PubMed
metabolomics; +25 new citations
25 new pubmed citations were retrieved for your search.
Click on the search hyperlink below to display the complete search results:
metabolomics
These pubmed results were generated on 2020/05/19PubMed comprises more than millions of citations for biomedical literature from MEDLINE, life science journals, and online books.
Citations may include links to full-text content from PubMed Central and publisher web sites.
metabolomics; +25 new citations
25 new pubmed citations were retrieved for your search.
Click on the search hyperlink below to display the complete search results:
metabolomics
These pubmed results were generated on 2020/05/19PubMed comprises more than millions of citations for biomedical literature from MEDLINE, life science journals, and online books.
Citations may include links to full-text content from PubMed Central and publisher web sites.
Lizhong decoction ameliorates ulcerative colitis in mice via modulating gut microbiota and its metabolites.
Lizhong decoction ameliorates ulcerative colitis in mice via modulating gut microbiota and its metabolites.
Appl Microbiol Biotechnol. 2020 May 17;:
Authors: Zou J, Shen Y, Chen M, Zhang Z, Xiao S, Liu C, Wan Y, Yang L, Jiang S, Shang E, Qian D, Duan J
Abstract
Ulcerative colitis (UC), a kind of inflammatory bowel disease, is generally characterized by chronic, persistent, relapsing, and nonspecific ulceration of the bowel, which is widespread in the world. Although the pathogenesis of UC is multifactorial, growing evidence has demonstrated that gut microbiota and its metabolites are closely related to the development of UC. Lizhong decoction (LZD), a well-known classical Chinese herbal prescription, has been used to clinically treat UC for long time, but its mechanism is not clear. In this study, 16S rRNA gene sequencing combining with untargeted metabolomics profiling was used to investigate how LZD worked. Results indicated that LZD could shape the gut microbiota structure and modify metabolic profiles. The abundance of opportunistic pathogens such as Clostridium sensu stricto 1, Enterobacter, and Escherichia-Shigella correlated with intestinal inflammation markedly decreased, while the levels of beneficial bacteria including Blautia, Muribaculaceae_norank, Prevotellaceae UCG-001, and Ruminiclostridium 9 elevated in various degrees. Additionally, fecal metabolite profiles reflecting microbial activities showed that adenosine, lysoPC(18:0), glycocholic acid, and deoxycholic acid notably decreased, while cholic acid, α-linolenic acid, stearidonic acid, and L-tryptophan significantly increased after LZD treatment. Hence, based on the systematic analysis of 16S rRNA gene sequencing and metabolomics of gut flora, the results provided a novel insight that microbiota and its metabolites might be potential targets for revealing the mechanism of LZD on amelioration of UC.Key Points • The potential mechanism of LZD on the amelioration of UC was firstly investigated.• LZD could significantly shape the structure of gut microbiota.• LZD could notably modulate the fecal metabolic profiling of UC mice. Graphical abstract.
PMID: 32418127 [PubMed - as supplied by publisher]
Mechanism of Huang-lian-Jie-du decoction and its effective fraction in alleviating acute ulcerative colitis in mice: Regulating arachidonic acid metabolism and glycerophospholipid metabolism.
Mechanism of Huang-lian-Jie-du decoction and its effective fraction in alleviating acute ulcerative colitis in mice: Regulating arachidonic acid metabolism and glycerophospholipid metabolism.
J Ethnopharmacol. 2020 May 14;:112872
Authors: Yuan Z, Yang L, Zhang X, Ji P, Hua Y, Wei Y
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE: Huang-lian-Jie-du decoction (HLJDD) is a traditional Chinese medicine prescription for clearing away heat, purging fire and detoxifying, which can be used to treat sepsis, stroke, Alzheimer's disease and gastrointestinal diseases. Our previous studies have shown that HLJDD can effectively alleviate acute ulcerative colitis (UC) in mice, and its n-butanol fraction (HLJDD-NBA) is the effective fraction. The aim of this study is to further investigate the mechanism of HLJDD and HLJDD-NBA in relieving UC in mice from a holistic perspective.
