Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

TG2 regulates the heat-shock response by the post-translational modification of HSF1.

Sun, 13/05/2018 - 12:49
Related Articles TG2 regulates the heat-shock response by the post-translational modification of HSF1. EMBO Rep. 2018 May 11;: Authors: Rossin F, Villella VR, D'Eletto M, Farrace MG, Esposito S, Ferrari E, Monzani R, Occhigrossi L, Pagliarini V, Sette C, Cozza G, Barlev NA, Falasca L, Fimia GM, Kroemer G, Raia V, Maiuri L, Piacentini M Abstract Heat-shock factor 1 (HSF1) is the master transcription factor that regulates the response to proteotoxic stress by controlling the transcription of many stress-responsive genes including the heat-shock proteins. Here, we show a novel molecular mechanism controlling the activation of HSF1. We demonstrate that transglutaminase type 2 (TG2), dependent on its protein disulphide isomerase activity, triggers the trimerization and activation of HSF1 regulating adaptation to stress and proteostasis impairment. In particular, we find that TG2 loss of function correlates with a defect in the nuclear translocation of HSF1 and in its DNA-binding ability to the HSP70 promoter. We show that the inhibition of TG2 restores the unbalance in HSF1-HSP70 pathway in cystic fibrosis (CF), a human disorder characterized by deregulation of proteostasis. The absence of TG2 leads to an increase of about 40% in CFTR function in a new experimental CF mouse model lacking TG2. Altogether, these results indicate that TG2 plays a key role in the regulation of cellular proteostasis under stressful cellular conditions through the modulation of the heat-shock response. PMID: 29752334 [PubMed - as supplied by publisher]

Mass Spectrometric Identification of Urinary Biomarkers of Pulmonary Tuberculosis.

Sun, 13/05/2018 - 12:49
Related Articles Mass Spectrometric Identification of Urinary Biomarkers of Pulmonary Tuberculosis. EBioMedicine. 2018 Apr 22;: Authors: Isa F, Collins S, Lee MH, Decome D, Dorvil N, Joseph P, Smith L, Salerno S, Wells MT, Fischer S, Bean JM, Pape JW, Johnson WD, Fitzgerald DW, Rhee KY Abstract BACKGROUND: Tuberculosis (TB) is the leading infectious cause of death worldwide. A major barrier to control of the pandemic is a lack of clinical biomarkers with the ability to distinguish active TB from healthy and sick controls and potential for development into point-of-care diagnostics. METHODS: We conducted a prospective case control study to identify candidate urine-based diagnostic biomarkers of active pulmonary TB (discovery cohort) and obtained a separate blinded "validation" cohort of confirmed cases of active pulmonary TB and controls with non-tuberculous pulmonary disease for validation. Clean-catch urine samples were collected and analyzed using high performance liquid chromatography-coupled time-of-flight mass spectrometry. RESULTS: We discovered ten molecules from the discovery cohort with receiver-operator characteristic (ROC) area-under-the-curve (AUC) values >85%. These 10 molecules also significantly decreased after 60 days of treatment in a subset of 20 participants followed over time. Of these, a specific combination of diacetylspermine, neopterin, sialic acid, and N-acetylhexosamine exhibited ROC AUCs >80% in a blinded validation cohort of participants with active TB and non-tuberculous pulmonary disease. CONCLUSION: Urinary levels of diacetylspermine, neopterin, sialic acid, and N-acetylhexosamine distinguished patients with tuberculosis from healthy controls and patients with non-tuberculous pulmonary diseases, providing a potential noninvasive biosignature of active TB. FUNDING: This study was funded by Weill Cornell Medicine, the National Institute of Allergy and Infectious Diseases, the Clinical and Translational Science Center at Weill Cornell, the NIH Fogarty International Center grants, and the NIH Tuberculosis Research Unit (Tri-I TBRU). PMID: 29752217 [PubMed - as supplied by publisher]

Blood biomarkers in Alzheimer's disease.

