PubMed
Multimarkers of metabolic malnutrition and inflammation and their association with mortality risk in cardiac catheterisation patients: a prospective, longitudinal, observational, cohort study
Lancet Healthy Longev. 2023 Feb;4(2):e72-e82. doi: 10.1016/S2666-7568(23)00001-6.ABSTRACTBACKGROUND: Complex and incompletely understood metabolic dysfunction associated with inflammation and protein-energy wasting contribute to the increased mortality risk of older patients and those with chronic organ diseases affected by cachexia, sarcopenia, malnutrition, and frailty. However, these wasting syndromes have uncertain relevance for patients with cardiovascular disease or people at lower risk. Studies are hampered by imperfect objective clinical assessment tools for these intertwined metabolic malnutrition and inflammation syndromes. We aimed to assess, in two independent cohorts of patients who underwent cardiac catheterisation, the mortality risk associated with the metabolic vulnerability index (MVX), a multimarker derived from six simultaneously measured serum biomarkers plausibly linked to these dysmetabolic syndromes.METHODS: In this prospective, longitudinal, observational study, we included patients aged ≥18 years recruited into the CATHGEN biorepository (Jan 2, 2001, to Dec 30, 2011) and the Intermountain Heart Collaborative Study (Sept 12, 2000, to Sept 21, 2006) who underwent coronary angiography and had clinical nuclear magnetic resonance metabolomic profiling done on frozen plasma obtained at catheterisation. We aggregated six mortality risk biomarkers (GlycA, small HDL, valine, leucine, isoleucine, and citrate concentrations) into sex-specific MVX multimarker scores using coefficients from predictive models for all-cause mortality in the CATHGEN cohort. We assessed associations of biomarkers and MVX with mortality in both cohorts using Cox proportional hazards models adjusted for 15 clinical covariates.FINDINGS: We included 5876 participants from the CATHGEN biorepository and 2888 from the Intermountain Heart study. Median follow-up was 6·2 years (IQR 4·4-8·9) in CATHGEN and 8·2 years (6·9-9·2) in the Intermountain Heart study. The six nuclear magnetic resonance biomarkers and MVX made strong, independent contributions to 5-year mortality risk prediction in both cohorts (hazard ratio 2·18 [95% CI 2·03-2·34] in the CATHGEN cohort and 1·67 [1·50-1·87] in the Intermountain Heart cohort). CATHGEN subgroup analyses showed similar MVX associations in men and women, older and younger individuals, for death from cardiovascular or non-cardiovascular causes, and in patients with or without multiple comorbidities.INTERPRETATION: MVX made a dominant contribution to mortality prediction in patients with cardiovascular disease and in low-risk subgroups without pre-existing disease, suggesting that metabolic malnutrition-inflammation syndromes might have a more universal role in survival than previously thought.FUNDING: Labcorp.PMID:36738747 | DOI:10.1016/S2666-7568(23)00001-6
Effect of ultrasound combined with exogenous GABA treatment on polyphenolic metabolites and antioxidant activity of mung bean during germination
Ultrason Sonochem. 2023 Jan 25;94:106311. doi: 10.1016/j.ultsonch.2023.106311. Online ahead of print.ABSTRACTMung bean seeds were treated by a combination of ultrasound and γ-aminobutyric acid (GABA). Effect of these treatments on the free polyphenols content, antioxidant activity, and digestibility of mung bean sprouts was evaluated. Additionally, phenolic compounds were analyzed and identified using a metabolomics approach. The combined ultrasound and GABA treatments significantly enhanced the free polyphenols and flavonoids content (P < 0.05) of mung bean sprouts depending on sprouting duration. Besides, a positive correlation (P < 0.05) was found between the polyphenols content and in vitro antioxidant activity of mung bean sprouts. Moreover, a total number of 608 metabolites were detected, and 55 polyphenol compounds were identified, including flavonoids, isoflavones, phenols, and coumarins. Also, the KEGG metabolic pathway analysis revealed 10 metabolic pathways of phenols, including flavonoid, isoflavone, and phenylpropanoid biosynthesis. Powder of 48 h sprouted mung bean released polyphenols during simulated gastric digestion and possessed antioxidant activity.PMID:36738696 | DOI:10.1016/j.ultsonch.2023.106311
Natural nanocolloids regulate the fate and phytotoxicity of hematite particles in water