METHODS: The acute UC model of BABL/c mice was induced by 3.5% (w/v) dextran sodium sulfate drinking water. At the same time of modeling, HLJDD and HLJDD-NBA were given orally for treatment respectively. During the experiment, the clinical symptoms of mice were recorded and the physiological and biochemical indexes of mice were detected after the experiment. In addition, the plasma metabolites of mice in each group were detected and analyzed by ultra-high performance liquid chromatography quadrupole time of flight mass spectrometry and multivariate statistical analysis method. Then, the potential target metabolic pathway of drug intervention was screened through the enrichment analysis of differential metabolites. Finally, we use molecular simulation docking technology to further explore the molecular regulatory mechanism of HLJDD and HLJDD-NBA on potential target metabolic pathways.
RESULTS: HLJDD and HLJDD-NBA intervention can significantly reduce the disease activity index of UC mice, inhibit colon length shortening and pathological damage, and relieve the abnormal changes of physiological and biochemical parameters of UC mice. Moreover, HLJDD and HLJDD-NBA can significantly inhibit the metabolic dysfunction of UC mice by reversing the abnormal changes of 24 metabolites in UC mice, and the arachidonic acid metabolic pathway and glycerophospholipid metabolic pathway are the target metabolic pathways regulated by them. Further literature review and molecular simulation docking analysis showed that HLJDD and HLJDD-NBA may inhibit the disorder of arachidonic acid metabolism pathway and glycerophospholipid metabolism pathway by inhibiting COX-2 protein expression and PLA2, 5-LOX activity.
CONCLUSIONS: Our experiments revealed that HLJDD and HLJDD-NBA can alleviate UC of mice by regulating arachidonic acid metabolism and glycerophospholipid metabolism, which points out the direction for further research and development of HLJDD as a new anti-ulcer drug.
PMID: 32417423 [PubMed - as supplied by publisher]
Use of Single Cell -omic Technologies to Study the Gastrointestinal Tract and Diseases, From Single Cell Identities to Patient Features.
Use of Single Cell -omic Technologies to Study the Gastrointestinal Tract and Diseases, From Single Cell Identities to Patient Features.
Gastroenterology. 2020 May 14;:
Authors: Islam M, Chen B, Spraggins JM, Kelly RT, Lau KS
Abstract
Single cells are the building blocks of tissue systems that determine organ phenotypes, behaviors, and function. Understanding the differences between cell types and their activities might provide us with insights into normal tissue functions, development of disease, and new therapeutic strategies. Although -omic level single cell technologies are a relatively recent development that been used only in laboratory studies, these approaches might eventually be used in the clinic. We review the prospects of applying single cell genome, transcriptome, epigenome, proteome, and metabolome analyses to gastroenterology and hepatology research. Combining data from multi-omic platforms and rapid technological developments could lead to new diagnostic, prognostic, and therapeutic approaches.
PMID: 32417404 [PubMed - as supplied by publisher]
Psychopharmacological effects of riparin III from Aniba riparia (Nees) Mez. (Lauraceae) supported by metabolic approach and multivariate data analysis.
Psychopharmacological effects of riparin III from Aniba riparia (Nees) Mez. (Lauraceae) supported by metabolic approach and multivariate data analysis.
BMC Complement Med Ther. 2020 May 16;20(1):149
Authors: Golzio Dos Santos S, Fernandes Gomes I, Fernandes de Oliveira Golzio AM, Lopes Souto A, Scotti MT, Fechine Tavares J, Chavez Gutierrez SJ, Nóbrega de Almeida R, Barbosa-Filho JM, Sobral da Silva M
Abstract
BACKGROUND: Currently there is a high prevalence of humor disorders such as anxiety and depression throughout the world, especially concerning advanced age patients. Aniba riparia (Nees) Mez. (Lauraceae), popular known as "louro", can be found from the Amazon through Guianas until the Andes. Previous studies have already reported the isolation of alkamide-type alkaloids such as riparin III (O-methyl-N-2,6-dyhydroxy-benzoyl tyramine) which has demonstrated anxiolytic and antidepressant-like effects in high doses by intraperitoneal administration.
METHODS: Experimental protocol was conducted in order to analyze the anxiolytic-like effect of riparin III at lower doses by intravenous administration to Wistar rats (Rattus norvegicus) (n = 5). The experimental approach was designed to last 15 days, divided in 3 distinct periods of five days: control, anxiogenic and treatment periods. The anxiolytic-like effect was evaluated by experimental behavior tests such as open field and elevated plus-maze test, combined with urine metabolic footprint analysis. The urine was collected daily and analyzed by 1H NMR. Generated data were statistically treated by Principal Component Analysis in order to detect patterns among the distinct periods evaluated as well as biomarkers responsible for its distinction.