Sun, 13/05/2018 - 12:49
Related Articles Blood biomarkers in Alzheimer's disease. Neurologia. 2018 May 08;: Authors: Altuna-Azkargorta M, Mendioroz-Iriarte M Abstract INTRODUCTION: The early diagnosis of Alzheimer's disease (AD) via the use of biomarkers could facilitate the implementation and monitoring of early therapeutic interventions with the potential capacity to significantly modify the course of the disease. DEVELOPMENT: Classic cerebrospinal fluid biomarkers and approved structural and functional neuroimaging have a limited clinical application given their invasive nature and/or high cost. The identification of more accessible and less costly biomarkers, such as blood biomarkers, would facilitate application in clinical practice. We present a literature review of the main blood biochemical biomarkers with potential use for diagnosing Alzheimer's disease. CONCLUSIONS: Blood biomarkers are cost and time effective with regard to cerebrospinal fluid biomarkers. However, the immediate applicability of blood biochemical biomarkers in clinical practice is not very likely. The main limitations come from the difficulties in measuring and standardising thresholds between different laboratories and in failures to replicate results. Among all the molecules studied, apoptosis and neurodegeneration biomarkers and the biomarker panels obtained through omics approaches, such as isolated or combined metabolomics, offer the most promising results. PMID: 29752036 [PubMed - as supplied by publisher]

NMR-based metabolic study of fruits of Physalis peruviana L. grown in eight different Peruvian ecosystems.

Sun, 13/05/2018 - 12:49
Related Articles NMR-based metabolic study of fruits of Physalis peruviana L. grown in eight different Peruvian ecosystems. Food Chem. 2018 Oct 01;262:94-101 Authors: Maruenda H, Cabrera R, Cañari-Chumpitaz C, Lopez JM, Toubiana D Abstract The berry of Physalis peruviana L. (Solanaceae) represents an important socio-economical commodity for Latin America. The absence of a clear phenotype renders it difficult to trace its place of origin. In this study, Cape gooseberries from eight different regions within the Peruvian Andes were profiled for their metabolism implementing a NMR platform. Twenty-four compounds could be unequivocally identified and sixteen quantified. One-way ANOVA and post-hoc Tukey test revealed that all of the quantified metabolites changed significantly among regions: Bambamarca I showed the most accumulated significant differences. The coefficient of variation demonstrated high phenotypic plasticity for amino acids, while sugars displayed low phenotypic plasticity. Correlation analysis highlighted the closely coordinated behavior of the amino acid profile. Finally, PLS-DA revealed a clear separation among the regions based on their metabolic profiles, accentuating the discriminatory capacity of NMR in establishing significant phytochemical differences between producing regions of the fruit of P. peruviana L. PMID: 29751927 [PubMed - in process]

Metabolic reprogramming of the urea cycle pathway in experimental pulmonary arterial hypertension rats induced by monocrotaline.

Sun, 13/05/2018 - 12:49
Related Articles Metabolic reprogramming of the urea cycle pathway in experimental pulmonary arterial hypertension rats induced by monocrotaline. Respir Res. 2018 May 11;19(1):94 Authors: Zheng HK, Zhao JH, Yan Y, Lian TY, Ye J, Wang XJ, Wang Z, Jing ZC, He YY, Yang P Abstract BACKGROUND: Pulmonary arterial hypertension (PAH) is a rare systemic disorder associated with considerable metabolic dysfunction. Although enormous metabolomic studies on PAH have been emerging, research remains lacking on metabolic reprogramming in experimental PAH models. We aim to evaluate the metabolic changes in PAH and provide new insight into endogenous metabolic disorders of PAH. METHOD: A single subcutaneous injection of monocrotaline (MCT) (60 mg kg- 1) was used for rats to establish PAH model. Hemodynamics and right ventricular hypertrophy were adopted to evaluate the successful establishment of PAH model. Plasma samples were assessed through targeted metabolomic profiling platform to quantify 126 endogenous metabolites. Orthogonal partial least squares discriminant analysis (OPLS-DA) was used to discriminate between MCT-treated model and control groups. Metabolite Set Enrichment Analysis was adapted to exploit the most disturbed metabolic pathways. RESULTS: Endogenous metabolites of MCT treated PAH model and control group were well profiled using this platform. A total of 13 plasma metabolites were significantly altered between the two groups. Metabolite Set Enrichment Analysis highlighted that a disruption in the urea cycle pathway may contribute to PAH onset. Moreover, five novel potential biomarkers in the urea cycle, adenosine monophosphate, urea, 4-hydroxy-proline, ornithine, N-acetylornithine, and two candidate biomarkers, namely, O-acetylcarnitine and betaine, were found to be highly correlated with PAH. CONCLUSION: The present study suggests a new role of urea cycle disruption in the pathogenesis of PAH. We also found five urea cycle related biomarkers and another two candidate biomarkers to facilitate early diagnosis of PAH in metabolomic profile. PMID: 29751839 [PubMed - in process]

Xanthones Content in Swertia multicaulis D. Don from Nepal.

