCA), a bile acid, in the pathogenesis of IBD.METHODS: Peripheral serum metabolomics, fecal metabolomics, and microbiome analyses were performed on patients with IBD and healthy controls. Flow cytometry, real-time quantitative polymerase chain reaction, western blotting, enzyme-linked immunosorbent assay, immunohistochemical staining, and immunofluorescence analysis were used to evaluate cytokines in the inflamed colonic mucosa and immune cells and tuft cells in the intestine of mice with dextran sulfate sodium (DSS)-induced colitis.RESULTS: In total, 156 patients with IBD and 58 healthy controls were enrolled. DCA levels in the serum and feces of patients with IBD were significantly decreased compared to the controls. This decrease was associated with a decrease in the abundance of intestinal flora, including Firmicutes, Clostridia, Ruminnococcaceae, and Lachnospiraceae. Additionally, interleukin (IL)-1β levels in the serum of patients with active Crohn's disease were significantly increased compared with the healthy controls. Moreover, in DCA-treated DSS-induced mice, the expression of IL-1β and the proportion of CD3+ and CD4+ T cells increased while the number of intestinal tuft cells decreased, compared with the DSS group.CONCLUSION: In IBD patients, the decreased DCA levels in serum and fecal samples are associated with disturbances in gut microflora diversity and abundance. Possible mechanisms by which DCA affects immunity in DSS-induced murine colitis include increasing IL-1β secretion, reducing the number of tuft cells in the mucosa, and activating CD4+ and CD3+ T cells to exaggerate immune responses, consequently worsening intestinal inflammation.PMID:36819995 | PMC:PMC9938654 | DOI:10.7717/peerj.14842
Characterization of volatile organic compounds with anti-atherosclerosis effects in <em>Allium macrostemon</em> Bge. and <em>Allium chinense</em> G. Don by head space solid phase microextraction coupled with gas chromatography tandem mass spectrometry
Front Nutr. 2023 Feb 1;10:996675. doi: 10.3389/fnut.2023.996675. eCollection 2023.ABSTRACTINTRODUCTION: Allium macrostemon Bge. (AMB) and Allium chinense G. Don (ACGD) are both edible Allium vegetables and named officinal Xiebai (or Allii Macrostemonis Bulbus) in East Asia. Their medicinal qualities involve in lipid lowering and anti-atherosclerosis effects. And steroidal saponins, nitrogenous compounds and sulfur compounds are like the beneficial components responsible for medicinal functions. Sulfur compounds are the recognized main components both in the volatile oils of AMB and ACGD. Besides, few researches were reported about their holistic chemical profiles of volatile organic compounds (VOCs) and pharmacodynamic effects.METHODS: In this study, we first investigated the lipid-lowering and anti-atherosclerotic effects of volatile oils derived from AMB and ACGD in ApoE -/- mice with high fat and high cholesterol diets.RESULTS: The results showed the volatile oils of AMB and ACGD both could markedly reduce serum levels of TG, TC, and LDL-C (p < 0.05), and had no alterations of HDL-C, ALT, and AST levels (p > 0.05). Pathological results displayed they both could obviously improve the morphology of cardiomyocytes and the degree of myocardial fibrosis in model mice. Meanwhile, oil red O staining results also proved they could apparently decrease the lesion areas of plaques in the aortic intima (p < 0.05). Furthermore, head space solid phase microextraction coupled with gas chromatography tandem mass spectrometry combined with metabolomics analysis was performed to characterize the VOCs profiles of AMB and ACGD, and screen their differential VOCs. A total of 121 and 115 VOCs were identified or tentatively characterized in the volatile oils of AMB and ACGD, respectively. Relative-quantification results also confirmed sulfur compounds, aldehydes, and heterocyclic compounds accounted for about 85.6% in AMB bulbs, while approximately 86.6% in ACGD bulbs were attributed to sulfur compounds, ketones, and heterocyclic compounds. Multivariate statistical analysis showed 62 differentially expressed VOCs were observed between AMB and ACGD, of which 17 sulfur compounds were found to be closely associated with the garlic flavor and efficacy.DISCUSSION: Taken together, this study was the first analysis of holistic chemical profiles and anti-atherosclerosis effects of AMB and ACGD volatile oils, and would benefit the understanding of effective components in AMB and ACGD.PMID:36819690 | PMC:PMC9929146 | DOI:10.3389/fnut.2023.996675
The impact of hypertension for metabolites in patients with acute coronary syndrome