Water Res. 2023 Jan 29;232:119678. doi: 10.1016/j.watres.2023.119678. Online ahead of print.ABSTRACTHematite (the most abundant iron oxide polymorph) is widely detected in the water environment and has attracted considerable attention. Natural nanocolloids (Ncs) exist ubiquitously in surface waters and play critical roles in biogeochemical processes. However, the influences of Ncs on the fate and phytotoxicity of hematite remain unknown. In this study, the infrared absorption spectra coupled with two-dimensional correlation spectroscopy analysis reveal that the specific binding interactions between Ncs and hematite primarily occur via hydrophilic effects and π-π interactions with an increase in the Ncs contact time. Moreover, binding with Ncs slightly promoted the aggregation rates of hematite particles in the BG-11 medium. Interestingly, Ncs remarkably mitigate the phytotoxicity (e.g., growth inhibition, oxidative stress, and mitochondrial toxicity) of nanosized and submicrosized hematite particles to Chlorella vulgaris after a 96 h exposure. The integrating metabolomic and transcriptomic analysis reveals that the regulated urea cycle, amino acids, and fatty acid-related metabolites (e.g., urea, serine, glutamate, and hexadecenoic acid) and genes (e.g., ACY1, CysC, and GLA) contribute to persistent phytotoxicity. This study provides new insights into the roles and mechanisms of natural Ncs in regulating the environmental risk of iron oxide minerals in aqueous media.PMID:36738560 | DOI:10.1016/j.watres.2023.119678
Integrative physiological, transcriptome and metabolome analysis reveals the involvement of carbon and flavonoid biosynthesis in low phosphorus tolerance in cotton
Plant Physiol Biochem. 2023 Jan 28;196:302-317. doi: 10.1016/j.plaphy.2023.01.042. Online ahead of print.ABSTRACTPhosphorus (P) is an essential nutrient controlling plant growth and development through the regulation of basic metabolic processes; however, the molecular details of these pathways remain largely unknown. In this study, physiological, transcriptome, and metabolome analysis were compared for two cotton genotypes with different low P tolerance under P starvation and resupply. The results showed that the glucose, fructose, sucrose, and starch contents increased by 18.2%, 20.4%, 20.2%, and 14.3% in the roots and 18.3%, 23.3%, 11.0%, and 13.6% in the shoot of Jimian169 than DES926, respectively. Moreover, the activities of enzymes related to carbon and phosphorus metabolism were higher in the roots and shoots of Jimian169 than DES926. In addition, transcriptome analysis revealed that the number of differentially expressed genes (DEGs) was higher in both roots (830) and shoots (730) under P starvation and the DEGs drastically reduced upon P resupply. The KEGG analysis indicated that DEGs were mainly enriched in phenylpropanoid biosynthesis, carbon metabolism, and photosynthesis. The metabolome analysis showed the enrichment of phenylpropanoid, organic acids and derivatives, and lipids in all the pairs at a given time point. The combined transcriptome and metabolome analysis revealed that carbon metabolism and flavonoid biosynthesis are involved in the P starvation response in cotton. Moreover, co-expression network analysis identified 3 hub genes in the roots and shoots that regulate the pathways involved in the P starvation response. This study provides the foundation for understanding the mechanisms of low P tolerance and the hub genes as a potential target for the development of low P tolerant genotypes.PMID:36738510 | DOI:10.1016/j.plaphy.2023.01.042
Berries in Microbiome-Mediated Gastrointestinal, Metabolic, and Immune Health
Curr Nutr Rep. 2023 Feb 4. doi: 10.1007/s13668-023-00449-0. Online ahead of print.ABSTRACTPURPOSE OF REVIEW: Current research has shown that berry-derived polymeric substrates that resist human digestion (dietary fibers and polyphenols) are extensively metabolized in the gastrointestinal tract dominated by microbiota. This review assesses current epidemiological, experimental, and clinical evidence of how berry (strawberry, blueberry, raspberry, blackberry, cranberry, black currant, and grapes) phytochemicals interact with the microbiome and shape health or metabolic risk factor outcomes.RECENT FINDINGS: There is a growing evidence that the compositional differences among complex carbohydrate fractions and classes of polyphenols define reversible shifts in microbial populations and human metabolome to promote gastrointestinal health. Interventions to prevent gastrointestinal inflammation and improve metabolic outcomes may be achieved with selection of berries that provide distinct polysaccharide substrates for selective multiplication of beneficial microbiota or oligomeric decoys for binding and elimination of the pathogens, as well as phenolic substrates that hold potential to modulate gastrointestinal mucins, reduce luminal oxygen, and release small phenolic metabolites signatures capable of ameliorating inflammatory and metabolic perturbations. These mechanisms may explain many of the differences in microbiota and host gastrointestinal responses associated with increased consumption of berries, and highlight potential opportunities to intentionally shift gut microbiome profiles or to modulate risk factors associated with better nutrition and health outcomes.PMID:36738429 | DOI:10.1007/s13668-023-00449-0