Sun, 13/05/2018 - 12:49
Related Articles Xanthones Content in Swertia multicaulis D. Don from Nepal. Molecules. 2018 May 03;23(5): Authors: Timsina B, Kindlmann P, Rokaya MB, Vrchotová N, Tříska J, Horník Š, Sýkora J Abstract The medicinal plant Swertia multicaulis D. Don was collected in Rasuwa District (Nepal) and the xanthone content of its ethyl acetate extracts was studied. The total amount of xanthones in S. multicaulis determined by HPLC reaches almost 13 g of xanthones per 1 kg of dry matter. The identification of xanthones in S. multicaulis was achieved by a combination of HPLC, LC⁻MS and LC⁻NMR. The final assignment of the individual chemical structures was provided by NMR, supported by preparative HPLC. In eight chromatographic peaks, four major xanthones were identified—1,3-dihydroxy-5,8-dimethoxyxanthone, 1-hydroxy-3,5,8-trimethoxyxanthone, bellidifolin (1,5,8-tri-hydroxy-3-methoxyxanthone), and decussatin (1-hydroxy-3,7,8-trimethoxyxanthone). PMID: 29751500 [PubMed - in process]

Procyanidin B2 protects against d-galactose-induced mimetic aging in mice: Metabolites and microbiome analysis.

Sat, 12/05/2018 - 12:28
Related Articles Procyanidin B2 protects against d-galactose-induced mimetic aging in mice: Metabolites and microbiome analysis. Food Chem Toxicol. 2018 May 08;: Authors: Xiao Y, Dong J, Yin Z, Wu Q, Zhou Y, Zhou X Abstract To elucidate the possible mechanisms for the preventive effect of procyanidin B2 on aging, a combined analysis of metabolic profile and gut microbiome was carried out in the present study. The mimetic aged mice induced by d-galactose injection (500 mg/kg, sc daily), and the preventive group was fed with the diet plus 0.2% procyanidin B2. After 7 weeks of treatment, the spatial memory was assayed using the Morris water maze test. Procyanidin B2 significantly ameliorated the impaired memory and antioxidant abilities induced by d-galactose. Furthermore, metabolomics analysis of plasma based on LC/Q-TOF-MS demonstrated that phosphatidyl cholines, oleic acid, linoleic acid, carnitine, pantothenic acid, and taurocholic acid were significantly increased in the mice treated with procyanidin B2, and pyruvic acid, hydroxybutyric acid, hippuric acid, and cholic acid were decreased significantly. Together, gut microbiome analysis using Illumina sequencing showed that there were significant differences in the Firmicutes/Bacteroidetes ratio and abundance of Roseburia, Lachnospiraceae, and Bifidobacterium between the aging and supplemental procyanidin B2 groups. In summary, procyanidin B2 possessed potential prevention of the cognitive and oxidative impairment via the metabolic pathway regulation related to glycolysis, fatty acid, and bile acid in the aged mice, accompanied by remodeling the gut flora. PMID: 29751077 [PubMed - as supplied by publisher]

Metabolomics analysis of the potential anticancer mechanism of annonaceous acetogenins on a multidrug resistant mammary adenocarcinoma cell.

Sat, 12/05/2018 - 12:28
Related Articles Metabolomics analysis of the potential anticancer mechanism of annonaceous acetogenins on a multidrug resistant mammary adenocarcinoma cell. Anal Biochem. 2018 May 08;: Authors: Ma C, Li Y, Wu H, Ji J, Sun Q, Song Y, Wang S, Li X, Chen Y, Chen J Abstract Although annonaceous acetogenins (ACGs) have been reported to have antitumor activity for over three decades, and many of the underlying mechanism of ACGs on cancer have been clarified, there are still outstanding issues. In particular, the changes of small metabolite in cancer cells, caused by ACGs intake, have been reported rarely. Recent research has showed that cellular metabolic profiling coupled with ultra-flow liquid chromatography coupled to quadrupole-time-of-flight mass spectrometry (UFLC-Q-TOF-MS) and multivariable statistical analysis enables a good understanding of ACGs' effects on multidrug resistant human mammary adenocarcinoma (MCF-7/Adr) cells. As a result, 23 potential biomarkers (p < 0.05, VIP >1) were identified, and 5 pathways (impact-value > 0.10) identified. The differential metabolites suggested that ACGs affected metabolomics pathways, including arginine and proline metabolism, glycerophospholipid metabolism, taurine and hypotaurine metabolism, alanine, aspartate and glutamate metabolism and D-Glutamine and D-glutamate metabolism. PMID: 29750943 [PubMed - as supplied by publisher]

Saliva in the "Omics" era: a promising tool in Paediatrics.