RESULTS: It was observed on treatment group that cortisol, biomarker related to physiological stress was reduced, indicating anxiolytic-like effect of riparin III, probably through activation of 5-HT2A receptors, which was corroborated by behavioral tests.
CONCLUSION: 1H NMR urine metabolic footprint combined with multivariate data analysis have demonstrated to be an important diagnostic tool to prove the anxiolytic-like effect of riparin III in a more efficient and pragmatic way.
PMID: 32416725 [PubMed - as supplied by publisher]
A simple and rapid LC-MS/MS method for the simultaneous determination of eight antipsychotics in human serum, and its application to therapeutic drug monitoring.
Related Articles
A simple and rapid LC-MS/MS method for the simultaneous determination of eight antipsychotics in human serum, and its application to therapeutic drug monitoring.
J Chromatogr B Analyt Technol Biomed Life Sci. 2020 Apr 29;1147:122129
Authors: Cao Y, Zhao F, Chen J, Huang T, Zeng J, Wang L, Sun X, Miao Y, Wang S, Chen C
Abstract
A simple and rapid liquid chromatography/tandem mass spectrometry (LC-MS/MS) method was developed and used to determine eight antipsychotics (aripiprazole, clozapine, haloperidol, olanzapine, paliperidone, quetiapine, risperidone, and ziprasidone) in human serum for practical clinical usage. Stable isotope-labeled internal standards were used for all drugs to compensate for method variability, including matrix effects, ion extraction and ionization variations. Samples were prepared by simple protein precipitation with methanol. Chromatographic separation was accomplished in less than 3.3 min on a KINTEX C18 column (50 mm × 3.0 mm, 5 μm) using a gradient elution of 2 mM aqueous ammonium formate and methanol at a flow rate of 0.5 mL/min. Quantification was performed by multiple reaction monitoring (MRM) in the positive mode. The method was fully validated according to the latest recommendations of international guidelines. The correlation coefficients of calibration curves were all greater than 0.9945. Internal standard-normalized matrix effects ranged from 96.3% to 115%, and extraction recoveries were between 88.1% and 107%. Coefficients of variation ranged from 1.82 - 13.5% for intra-day precision, 5.69-14.7% for inter-day precision, and the relative error for accuracy did not exceed ± 13.5% for any analyte. The method was successfully applied to routine clinical therapeutic drug monitoring for 2,173 samples.
PMID: 32416590 [PubMed - as supplied by publisher]
Metabolomics analyses to characterize metabolic alterations in Korean native calves by oral vitamin A supplementation.
Related Articles
Metabolomics analyses to characterize metabolic alterations in Korean native calves by oral vitamin A supplementation.
Sci Rep. 2020 May 15;10(1):8092
Authors: Peng DQ, Kim SJ, Lee HG
Abstract
Previous studies have reported that vitamin A administration in the birth stage of calves could promote preadipocyte and muscle development. However, the metabolic change after vitamin A administration remains unknown. Thus, the objective of this study was to perform metabonomics analyses to investigate the effect of vitamin A in Korean native calves. Ten newborn calves (initial average body weight: 30.4 kg [SD 2.20]) were randomly divided into two groups treated with or without vitamin A supplementation (0 IU vs. 25,000 IU vitamin A/day) for two months until weaning. Metabolic changes in the serum and longissimus dorsi muscle of calves were investigated using GC-TOF-MS and multivariate statistical analysis. As a result, ten metabolic parameters in the serum and seven metabolic parameters in the longissimus dorsi muscle were down-regulated in the vitamin A treatment group compared to those in the control group (VIP value > 1.0, p < 0.05). Both serum and longissimus dorsi muscle showed lower levels of cholesterol and myo-inositol in the vitamin A treatment group than in the control group (p < 0.05). These results indicate that vitamin A supplementation in the early growth period of calf could maintain the preadipocyte status, which can contribute to future adipogenesis in the intramuscular fat production of Korean native cattle.
PMID: 32415141 [PubMed - as supplied by publisher]
Unique properties of a subset of human pluripotent stem cells with high capacity for self-renewal.
Related Articles
Unique properties of a subset of human pluripotent stem cells with high capacity for self-renewal.