Machine learning predictive performance evaluation of conventional and fuzzy radiomics in clinical cancer imaging cohorts
Eur J Nucl Med Mol Imaging. 2023 Feb 4. doi: 10.1007/s00259-023-06127-1. Online ahead of print.ABSTRACTBACKGROUND: Hybrid imaging became an instrumental part of medical imaging, particularly cancer imaging processes in clinical routine. To date, several radiomic and machine learning studies investigated the feasibility of in vivo tumor characterization with variable outcomes. This study aims to investigate the effect of recently proposed fuzzy radiomics and compare its predictive performance to conventional radiomics in cancer imaging cohorts. In addition, lesion vs. lesion+surrounding fuzzy and conventional radiomic analysis was conducted.METHODS: Previously published 11C Methionine (MET) positron emission tomography (PET) glioma, 18F-FDG PET/computed tomography (CT) lung, and 68GA-PSMA-11 PET/magneto-resonance imaging (MRI) prostate cancer retrospective cohorts were included in the analysis to predict their respective clinical endpoints. Four delineation methods including manually defined reference binary (Ref-B), its smoothed, fuzzified version (Ref-F), as well as extended binary (Ext-B) and its fuzzified version (Ext-F) were incorporated to extract imaging biomarker standardization initiative (IBSI)-conform radiomic features from each cohort. Machine learning for the four delineation approaches was performed utilizing a Monte Carlo cross-validation scheme to estimate the predictive performance of the four delineation methods.RESULTS: Reference fuzzy (Ref-F) delineation outperformed its binary delineation (Ref-B) counterpart in all cohorts within a volume range of 938-354987 mm3 with relative cross-validation area under the receiver operator characteristics curve (AUC) of +4.7-10.4. Compared to Ref-B, the highest AUC performance difference was observed by the Ref-F delineation in the glioma cohort (Ref-F: 0.74 vs. Ref-B: 0.70) and in the prostate cohort by Ref-F and Ext-F (Ref-F: 0.84, Ext-F: 0.86 vs. Ref-B: 0.80). In addition, fuzzy radiomics decreased feature redundancy by approx. 20%.CONCLUSIONS: Fuzzy radiomics has the potential to increase predictive performance particularly in small lesion sizes compared to conventional binary radiomics in PET. We hypothesize that this effect is due to the ability of fuzzy radiomics to model partial volume effects and delineation uncertainties at small lesion boundaries. In addition, we consider that the lower redundancy of fuzzy radiomic features supports the identification of imaging biomarkers in future studies. Future studies shall consider systematically analyzing lesions and their surroundings with fuzzy and binary radiomics.PMID:36738311 | DOI:10.1007/s00259-023-06127-1
Screening of housekeeping genes in <em>Gelsemium elegans</em> and expression patterns of genes involved in its alkaloid biosynthesis
Sheng Wu Gong Cheng Xue Bao. 2023 Jan 25;39(1):286-303. doi: 10.13345/j.cjb.220345.ABSTRACTGelsemium elegans is a traditional Chinese herb of medicinal importance, with indole terpene alkaloids as its main active components. To study the expression of the most suitable housekeeping reference genes in G. elegans, the root bark, stem segments, leaves and inflorescences of four different parts of G. elegans were used as materials in this study. The expression stability of 10 candidate housekeeping reference genes (18S, GAPDH, Actin, TUA, TUB, SAND, EF-1α, UBC, UBQ, and cdc25) was assessed through real-time fluorescence quantitative PCR, GeNorm, NormFinder, BestKeeper, ΔCT, and RefFinder. The results showed that EF-1α was stably expressed in all four parts of G. elegans and was the most suitable housekeeping gene. Based on the coexpression pattern of genome, full-length transcriptome and metabolome, the key candidate targets of 18 related genes (AS, AnPRT, PRAI, IGPS, TSA, TSB, TDC, GES, G8H, 8-HGO, IS, 7-DLS, 7-DLGT, 7-DLH, LAMT, SLS, STR, and SGD) involved in the Gelsemium alkaloid biosynthesis were obtained. The expression of 18 related enzyme genes were analyzed by qRT-PCR using the housekeeping gene EF-1α as a reference. The results showed that these genes' expression and gelsenicine content trends were correlated and were likely to be involved in the biosynthesis of the Gelsemium alkaloid, gelsenicine.PMID:36738217 | DOI:10.13345/j.cjb.220345