Sat, 12/05/2018 - 12:28
Related Articles Saliva in the "Omics" era: a promising tool in Paediatrics. Oral Dis. 2018 May 11;: Authors: Pappa E, Kousvelari E, Vastardis H Abstract In vulnerable populations, such as infants and children, saliva makes the perfect diagnostic medium because of its non-invasive collection, easy handling and storage of samples. Its unique biomarker profiles help tremendously in the diagnosis of many diseases and conditions. In fact, saliva genomics, proteomics, transcriptomics, metabolomics and microbiome-based discoveries have led to complementary and powerful diagnostic information. In children and neonates, saliva is the preferred medium not only for diagnosis of caries and aggressive periodontitis but also for a number of systemic conditions, metabolic diseases, cognitive functions, stress assessment and evaluation of immunological and inflammatory responses to vaccination. In this review, we provide an overview of current and future applications of saliva diagnostics to various diseases and conditions and highlight studies in paediatrics across the "omic" spectrum. Emerging frontiers in salivary diagnostics research that may significantly advance the field are also highlighted. This article is protected by copyright. All rights reserved. PMID: 29750386 [PubMed - as supplied by publisher]

Gut microbial diversity is associated with lower arterial stiffness in women.

Sat, 12/05/2018 - 12:28
Related Articles Gut microbial diversity is associated with lower arterial stiffness in women. Eur Heart J. 2018 May 09;: Authors: Menni C, Lin C, Cecelja M, Mangino M, Matey-Hernandez ML, Keehn L, Mohney RP, Steves CJ, Spector TD, Kuo CF, Chowienczyk P, Valdes AM Abstract Aims: The gut microbiome influences metabolic syndrome (MetS) and inflammation and is therapeutically modifiable. Arterial stiffness is poorly correlated with most traditional risk factors. Our aim was to examine whether gut microbial composition is associated with arterial stiffness. Methods and results: We assessed the correlation between carotid-femoral pulse wave velocity (PWV), a measure of arterial stiffness, and gut microbiome composition in 617 middle-aged women from the TwinsUK cohort with concurrent serum metabolomics data. Pulse wave velocity was negatively correlated with gut microbiome alpha diversity (Shannon index, Beta(SE)= -0.25(0.07), P = 1 × 10-4) after adjustment for covariates. We identified seven operational taxonomic units associated with PWV after adjusting for covariates and multiple testing-two belonging to the Ruminococcaceae family. Associations between microbe abundances, microbe diversity, and PWV remained significant after adjustment for levels of gut-derived metabolites (indolepropionate, trimethylamine oxide, and phenylacetylglutamine). We linearly combined the PWV-associated gut microbiome-derived variables and found that microbiome factors explained 8.3% (95% confidence interval 4.3-12.4%) of the variance in PWV. A formal mediation analysis revealed that only a small proportion (5.51%) of the total effect of the gut microbiome on PWV was mediated by insulin resistance and visceral fat, c-reactive protein, and cardiovascular risk factors after adjusting for age, body mass index, and mean arterial pressure. Conclusions: Gut microbiome diversity is inversely associated with arterial stiffness in women. The effect of gut microbiome composition on PWV is only minimally mediated by MetS. This first human observation linking the gut microbiome to arterial stiffness suggests that targeting the microbiome may be a way to treat arterial ageing. PMID: 29750272 [PubMed - as supplied by publisher]

Metabolomics study of the therapeutic mechanism of Schisandra chinensis lignans on aging rats induced by d-galactose.

Sat, 12/05/2018 - 12:28
Related Articles Metabolomics study of the therapeutic mechanism of Schisandra chinensis lignans on aging rats induced by d-galactose. Clin Interv Aging. 2018;13:829-841 Authors: Sun J, Jing S, Jiang R, Wang C, Zhang C, Chen J, Li H Abstract Objective: The aim of this study was to evaluate the antiaging effect of Schisandra chinensis lignans (SCL) by analyzing the characteristics in the serum of d-galactose (d-gal)-induced rats. Methods: Forty male Wistar rats were randomly divided into control group, d-gal model group, low-dose SCL group (50 mg/kg/d), medium-dose SCL group (100 mg/kg/d), and high-dose SCL group (200 mg/kg/d). A serum metabolomics analysis method based on rapid resolution liquid chromatography coupled with quadruple-time-of-flight mass spectrometry was carried out to study the characteristics of d-gal-induced aging rats and evaluate the antiaging effects of SCL, and multivariate statistical analysis was performed for pattern recognition and characteristic metabolites identification. The relative levels of p19, p53, and p21 genes in the brain tissue were measured by quantitative real-time polymerase chain reaction for investigating the underlying mechanism. Results: Metabolomics analysis showed that 15 biomarkers were identified and 13 of them recovered to the normal levels after the administration of SCL. Based on the pathway analysis, the antiaging mechanisms of SCL might be involved in the following metabolic pathways: energy, amino acid, lipid, and phospholipid metabolism. Furthermore, SCL significantly inhibited the mRNA expression level of p19, p53, and p21 in the brain of aging rats induced by d-gal. Conclusion: These results suggest that SCL can delay rat aging induced by d-gal through multiple pathways. PMID: 29750025 [PubMed - in process]