Nat Commun. 2020 May 15;11(1):2420
Authors: Lau KX, Mason EA, Kie J, De Souza DP, Kloehn J, Tull D, McConville MJ, Keniry A, Beck T, Blewitt ME, Ritchie ME, Naik SH, Zalcenstein D, Korn O, Su S, Romero IG, Spruce C, Baker CL, McGarr TC, Wells CA, Pera MF
Abstract
Archetypal human pluripotent stem cells (hPSC) are widely considered to be equivalent in developmental status to mouse epiblast stem cells, which correspond to pluripotent cells at a late post-implantation stage of embryogenesis. Heterogeneity within hPSC cultures complicates this interspecies comparison. Here we show that a subpopulation of archetypal hPSC enriched for high self-renewal capacity (ESR) has distinct properties relative to the bulk of the population, including a cell cycle with a very low G1 fraction and a metabolomic profile that reflects a combination of oxidative phosphorylation and glycolysis. ESR cells are pluripotent and capable of differentiation into primordial germ cell-like cells. Global DNA methylation levels in the ESR subpopulation are lower than those in mouse epiblast stem cells. Chromatin accessibility analysis revealed a unique set of open chromatin sites in ESR cells. RNA-seq at the subpopulation and single cell levels shows that, unlike mouse epiblast stem cells, the ESR subset of hPSC displays no lineage priming, and that it can be clearly distinguished from gastrulating and extraembryonic cell populations in the primate embryo. ESR hPSC correspond to an earlier stage of post-implantation development than mouse epiblast stem cells.
PMID: 32415101 [PubMed - as supplied by publisher]
Inhibition of Glycolysis in Pathogenic TH17 Cells through Targeting a miR -21-Peli1-c-Rel Pathway Prevents Autoimmunity.
Related Articles
Inhibition of Glycolysis in Pathogenic TH17 Cells through Targeting a miR -21-Peli1-c-Rel Pathway Prevents Autoimmunity.
J Immunol. 2020 May 15;:
Authors: Qiu R, Yu X, Wang L, Han Z, Yao C, Cui Y, Hou G, Dai D, Jin W, Shen N
Abstract
It is well known that some pathogenic cells have enhanced glycolysis; the regulatory network leading to increased glycolysis are not well characterized. In this study, we show that CNS-infiltrated pathogenic TH17 cells from diseased mice specifically upregulate glycolytic pathway genes compared with homeostatic intestinal TH17 cells. Bioenergetic assay and metabolomics analyses indicate that in vitro-derived pathogenic TH17 cells are highly glycolytic compared with nonpathogenic TH17 cells. Chromatin landscape analyses demonstrate TH17 cells in vivo that show distinct chromatin states, and pathogenic TH17 cells show enhanced chromatin accessibility at glycolytic genes with NF-κB binding sites. Mechanistic studies reveal that miR-21 targets the E3 ubiquitin ligase Peli1-c-Rel pathway to promote glucose metabolism of pathogenic TH17 cells. Therapeutic targeting c-Rel-mediated glycolysis in pathogenic TH17 cells represses autoimmune diseases. These findings extend our understanding of the regulation TH17 cell glycolysis in vivo and provide insights for future therapeutic intervention to TH17 cell-mediated autoimmune diseases.
PMID: 32414810 [PubMed - as supplied by publisher]
Untargeted metabolomics predicts the functional outcome of ischemic stroke.
Related Articles
Untargeted metabolomics predicts the functional outcome of ischemic stroke.
J Formos Med Assoc. 2020 May 13;:
Authors: Chi NF, Chang TH, Lee CY, Wu YW, Shen TA, Chan L, Chen YR, Chiou HY, Hsu CY, Hu CJ
Abstract
BACKGROUND/PURPOSE: Metabolites in blood have been found associated with the occurrence of vascular diseases, but its role in the functional recovery of stroke is unclear. The aim of this study is to investigate whether the untargeted metabolomics at the acute stage of ischemic stroke is able to predict functional recovery.
METHODS: One hundred and fifty patients with acute ischemic stroke were recruited and followed up for 3 months. Fasting blood samples within 7 days of stroke were obtained, liquid chromatography and mass spectrometry were applied to identify outcome-associated metabolites. The patients' clinical characteristics and identified metabolites were included for constructing the outcome prediction model using machine learning approaches.