Assessment of metabolic, mineral, and cytotoxic profile in pineapple leaves of different commercial varieties: A new eco-friendly and inexpensive source of bioactive compounds
Food Res Int. 2023 Feb;164:112439. doi: 10.1016/j.foodres.2022.112439. Epub 2022 Dec 31.ABSTRACTPineapple is among the most produced and consumed fruits worldwide, and consequently, its agroindustrial production/processing generates high amounts of agricultural waste, which are routinely discarded. Thus, it is crucial to seek alternatives to reuse this agricultural waste that are in high availability. Therefore, this work aims to evaluate the chemical composition of a specific residue (leaves) of seven commercial varieties of pineapples, to attribute high added value uses, and to evaluate its potential as a source of secondary metabolites and minerals. Thereby, twenty-eight metabolites were annotated by UPLC-QTOF-MSE, including amino acids, organic acids, and phenolic compounds. The following minerals were quantitatively assessed by ICP-OES: Zn (5.30-19.77 mg kg-1), Cr, Cd, Mn (50.80-113.98 mg kg-1), Cu (1.05-4.01 mg kg-1), P (1030.77-6163.63 mg kg-1) and Fe (9.06-70.17 mg kg-1). In addition, Cr and Cd (toxic materials) present concentration levels below the limit of quantification of the analytical method (LOQCr and LOQCd = 0.02 mg kg-1) for all samples. The multivariate analysis was conceived from the chemical profile, through the tools of PCA (principal component analysis) and HCA (hierarchical cluster analysis). The results show that pineapple leaves have similarities and differences concerning their chemical composition. In addition, the cytotoxicity assays of the extracts against tumor and non-tumor strains shows that the extracts were non-toxic. This fact can corroborate and enhance the prospection of new uses and applications of agroindustrial co-products from pineapple, enabling the evaluation and use in different types of industries, such as pharmacological, cosmetic, and food, in addition to the possibility of being a potential source of bioactive compounds.PMID:36738003 | DOI:10.1016/j.foodres.2022.112439
Comparative phytochemical analysis of Ferula assa-foetida with Ferula jaeschkeana and commercial oleo-gum resins using GC-MS and UHPLC-PDA-QTOF-IMS
Food Res Int. 2023 Feb;164:112434. doi: 10.1016/j.foodres.2022.112434. Epub 2022 Dec 31.ABSTRACTFerula assa-foetida is an important species of the genus Ferula, best known for its oleo-gum resin, mainly used as a flavoring agent. Ferula jaeschkeana is another Himalayan medicinal plant of this genus, known for its contraceptive effect but not used in food applications. This study aimed to do a detailed phytochemical analysis of F. assa-foetida growing under controlled conditions in India using GC-MS/headspace and UHPLC-PDA-QTOF-IMS. Further, a comparative analysis of F. assa-foetida was performed with F. jaeschkeana (collected from its natural habitat) and commercial samples of F. assa-foetida oleo-gum resin (collected from the local market). UHPLC-QTOF-IMS profiling of F. assa-foetida led to the identification of foetisulfide C, assafoetidnol A, gumosin, flabellilobin (A/B), and foetisulfide A. In total, 141 metabolites were identified, including vitamins, nucleosides, sulfur compounds, flavonoids, sugars derivatives, and others, using METLIN database. Serine, arginine, asparagine, isoleucine, and phenylalanine were major amino acids quantified among the samples for the nutritional aspect. Characteristic sulfurous compounds (n-propyl-sec-butyl disulfide, trans-propenyl-sec-butyl disulfide, cis-propenyl-sec-butyl disulfide, and bis[1-(methylthio)propyl] disulfide) were identified in all samples except F. jaeschkeana. PCA and cluster analysis showed a significant difference in the volatile constituents of rhizomes of both species. Metabolomics studies also revealed the association of sesquiterpenoid and triterpenoid biosynthesis, phenylpropanoid, flavon, and flavanol biosynthesis. The current study demonstrates, "why only F. assa-foetida is used in culinary applications instead of F. jaeschkeana"?PMID:36738001 | DOI:10.1016/j.foodres.2022.112434
Key metabolites and mechanistic insights in forchlorfenuron controlling kiwifruit development