The thioredoxin-1 system is essential for fueling DNA synthesis during T-cell metabolic reprogramming and proliferation.

Sat, 12/05/2018 - 12:28
Related Articles The thioredoxin-1 system is essential for fueling DNA synthesis during T-cell metabolic reprogramming and proliferation. Nat Commun. 2018 May 10;9(1):1851 Authors: Muri J, Heer S, Matsushita M, Pohlmeier L, Tortola L, Fuhrer T, Conrad M, Zamboni N, Kisielow J, Kopf M Abstract The thioredoxin-1 (Trx1) system is an important contributor to cellular redox balance and is a sensor of energy and glucose metabolism. Here we show critical c-Myc-dependent activation of the Trx1 system during thymocyte and peripheral T-cell proliferation, but repression during T-cell quiescence. Deletion of thioredoxin reductase-1 (Txnrd1) prevents expansion the CD4-CD8- thymocyte population, whereas Txnrd1 deletion in CD4+CD8+ thymocytes does not affect further maturation and peripheral homeostasis of αβT cells. However, Txnrd1 is critical for expansion of the activated T-cell population during viral and parasite infection. Metabolomics show that TrxR1 is essential for the last step of nucleotide biosynthesis by donating reducing equivalents to ribonucleotide reductase. Impaired availability of 2'-deoxyribonucleotides induces the DNA damage response and cell cycle arrest of Txnrd1-deficient T cells. These results uncover a pivotal function of the Trx1 system in metabolic reprogramming of thymic and peripheral T cells and provide a rationale for targeting Txnrd1 in T-cell leukemia. PMID: 29749372 [PubMed - in process]

Apigenin inhibits growth of the Plasmodium berghei and disrupts some metabolic pathways in mice.

Sat, 12/05/2018 - 12:28
Related Articles Apigenin inhibits growth of the Plasmodium berghei and disrupts some metabolic pathways in mice. Phytother Res. 2018 May 11;: Authors: Amiri M, Nourian A, Khoshkam M, Ramazani A Abstract Due to the challenges in the control, prevention, and eradication of parasitic diseases like malaria, there is an urgent need to discover new therapeutic agents. Plant-derived medicines may open new ways in the field of antiplasmodial therapy. This study is aimed to investigate the toxicity and in vivo antiplasmodial activity of apigenin, a dietary flavonoid. Apigenin cytotoxicity was investigated on Huh7 cell line, brine shrimp (Artemia salina) larva, and human red blood cells. In vivo toxicity of apigenin was assessed by metabolomics approaches. Apigenin exhibited significant suppression of parasitemia in a dose-dependent manner; it suppressed Plasmodium berghei growth by 69.74%, 50.3%, and 49.23% at concentrations of 70, 35, and 15 mg/kg/day, respectively. The IC50 value for apigenin after 24 hr exposure to Huh7 cells was 225 μg/ml. Apigenin did not show noticeable toxicity on A. salina and also on the membrane integrity of red blood cells. After 24 hr exposure of mice to apigenin, alterations were seen in the metabolism of glucocorticoids and mineralocorticoids, bile acid metabolism (alternative pathway), sulfur metabolism, bile acid metabolism, metabolism of estrogens and androgens, cholesterol catabolism, and biosynthesis of cholesterol. These findings indicate that apigenin has potential in vivo antiplasmodial activity against P. berghei infected mice with high selectivity against malaria, but it can disrupt some metabolic pathways in mice. PMID: 29748995 [PubMed - as supplied by publisher]

Software Tools and Approaches for Compound Identification of LC-MS/MS Data in Metabolomics.