Ann Transl Med. 2023 Jan 31;11(2):50. doi: 10.21037/atm-22-6409. Epub 2023 Jan 13.ABSTRACTBACKGROUND: Acute coronary syndrome (ACS) is one of the leading causes of death and is often accompanied by hypertension.METHODS: We investigated whether hypertension affects the metabolism of patients with ACS. Serum samples were provided from healthy controls (HCs; n=26), patients with ACS (n=20), or those patients with ACS complicated with hypertension (HTN, n=21), and all were subjected to non-targeted metabolomics analyses based on gas chromatography-mass spectrometry (GC/MS). Differential metabolites were screened using principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA), and orthogonal partial least squares discriminant analysis (OPLS-DA). Kyoto Encyclopedia of Genes and Genomes (KEGG) provided metabolic pathways related to these metabolites.RESULTS: Compared to those in the HC group, 12 metabolites were significantly upregulated and 6 significantly downregulated in the ACS group; among these, L-cystine and isocitric acid showed the most obvious differences, respectively. Compared to those in the ACS group, 3 metabolites were significantly upregulated and 2 metabolites were significantly downregulated in the ACS-HTN group, among which oleic acid and chenodeoxycholic acid showed the most marked difference, respectively. The five most prominent metabolic pathways involved in differential metabolites between the ACS and HC groups were arginine biosynthesis; oxidative phosphorylation; alanine, aspartate and glutamate metabolism; citrate cycle; and glucagon signaling pathway. The metabolic pathways between the ACS and ACS-HTN groups were steroid biosynthesis, fatty acid biosynthesis, arginine biosynthesis, primary bile acid biosynthesis, and tyrosine metabolism.CONCLUSIONS: A comprehensive study of the changes in circulatory metabolomics and the influence of HTN was conducted in patients with ACS. A serum metabolomics test can be used to identify differentially metabolized molecules and allow the classification of patients with ACS or those complicated with HTN.PMID:36819519 | PMC:PMC9929784 | DOI:10.21037/atm-22-6409
Interrogating the role of the milk microbiome in mastitis in the multi-omics era
Front Microbiol. 2023 Feb 2;14:1105675. doi: 10.3389/fmicb.2023.1105675. eCollection 2023.ABSTRACTThere is growing interest in a functional understanding of milk-associated microbiota as there is ample evidence that host-associated microbial communities play an active role in host health and phenotype. Mastitis, characterized by painful inflammation of the mammary gland, is prevalent among lactating humans and agricultural animals and is associated with significant clinical and economic consequences. The etiology of mastitis is complex and polymicrobial and correlative studies have indicated alterations in milk microbial community composition. Recent evidence is beginning to suggest that a causal relationship may exist between the milk microbiota and host phenotype in mastitis. Multi-omic approaches can be leveraged to gain a mechanistic, molecular level understanding of how the milk microbiome might modulate host physiology, thereby informing strategies to prevent and ameliorate mastitis. In this paper, we review existing studies that have utilized omics approaches to investigate the role of the milk microbiome in mastitis. We also summarize the strengths and challenges associated with the different omics techniques including metagenomics, metatranscriptomics, metaproteomics, metabolomics and lipidomics and provide perspective on the integration of multiple omics technologies for a better functional understanding of the milk microbiome.PMID:36819069 | PMC:PMC9932517 | DOI:10.3389/fmicb.2023.1105675
Enhancing chemical and biological diversity by co-cultivation
Front Microbiol. 2023 Feb 1;14:1117559. doi: 10.3389/fmicb.2023.1117559. eCollection 2023.ABSTRACTIn natural product research, microbial metabolites have tremendous potential to provide new therapeutic agents since extremely diverse chemical structures can be found in the nearly infinite microbial population. Conventionally, these specialized metabolites are screened by single-strain cultures. However, owing to the lack of biotic and abiotic interactions in monocultures, the growth conditions are significantly different from those encountered in a natural environment and result in less diversity and the frequent re-isolation of known compounds. In the last decade, several methods have been developed to eventually understand the physiological conditions under which cryptic microbial genes are activated in an attempt to stimulate their biosynthesis and elicit the production of hitherto unexpressed chemical diversity. Among those, co-cultivation is one of the most efficient ways to induce silenced pathways, mimicking the competitive microbial environment for the production and holistic regulation of metabolites, and has become a golden methodology for metabolome expansion. It does not require previous knowledge of the signaling mechanism and genome nor any special equipment for cultivation and data interpretation. Several reviews have shown the potential of co-cultivation to produce new biologically active leads. However, only a few studies have detailed experimental, analytical, and microbiological strategies for efficiently inducing bioactive molecules by co-culture. Therefore, we reviewed studies applying co-culture to induce secondary metabolite pathways to provide insights into experimental variables compatible with high-throughput analytical procedures. Mixed-fermentation publications from 1978 to 2022 were assessed regarding types of co-culture set-ups, metabolic induction, and interaction effects.PMID:36819067 | PMC:PMC9928954 | DOI:10.3389/fmicb.2023.1117559