Food Res Int. 2023 Feb;164:112412. doi: 10.1016/j.foodres.2022.112412. Epub 2022 Dec 27.ABSTRACTForchlorfenuron (CPPU) is a plant growth regulator widely applied on kiwifruit to improve yield, however, there are rarely reports on its effects on the nutrients of kiwifruits. Based on UHPLC-Q-TOF-MS, the effects of CPPU on metabolism profile and nutrient substances of two kiwifruit varieties during development were investigated by non-targeted metabolomics. A total of 115 metabolites were identified, and 29 differential metabolites were confirmed and quantified using certified reference standards. Metabolic profile indicated that CPPU promoted kiwifruit development during the main expansion stages at the molecular level, and the effects varied slightly for different varieties. In the early and middle stages of kiwifruit development, the anthocyanin, flavone and flavonol biosynthesis were down-regulated in both varieties, and flavanols biosynthesis was down-regulated only in Hayward variety. Arginine biosynthesis was down-regulated at all stages till the harvest. Although the synthesis of these nutrient substances in kiwifruits was mostly down-regulated by CPPU, the negative effects became mild at harvest time, and positively, the significant increase of sucrose and decrease of organic acids at harvest time could help to improve the taste of kiwifruits.PMID:36737992 | DOI:10.1016/j.foodres.2022.112412
Multiple metabolomics comparatively investigated the pulp breakdown of four dragon fruit cultivars during postharvest storage
Food Res Int. 2023 Feb;164:112410. doi: 10.1016/j.foodres.2022.112410. Epub 2022 Dec 28.ABSTRACTPulp breakdown is the main reason for the reduction of fruit quality. However, there are relatively few studies on small molecule metabolites based on the pulp breakdown of dragon fruit. In this study, four dragon fruit cultivars were comparatively analyzed during pulp breakdown. According to five firmness-related and six quality-related indicators, the pulp breakdown rates from low to high were 'Baiyulong (WP, with white pulp)', 'Dahong (RP, with red pulp)', 'Hongshuijing (CRP, with red pulp)' and 'Baishuijing (CWP, with white pulp)'. Five secondary metabolites showed cultivar-specific accumulation, and the increase of their contents during postharvest storage might be related to delaying pulp breakdown. After multiple metabolomics analysis, a total of 186 metabolites were identified, among which 14 primary metabolites, 23 volatiles, 2 hydrolyzed amino acids and 12 free amino acids were considered as key metabolites. The contents of hydrocarbons in WP and RP were much higher than that in CWP and CRP, which was negatively correlated with pulp breakdown. White pulp were rich in amino acids, while red pulp had more soluble sugars, aldehydes and terpenes. The contents of 13 key metabolites increased during pulp breakdown in all four cultivars, mainly including amino acids and alkanes. The contents and changes of those key metabolites might directly or indirectly respond to the pulp quality and resistance of dragon fruit.PMID:36737991 | DOI:10.1016/j.foodres.2022.112410
Investigation of the Quinone-quinone and Quinone-catechol products using <sup>13</sup>C labeling, UPLC-Q-TOF/MS and UPLC-Q-Exactive Orbitrap/MS
Food Res Int. 2023 Feb;164:112397. doi: 10.1016/j.foodres.2022.112397. Epub 2022 Dec 27.ABSTRACTQuinones are highly reactive oxidants and play an essential role in inducing quality deterioration of fruit and vegetable products. Here, a novel stable isotope-labeling approach in combination with high-resolution tandem mass spectrometry UPLC-Q-TOF/MS and UPLC-Q-Exactive Orbitrap/MS, was successfully applied in tracking quinone reaction pathways in both real wines and model reaction systems. Unexpectedly, the binding products of quinone-quinone and quinone-catechol that are not derived from either nucleophilic reaction or redox reaction were discovered and showed the significant high peak area.Self-coupling reactions of semiquinone radicals might provide a possible interpretation for the formation of quinone-quinone products, and a charge transfer reaction coupled with a complementary donor-acceptor interaction is feasibly responsible for the products with a quinone-catechol structure. These findings endow a new perspective for quinone metabolic pathway in foods.PMID:36737980 | DOI:10.1016/j.foodres.2022.112397
Wakame replacement alters the metabolic profile of wheat noodles after in vitro digestion