Sat, 12/05/2018 - 12:28
Related Articles Software Tools and Approaches for Compound Identification of LC-MS/MS Data in Metabolomics. Metabolites. 2018 May 10;8(2): Authors: Blaženović I, Kind T, Ji J, Fiehn O Abstract The annotation of small molecules remains a major challenge in untargeted mass spectrometry-based metabolomics. We here critically discuss structured elucidation approaches and software that are designed to help during the annotation of unknown compounds. Only by elucidating unknown metabolites first is it possible to biologically interpret complex systems, to map compounds to pathways and to create reliable predictive metabolic models for translational and clinical research. These strategies include the construction and quality of tandem mass spectral databases such as the coalition of MassBank repositories and investigations of MS/MS matching confidence. We present in silico fragmentation tools such as MS-FINDER, CFM-ID, MetFrag, ChemDistiller and CSI:FingerID that can annotate compounds from existing structure databases and that have been used in the CASMI (critical assessment of small molecule identification) contests. Furthermore, the use of retention time models from liquid chromatography and the utility of collision cross-section modelling from ion mobility experiments are covered. Workflows and published examples of successfully annotated unknown compounds are included. PMID: 29748461 [PubMed]

Omics of Blood Pressure and Hypertension.

Sat, 12/05/2018 - 12:28
Related Articles Omics of Blood Pressure and Hypertension. Circ Res. 2018 May 11;122(10):1409-1419 Authors: Arnett DK, Claas SA Abstract Essential hypertension is a common, complex disorder affecting ≤1 billion adults globally. Blood pressure is a highly heritable trait, with ≤50% of the variation between individuals accounted for by familial relationships. Despite this strong heritability, determining the genetic architecture of hypertension in humans has proved challenging. Recent technological and methodological developments have given rise to what is now known as omics-a domain of study that includes genomics, as well as epigenomics, transcriptomics, proteomics, and metabolomics. For complex traits like hypertension, which involve multiple pathways and organs, omic approaches offer the advantage of allowing identification of novel hypertensive mechanisms to help further dissect and characterize the disorder's pathophysiology. This review provides a primer on the genomics, transcriptomics, proteomics, and metabolomics of blood pressure and hypertension. We provide an introduction to each approach with examples chosen to illustrate its potential. We conclude with a brief assessment of current methods aimed at integrating multiomic data. A review of the literature found genomic, epigenomic, transcriptomic, proteomic, and metabolomic methods have been applied to dissect the pathophysiology of blood pressure and hypertension. Omic methods and integration of multiomic data represent a potentially fruitful approach to illuminating the complex pathophysiology of hypertension and, ultimately, may point to novel diagnostics and treatments. PMID: 29748366 [PubMed - in process]

Maf links Neuregulin1 signaling to cholesterol synthesis in myelinating Schwann cells.

Sat, 12/05/2018 - 12:28
Related Articles Maf links Neuregulin1 signaling to cholesterol synthesis in myelinating Schwann cells. Genes Dev. 2018 May 10;: Authors: Kim M, Wende H, Walcher J, Küehnemund J, Cheret C, Kempa S, McShane E, Selbach M, Lewin GR, Birchmeier C Abstract Cholesterol is a major constituent of myelin membranes, which insulate axons and allow saltatory conduction. Therefore, Schwann cells, the myelinating glia of the peripheral nervous system, need to produce large amounts of cholesterol. Here, we define a crucial role of the transcription factor Maf in myelination and cholesterol biosynthesis and show that Maf acts downstream from Neuregulin1 (Nrg1). Maf expression is induced when Schwann cells begin myelination. Genetic ablation of Maf resulted in hypomyelination that resembled mice with defective Nrg1 signaling. Importantly, loss of Maf or Nrg1 signaling resulted in a down-regulation of the cholesterol synthesis program, and Maf directly binds to enhancers of cholesterol synthesis genes. Furthermore, we identified the molecular mechanisms by which Nrg1 signaling regulates Maf levels. Transcription of Maf depends on calmodulin-dependent kinases downstream from Nrg1, whereas Nrg1-MAPK signaling stabilizes Maf protein. Our results delineate a novel signaling cascade regulating cholesterol synthesis in myelinating Schwann cells. PMID: 29748249 [PubMed - as supplied by publisher]

Combined untargeted and targeted fingerprinting by comprehensive two-dimensional gas chromatography: revealing fructose-induced changes in mice urinary metabolic signatures.