RESULTS: By using multivariate analysis, 220 differentially expressed metabolites (DEMs) were discovered between patients with favorable outcomes (modified Rankin Scale, mRS ≤ 2 at 3 months, n = 77) and unfavorable outcomes (mRS ≥ 3 at 3 months, n = 73). After feature selection, 63 DEMs were chosen for constructing the outcome prediction model. The predictive accuracy was below 0.65 when including patients' clinical characteristics, and could reach 0.80 when including patients' clinical characteristics and 63 selected DEMs. The functional enrichment analysis identified platelet activating factor (PAF) as the strongest outcome-associated metabolite, which involved in proinflammatory mediators release, arachidonic acid metabolism, eosinophil degranulation, and production of reactive oxygen species.
CONCLUSION: Metabolomics is a potential method to explore the blood biomarkers of acute ischemic stroke. The patients with unfavorable outcomes had a lower PAF level compared to those with favorable outcomes.
PMID: 32414667 [PubMed - as supplied by publisher]
PlantaSyst: Teaming up for Systems Biology and Biotechnology.
Related Articles
PlantaSyst: Teaming up for Systems Biology and Biotechnology.
Trends Plant Sci. 2020 May 12;:
Authors: Gechev T, Georgiev MI, Fernie AR
Abstract
We describe the principles of PlantaSYST as an example for the novel European Teaming projects, funded under the 'Spreading Excellence and Widening Participation' Horizon 2020 program. The goal of the Teaming projects is to bridge the gap between research centers with low and high participation in the EU framework program.
PMID: 32414602 [PubMed - as supplied by publisher]
A Metabolomic Approach for Predicting Diurnal Changes in Cortisol.
Related Articles
A Metabolomic Approach for Predicting Diurnal Changes in Cortisol.
Metabolites. 2020 May 13;10(5):
Authors: Eshima J, Davis TJ, Bean HD, Fricks J, Smith BS
Abstract
Introduction: The dysregulation of cortisol secretion has been associated with a number of mental health and mood disorders. However, diagnostics for mental health and mood disorders are behavioral and lack biological contexts. Objectives: The goal of this work is to identify volatile metabolites capable of predicting changes in total urinary cortisol across the diurnal cycle for long-term stress monitoring in psychological disorders. Methods: We applied comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry to sample the urinary volatile metabolome using an untargeted approach across three time points in a single day for 60 subjects. Results: The finalized multiple regression model includes 14 volatile metabolites and 7 interaction terms. A review of the selected metabolites suggests pyrrole, 6-methyl-5-hepten-2-one and 1-iodo-2-methylundecane may originate from endogenous metabolic mechanisms influenced by glucocorticoid signaling mechanisms. Conclusion: This analysis demonstrated the feasibility of using specific volatile metabolites for the prediction of secreted cortisol across time.
PMID: 32414047 [PubMed - as supplied by publisher]
Role of the Mitochondrial Citrate-malate Shuttle in Hras12V-Induced Hepatocarcinogenesis: A Metabolomics-Based Analysis.
Related Articles
Role of the Mitochondrial Citrate-malate Shuttle in Hras12V-Induced Hepatocarcinogenesis: A Metabolomics-Based Analysis.
Metabolites. 2020 May 13;10(5):
Authors: Lei C, Chen J, Li H, Fan T, Zheng X, Wang H, Zhang N, Liu Y, Luo X, Wang J, Wang A
Abstract
The activation of the Ras signaling pathway is a crucial process in hepatocarcinogenesis. Till now, no reports have scrutinized the role of dynamic metabolic changes in Ras oncogene-induced transition of the normal and precancerous liver cells to hepatocellular carcinoma in vivo. In the current study, we attempted a comprehensive investigation of Hras12V transgenic mice (Ras-Tg) by concatenating nontargeted metabolomics, transcriptomics analysis, and targeted-metabolomics incorporating [U-13C] glucose. A total of 631 peaks were detected, out of which 555 metabolites were screened. Besides, a total of 122 differently expressed metabolites (DEMs) were identified, and they were categorized and subtyped with the help of variation tendency analysis of the normal (W), precancerous (P), and hepatocellular carcinoma (T) liver tissues. Thus, the positive or negative association between metabolites and the hepatocellular carcinoma and Ras oncogene were identified. The bioinformatics analysis elucidated the hepatocarcinogenesis-associated significant metabolic pathways: glycolysis, mitochondrial citrate-malate shuttle, lipid biosynthesis, pentose phosphate pathway (PPP), cholesterol and bile acid biosynthesis, and glutathione metabolism. The key metabolites and enzymes identified in this analysis were further validated. Moreover, we confirmed the PPP, glycolysis, and conversion of pyruvate to cytosol acetyl-CoA by mitochondrial citrate-malate shuttle, in vivo, by incorporating [U-13C] glucose. In summary, the current study presented the comprehensive bioinformatics analysis, depicting the Ras oncogene-induced dynamic metabolite variations in hepatocarcinogenesis. A significant finding of our study was that the mitochondrial citrate-malate shuttle plays a crucial role in detoxification of lactic acid, maintenance of mitochondrial integrity, and enhancement of lipid biosynthesis, which, in turn, promotes hepatocarcinogenesis.