Food Res Int. 2023 Feb;164:112394. doi: 10.1016/j.foodres.2022.112394. Epub 2022 Dec 28.ABSTRACTThe development of nutritional noodles of high quality has become a new hotspot of research in the area of food science. Since wakame is edible seaweed rich in dietary fiber and proteins and rarely found in ordinary noodle, this study investigated the release of metabolites, the texture quality, and the rheological properties of wakame noodle, as well as the mechanism by which extruded wakame flours can influence noodle texture and viscoelasticity through digestion. Basically, nuclear magnetic resonance spectra were applied to identify the 46 metabolites including amino acids, saccharides, fatty acids, and other metabolites. Both PCA and OPLS-DA model showed fit goodness and good predictivity, which were assessed the increasing release of most metabolites. Structural studies discussed the effects on the enhancement of interlinkage with gluten matrix and protein matrix, which were validated via the decreasing instantaneous compliance J0 (1.64 × 10-5 to 0.16 × 10-5 Pa-1). Wakame addition best matched the physiochemical properties of noodle, in terms of chewiness (99.10 vs 122.66 g.mm), gumminess (281.98 vs. 323.44 g), and gel strength (132.65 vs 173.95 kPa•s-1). Beyond the functional characteristics it contributes benefits like reduction of diet-related diabetes. As a consequence, the creation of personalized nutritious, healthy noodles will be an innovative route from a scientific viewpoint and an application standpoint.PMID:36737976 | DOI:10.1016/j.foodres.2022.112394
Partial compression increases acidity, but decreases phenolics in jujube fruit: Evidence from targeted metabolomics
Food Res Int. 2023 Feb;164:112388. doi: 10.1016/j.foodres.2022.112388. Epub 2022 Dec 27.ABSTRACTJujube fruit (Ziziphus jujuba Mill.) is extremely susceptible to mechanical injury by extrusion and collision during storage, transportation and processing. In this study, we examined the morphology and endogenous metabolism of jujubes at three developmental stages after applying partial compression (PC) to mimic mechanical injury. Generally, PC did not affect the total soluble solids content, but increased the acidity and decreased the amount of phenolics in the jujube fruit. Targeted metabolomics analysis further confirmed that acid and phenolics content were differentially altered in response to PC. To our knowledge, this is the first study to characterize metabolic variations in ready-to-eat fruit that occur in response to physical damage. The results will provide insight into the understanding the consequences of mechanical injury on fruit nutrition and health benefits.PMID:36737973 | DOI:10.1016/j.foodres.2022.112388
Comparative metabolomics of flavonoids in twenty vegetables reveal their nutritional diversity and potential health benefits
Food Res Int. 2023 Feb;164:112384. doi: 10.1016/j.foodres.2022.112384. Epub 2022 Dec 28.ABSTRACTVegetables are rich in flavonoids and are widely consumed in our daily life. However, comprehensive information on flavonoids components in vegetable varieties and the distribution of flavonoids with health-promoting effects in different vegetables are rarely investigated. Here, we analyzed the constitution of flavonoids among 20 vegetables by widely-targeted metabolome analysis. A total of 403 flavonoids were detected and classified as flavonoid, flavonols, anthocyanins, isoflavones, flavonoid carbonoside, dihydroflavone, chalcones, flavanols, dihydroflavonol, tannin, proanthocyanidins, and other flavonoids. Interestingly, we found that the content and types of flavonoids in bean sprouts and hot pepper were relatively abundant, whereas those were lower in carrot, lettuce, and Zizania latifolia. Then, we characterized the representative flavonoids including flavonoid, flavonols, chalcones, and isoflavones, and related them to the health-promoting effects of vegetables. Finally, we examined the relevance of the flavonoids to antioxidant capacity. Both bean sprouts and hot pepper possessed higher antioxidant enzyme activity, which were responsible for their great antioxidant capacity. Our study established a database of major flavonoids components in vegetables and further provides a new hint for the selection and breeding of vegetables based on their health-promoting effects.PMID:36737968 | DOI:10.1016/j.foodres.2022.112384
Integrating transcriptomic and metabolomic analysis to understand muscle qualities of red swamp crayfish (Procambarus clarkii) under transport stress
Food Res Int. 2023 Feb;164:112361. doi: 10.1016/j.foodres.2022.112361. Epub 2023 Jan 2.ABSTRACTThis study investigated the transport stress (crowding stress and duration) on the physicochemical properties, energy metabolism and antioxidant enzyme activities of the red swamp crayfish (Procambarus clarkii) tail muscle (CTM). Besides, transcriptomic and metabolomic were conducted to elucidate the possible mechanism of CTM alternations during transport stress. The survival rate of crayfish gradually decreased with the external crowding stress and crowding time increasing. The transport stress also led to the increased distance among muscle fibers, water mobility and energy consumption, and the decreased of water holding capacity (WHC), hardness of CTM. The hepatopancreas exhibited more sensitive to crowding stress than muscle. The multi-omics analysis revealed that transport stress could interfere the translation and protein folding functions of ribosomal proteins, fatty acid metabolism and degradation, physiological functions of mitochondria in CTM. This study could provide critical information to increase the understanding of the regulation mechanism of crayfish when subjected to transport stress.PMID:36737949 | DOI:10.1016/j.foodres.2022.112361