Sat, 12/05/2018 - 12:28
Related Articles Combined untargeted and targeted fingerprinting by comprehensive two-dimensional gas chromatography: revealing fructose-induced changes in mice urinary metabolic signatures. Anal Bioanal Chem. 2018 Apr;410(11):2723-2737 Authors: Bressanello D, Liberto E, Collino M, Chiazza F, Mastrocola R, Reichenbach SE, Bicchi C, Cordero C Abstract This study exploits the information potential of comprehensive two-dimensional gas chromatography configured with a parallel dual secondary column-dual detection by mass spectrometry and flame ionization (GC×2GC-MS/FID) to study changes in urinary metabolic signatures of mice subjected to high-fructose diets. Samples are taken from mice fed with normal or fructose-enriched diets provided either in aqueous solution or in solid form and analyzed at three stages of the dietary intervention (1, 6, and 12 weeks). Automated Untargeted and Targeted fingerprinting for 2D data elaboration is adopted for the most inclusive data mining of GC×GC patterns. The UT fingerprinting strategy performs a fully automated peak-region features fingerprinting and combines results from pre-targeted compounds and unknowns across the sample-set. The most informative metabolites, with statistically relevant differences between sample groups, are obtained by unsupervised multivariate analysis (MVA) and cross-validated by multi-factor analysis (MFA) with external standard quantitation by GC-MS. Results indicate coherent clustering of mice urine signatures according to dietary manipulation. Notably, the metabolite fingerprints of mice fed with liquid fructose exhibited greater derangement in fructose, glucose, citric, pyruvic, malic, malonic, gluconic, cis-aconitic, succinic and 2-keto glutaric acids, glycine acyl derivatives (N-carboxy glycine, N-butyrylglycine, N-isovaleroylglycine, N-phenylacetylglycine), and hippuric acid. Untargeted fingerprinting indicates some analytes which were not a priori pre-targeted which provide additional insights: N-acetyl glucosamine, N-acetyl glutamine, malonyl glycine, methyl malonyl glycine, and glutaric acid. Visual features fingerprinting is used to track individual variations during experiments, thereby extending the panorama of possible data elaboration tools. Graphical abstract ᅟ. PMID: 29516133 [PubMed - indexed for MEDLINE]

TRIENNIAL LACTATION SYMPOSIUM/BOLFA:Historical perspectives of lactation biology in the late 20th and early 21st centuries.

Sat, 12/05/2018 - 12:28
Related Articles TRIENNIAL LACTATION SYMPOSIUM/BOLFA:Historical perspectives of lactation biology in the late 20th and early 21st centuries. J Anim Sci. 2017 Dec;95(12):5639-5652 Authors: Collier RJ, Bauman DE Abstract The latter half of the 20th century and the early portion of the 21st century will be recognized as the "Golden Age" of lactation biology. This period corresponded with the rise of systemic, metabolomic, molecular, and genomic biology. It includes the discovery of the structure of DNA and ends with the sequencing of the complete genomes of humans and all major domestic animal species including the dairy cow. This included the ability to identify polymorphisms in the nucleic acid sequence, which can be tied to specific differences in cellular, tissue, and animal performance. Before this period, classical work using endocrine ablation and replacement studies identified the mammary gland as an endocrine-dependent organ. In the early 1960s, the development of RIA and radioreceptor assays permitted the study of the relationship between endocrine patterns and mammary function. The ability to measure nucleic acid content of tissues opened the door to study of the factors regulating mammary growth. The development of high-speed centrifugation in the 1960s allowed separation of specific cell organelles and their membranes. The development of transmission and scanning electron microscopy permitted the study of the relationship between structure and function in the mammary secretory cell. The availability of radiolabeled metabolites provided the opportunity to investigate the metabolic pathways and their regulation. The development of concepts regarding the coordination of metabolism to support lactation integrated our understanding of nutrient partitioning and homeostasis. The ability to produce recombinant molecules and organisms permitted enhancement of lactation in farm animal species and the production of milk containing proteins of value to human medicine. These discoveries and others contributed to vastly increased dairy farm productivity in the United States and worldwide. This review will include the discussion of the centers of excellence and scientists who labored in these fields to produce the harvest of knowledge we enjoy today. PMID: 29293741 [PubMed - indexed for MEDLINE]

Treatment of Pancreatic Cancer Patient-Derived Xenograft Panel with Metabolic Inhibitors Reveals Efficacy of Phenformin.