PMID: 32414018 [PubMed - as supplied by publisher]
Metabolomics Analysis Reveals Global Metabolic Changes in the Evolved E. coli Strain with Improved Growth and 1-Butanol Production in Minimal Medium.
Related Articles
Metabolomics Analysis Reveals Global Metabolic Changes in the Evolved E. coli Strain with Improved Growth and 1-Butanol Production in Minimal Medium.
Metabolites. 2020 May 13;10(5):
Authors: Laviña WA, Sakurai SSM, Pontrelli S, Putri SP, Fukusaki E
Abstract
Production of 1-butanol from microorganisms has garnered significant interest due to its prospect as a drop-in biofuel and precursor for a variety of commercially relevant chemicals. Previously, high 1-butanol titer has been reported in Escherichia coli strain JCL166, which contains a modified clostridial 1-butanol pathway. Although conventional and metabolomics-based strain improvement strategies of E. coli strain JCL166 have been successful in improving production in rich medium, 1-butanol titer was severely limited in minimal medium. To further improve growth and consequently 1-butanol production in minimal medium, adaptive laboratory evolution (ALE) using mutD5 mutator plasmid was done on JCL166. Comparative metabolomics analysis of JCL166 and BP1 revealed global perturbations in the evolved strain BP1 compared to JCL166 (44 out of 64 metabolites), encompassing major metabolic pathways such as glycolysis, nucleotide biosynthesis, and CoA-related processes. Collectively, these metabolic changes in BP1 result in improved growth and, consequently, 1-butanol production in minimal medium. Furthermore, we found that the mutation in ihfB caused by ALE had a significant effect on the metabolome profile of the evolved strain. This study demonstrates how metabolomics was utilized for characterization of ALE-developed strains to understand the overall effect of mutations acquired through evolution.
PMID: 32414016 [PubMed - as supplied by publisher]
metabolomics; +24 new citations
24 new pubmed citations were retrieved for your search.
Click on the search hyperlink below to display the complete search results:
metabolomics
These pubmed results were generated on 2020/05/16PubMed comprises more than millions of citations for biomedical literature from MEDLINE, life science journals, and online books.
Citations may include links to full-text content from PubMed Central and publisher web sites.
metabolomics; +24 new citations
24 new pubmed citations were retrieved for your search.
Click on the search hyperlink below to display the complete search results:
metabolomics
These pubmed results were generated on 2020/05/16PubMed comprises more than millions of citations for biomedical literature from MEDLINE, life science journals, and online books.
Citations may include links to full-text content from PubMed Central and publisher web sites.
metabolomics; +24 new citations
24 new pubmed citations were retrieved for your search.
Click on the search hyperlink below to display the complete search results:
metabolomics
These pubmed results were generated on 2020/05/15PubMed comprises more than millions of citations for biomedical literature from MEDLINE, life science journals, and online books.
Citations may include links to full-text content from PubMed Central and publisher web sites.
metabolomics; +20 new citations
20 new pubmed citations were retrieved for your search.
Click on the search hyperlink below to display the complete search results:
metabolomics
These pubmed results were generated on 2020/05/14PubMed comprises more than millions of citations for biomedical literature from MEDLINE, life science journals, and online books.
Citations may include links to full-text content from PubMed Central and publisher web sites.
metabolomics; +20 new citations
20 new pubmed citations were retrieved for your search.
Click on the search hyperlink below to display the complete search results:
metabolomics
These pubmed results were generated on 2020/05/14PubMed comprises more than millions of citations for biomedical literature from MEDLINE, life science journals, and online books.
Citations may include links to full-text content from PubMed Central and publisher web sites.