Quality-controlled LC-ESI-MS food metabolomics of fenugreek (Trigonella foenum-graecum) sprouts: Insights into changes in primary and specialized metabolites
Food Res Int. 2023 Feb;164:112347. doi: 10.1016/j.foodres.2022.112347. Epub 2022 Dec 26.ABSTRACTFenugreek (Trigonella foenum-graecum L.) is an important food and spice with bioactive compounds against diabetes. In this study, fenugreek seeds germinating in darkness for 72 h were studied using quantification of trigonelline and 4-hydroxyisoleucine and an LC-ESI-MS/MS-based metabolomic approach capable of accurately estimating 237 features from various primary and specialized compound classes. During germination, the concentrations of trigonelline and 4-hydroxyisoleucine rose by 33.5% and 33.3%, respectively. At the same time, untargeted metabolomics revealed 9 putative flavonoids increasing 1.19- to 2.77-fold compared to the dormant seeds. A set of 19 steroid saponins rose by 1.08- to 31.86-fold. Primary metabolites however showed much more variability: abundance changes in amino acid derivatives, peptides and saccharides fell in the 0.09- to 22.25-fold, 0.93- to 478.79-fold and 0.36- to 941.58-fold ranges, respectively. To increase biosynthesis of specialized metabolites during germination, sprouts were exposed to 1-100 mM methyl jasmonate (MeJA) and methyl salicylate (MeSA). The hormone treatments affected normal metabolism: 67.1-83.1 % and 64.1-83.5 % of compounds showed a reduction compared to the controls in 100 mM MeJA and MeSA treatments at different sampling time points. Contrary to expectations, the abundance of flavonoids decreased, compared to the control sprouts (0.75- and 0.68-fold change medians, respectively). The same was observed for most, but not all steroid saponins. The quality-controlled untargeted metabolomics approach proved to yield excellent insight into the metabolic changes during germination of fenugreek. The results suggest that although fenugreek germination causes major shifts in plant metabolism, there are no major qualitative changes in bioactive specialized metabolites during the first three days. This stability likely translates into good bioactivity that is similar to that of the seeds. Because the large changes in the primary metabolites likely alter the nutritive value of the seed, further studies are warranted.PMID:36737938 | DOI:10.1016/j.foodres.2022.112347
Study on morphological traits, nutrient compositions and comparative metabolomics of diploid and tetraploid Tartary buckwheat sprouts during sprouting
Food Res Int. 2023 Feb;164:112334. doi: 10.1016/j.foodres.2022.112334. Epub 2022 Dec 20.ABSTRACTTartary buckwheat (TB) sprout is a kind of novel nutritional vegetable, but its consumption was limited by low biomass and thin hypocotyl. The tetraploid TB sprouts was considered to be able to solve this issue. However, the nutritional quality of tetraploid TB sprouts and differences between conventional (diploid) and tetraploid TB sprouts remain unclear. In this study, the morphological traits, nutrient compositions and metabolome changes of diploid and tetraploid TB sprouts were analyzed. The water, pigments and minerals contents of TB sprouts increased during sprouting, while the contents of total soluble protein, reducing sugar, cellulose, and total phenol decreased. Compared with diploid sprouts, tetraploid sprouts had higher biomass and thicker hypocotyl. Tetraploid sprouts had higher ash and carotenoid contents, but had lower phenol and flavonoid accumulation. 677 metabolites were identified in TB sprouts by UPLC-MS analysis, including 62 diseases-resistance metabolites and 43 key active ingredients. Some key bioactive metabolites, such as rimonabant, quinapril, 1-deoxynojirimycin and miglitol, were identified. 562 differential expressed metabolites (DEMs) were identified during sprouting with seven accumulation patterns, and five hormones were found to be involved in sprout development. Additionally, 209 DEMs between diploid and tetraploid sprouts were found, and some key bioactive metabolites were induced by chromosome doubling such as mesoridazine, amaralin, atractyloside A, rhamnetin and Qing Hau Sau. This work lays a basis for the development and utilization of TB sprouts and provides evidence for the selection of tetraploid varieties to produce sprouts with high biomass and quality.PMID:36737927 | DOI:10.1016/j.foodres.2022.112334