Sat, 12/05/2018 - 12:28
Related Articles Treatment of Pancreatic Cancer Patient-Derived Xenograft Panel with Metabolic Inhibitors Reveals Efficacy of Phenformin. Clin Cancer Res. 2017 Sep 15;23(18):5639-5647 Authors: Rajeshkumar NV, Yabuuchi S, Pai SG, De Oliveira E, Kamphorst JJ, Rabinowitz JD, Tejero H, Al-Shahrour F, Hidalgo M, Maitra A, Dang CV Abstract Purpose: To identify effective metabolic inhibitors to suppress the aggressive growth of pancreatic ductal adenocarcinoma (PDAC), we explored the in vivo antitumor efficacy of metabolic inhibitors, as single agents, in a panel of patient-derived PDAC xenograft models (PDX) and investigated whether genomic alterations of tumors correlate with the sensitivity to metabolic inhibitors.Experimental Design: Mice with established PDAC tumors from 6 to 13 individual PDXs were randomized and treated, once daily for 4 weeks, with either sterile PBS (vehicle) or the glutaminase inhibitor bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl)ethyl sulfide (BPTES), transaminase inhibitor aminooxyacetate (AOA), pyruvate dehydrogenase kinase inhibitor dichloroacetate (DCA), autophagy inhibitor chloroquine (CQ), and mitochondrial complex I inhibitor phenformin/metformin.Results: Among the agents tested, phenformin showed significant tumor growth inhibition (>30% compared with vehicle) in 5 of 12 individual PDXs. Metformin, at a fivefold higher dose, displayed significant tumor growth inhibition in 3 of 12 PDXs similar to BPTES (2/8 PDXs) and DCA (2/6 PDXs). AOA and CQ had the lowest response rates. Gene set enrichment analysis conducted using the baseline gene expression profile of pancreatic tumors identified a gene expression signature that inversely correlated with phenformin sensitivity, which is in agreement with the phenformin gene expression signature of NIH Library of Integrated Network-based Cellular Signatures (LINCS). The PDXs that were more sensitive to phenformin showed a baseline reduction in amino acids and elevation in oxidized glutathione. There was no correlation between phenformin response and genetic alterations in KRAS, TP53, SMAD4, or PTENConclusions: Phenformin treatment showed relatively higher antitumor efficacy against established PDAC tumors, compared with the efficacy of other metabolic inhibitors and metformin. Phenformin treatment significantly diminished PDAC tumor progression and prolonged tumor doubling time. Overall, our results serve as a foundation for further evaluation of phenformin as a therapeutic agent in pancreatic cancer. Clin Cancer Res; 23(18); 5639-47. ©2017 AACR. PMID: 28611197 [PubMed - indexed for MEDLINE]

Biosynthesis of the microtubule-destabilizing diterpene pseudolaric acid B from golden larch involves an unusual diterpene synthase.

Sat, 12/05/2018 - 12:28
Related Articles Biosynthesis of the microtubule-destabilizing diterpene pseudolaric acid B from golden larch involves an unusual diterpene synthase. Proc Natl Acad Sci U S A. 2017 01 31;114(5):974-979 Authors: Mafu S, Karunanithi PS, Palazzo TA, Harrod BL, Rodriguez SM, Mollhoff IN, O'Brien TE, Tong S, Fiehn O, Tantillo DJ, Bohlmann J, Zerbe P Abstract The diversity of small molecules formed via plant diterpene metabolism offers a rich source of known and potentially new biopharmaceuticals. Among these, the microtubule-destabilizing activity of pseudolaric acid B (PAB) holds promise for new anticancer agents. PAB is found, perhaps uniquely, in the coniferous tree golden larch (Pseudolarix amabilis, Pxa). Here we describe the discovery and mechanistic analysis of golden larch terpene synthase 8 (PxaTPS8), an unusual diterpene synthase (diTPS) that catalyzes the first committed step in PAB biosynthesis. Mining of the golden larch root transcriptome revealed a large TPS family, including the monofunctional class I diTPS PxaTPS8, which converts geranylgeranyl diphosphate into a previously unknown 5,7-fused bicyclic diterpene, coined "pseudolaratriene." Combined NMR and quantum chemical analysis verified the structure of pseudolaratriene, and co-occurrence with PxaTPS8 and PAB in P amabilis tissues supports the intermediacy of pseudolaratriene in PAB metabolism. Although PxaTPS8 adopts the typical three-domain structure of diTPSs, sequence phylogeny places the enzyme with two-domain TPSs of mono- and sesqui-terpene biosynthesis. Site-directed mutagenesis of PxaTPS8 revealed several catalytic residues that, together with quantum chemical calculations, suggested a substantial divergence of PxaTPS8 from other TPSs leading to a distinct carbocation-driven reaction mechanism en route to the 5,7-trans-fused bicyclic pseudolaratriene scaffold. PxaTPS8 expression in microbial and plant hosts provided proof of concept for metabolic engineering of pseudolaratriene. PMID: 28096378 [PubMed - indexed for MEDLINE]

Pages