Integrated untargeted metabolome, full-length sequencing, and transcriptome analyses reveal insights into the fruit quality at different harvest times of Chaenomeles speciosa
Food Res Int. 2023 Feb;164:112314. doi: 10.1016/j.foodres.2022.112314. Epub 2022 Dec 7.ABSTRACTChaenomeles speciosa fruit is a homologous medicine and food plant with a long history of multiple uses. It could be harvested near maturity and last for a long time. However, the optimal harvest strategy of Chaenomeles speciosa for various uses is currently unavailable. Here, untargeted metabolome at different harvest times during maturation was investigated for the first time, and 896 metabolites, including sugars, organic acids, amino acids, and phenylpropanoids, were identified. Optimal harvesting methods were proposed for different purposes. During the early maturation stages (before 105 days after full bloom), Ch. speciosa fruit could be harvested as Chinesemedicine. Whereas as snacks and food, Ch. speciosa fruit might be harvested at late maturity (after 120 days after full bloom). In addition, the overall network was revealed by integrating full-length Iso-seq and transcriptomics (RNA-seq) to investigate the association between quality-associated metabolites and Chaenomeles speciosa fruit gene expression during maturation. A few putative genes were captured via screening, dissecting and correlation analysis with the quality-associated metabolites (including d-glucose, catechin, gallocatechin, and succinic acid). Overall, in addition to providing a harvesting strategy for food and medicine, we also investigated the metabolism and gene expression pattern of Chaenomeles speciosa fruit during maturation. This comprehensive data and analyses laid the foundation for further investigating potential regulatory mechanisms during harvest and provided a new possibility for its development and utilization.PMID:36737903 | DOI:10.1016/j.foodres.2022.112314
Surface Active Salivary Metabolites Indicate Oxidative Stress and Inflammation in Obstructive Sleep Apnea
Allergy Asthma Immunol Res. 2023 Feb 3. Online ahead of print.ABSTRACTPURPOSE: Obstructive sleep apnea (OSA), a highly prevalent and potentially serious sleep disorder, requires effective screening tools. Saliva is a useful biological fluid with various metabolites that might also influence upper airway patency by affecting surface tension in the upper airway. However, little is known about the composition and role of salivary metabolites in OSA. Therefore, we investigated the metabolomics signature in saliva from the OSA patients and evaluated the associations between identified metabolites and salivary surface tension.METHODS: We studied 68 subjects who visited sleep clinic due to the symptoms of OSA. All underwent full-night in-lab polysomnography. Patients with apnea-hypopnea index (AHI) < 10 were classified to the control, and those with AHI ≥ 10 were the OSA groups. Saliva samples were collected before and after sleep. The centrifuged saliva samples were analyzed by liquid chromatography with high-resolution mass spectrometry (ultra-performance liquid chromatography-tandem mass spectrometry; UPLC-MS/MS). Differentially expressed salivary metabolites were identified using open source software (XCMS) and Compound Discoverer 2.1. Metabolite set enrichment analysis (MSEA) was performed using MetaboAnalyst 5.0. The surface tension of the saliva samples was determined by the pendant drop method.RESULTS: Three human-derived metabolites (1-palmitoyl-2-[5-hydroxyl-8-oxo-6-octenoyl]-sn-glycerol-3-phosphatidylcholine [PHOOA-PC], 1-palmitoyl-2-[5-keto-8-oxo-6-octenoyl]-sn-glycerol-3-phosphatidylcholine [KPOO-PC], and 9-nitrooleate) were significantly upregulated in the after-sleep salivary samples from the OSA patients compared to the control group samples. Among the candidate metabolites, only PHOOA-PC was correlated with the AHI. In OSA samples, salivary surface tension decreased after sleep. The differences in surface tension were negatively correlated with PHOOA-PC and 9-nitrooleate concentrations. Furthermore, MSEA revealed that arachidonic acid-related metabolism pathways were upregulated in the after-sleep samples from the OSA group.CONCLUSIONS: This study revealed that salivary PHOOA-PC was correlated positively with the AHI and negatively with salivary surface tension in the OSA group. Salivary metabolomic analysis may improve our understanding of upper airway dynamics and provide new insights into novel biomarkers and therapeutic targets in OSA.PMID:37075797