Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

The lipidome of <em>Crithidia fasiculata</em>and its plasticity

Mon, 21/11/2022 - 12:00
Front Cell Infect Microbiol. 2022 Oct 28;12:945750. doi: 10.3389/fcimb.2022.945750. eCollection 2022.ABSTRACTCrithidia fasiculata belongs to the trypanosomatidae order of protozoan parasites, bearing close relation to other kinetoplastid parasites such as Trypanosoma brucei and Leishmania spp. As an early diverging lineage of eukaryotes, the study of kinetoplastid parasites has provided unique insights into alternative mechanisms to traditional eukaryotic metabolic pathways. Crithidia are a monogenetic parasite for mosquito species and have two distinct lifecycle stages both taking place in the mosquito gut. These consist of a motile choanomastigote form and an immotile amastigote form morphologically similar to amastigotes in Leishmania. Owing to their close relation to Leishmania, Crithidia are a growing research tool, with continuing interest in its use as a model organism for kinetoplastid research with the added benefit that they are non-pathogenic to humans and can be grown with no special equipment or requirements for biological containment. Although comparatively little research has taken place on Crithidia, similarities to other kinetoplast species has been shown in terms of energy metabolism and genetics. Crithidia also show similarities to kinetoplastids in their production of the monosaccharide D-arabinopyranose similar to Leishmania, which is incorporated into a lipoarabinogalactan a major cell surface GPI-anchored molecule. Additionally, Crithidia have been used as a eukaryotic expression system to express proteins from other kinetoplastids and potentially other eukaryotes including human proteins allowing various co- and post-translational protein modifications to the recombinant proteins. Despite the obvious usefulness and potential of this organism very little is known about its lipid metabolism. Here we describe a detailed lipidomic analyses and demonstrate the possible placidity of Crithidia's lipid metabolis. This could have important implications for biotechnology approaches and how other kinetoplastids interact with, and scavenge nutrients from their hosts.PMID:36405970 | PMC:PMC9671073 | DOI:10.3389/fcimb.2022.945750

Antcin A, a phytosterol regulates SARS-CoV-2 spike protein-mediated metabolic alteration in THP-1 cells explored by the <sup>1</sup> H-NMR-based metabolomics approach

Mon, 21/11/2022 - 12:00
Phytother Res. 2022 Nov 21. doi: 10.1002/ptr.7670. Online ahead of print.ABSTRACTThe mechanism of SARS-CoV-2 spike protein-mediated perturbations of metabolic pathways and modulation of antcin A, a steroid-like compound isolated from Taiwanofungus camphoratus, are not studied. Here, we investigated the metabolic alteration by SARS-CoV-2 spike protein and the regulatory effect of antcin A on SARS-CoV-2 spike protein-induced metabolic changes in the Phorbol 12-myristate 13-acetate (PMA)-induced human monocytes (THP-1) using proton nuclear magnetic resonance (1 H-NMR) and MetaboAnalyst 5.0 software. The cytotoxic potential of SARS-CoV-2 spike protein, antcin A, and dexamethasone was assessed by MTT assay. The metabolomic perturbations and their relation to human coronaviruses' receptors were evaluated by qPCR. This study indicated that the altered metabolites mediated by SARS-CoV-2 protein, such as methionine, phosphoenolpyruvic acid, canadine, glutamine, ethanolamine, and phenylalanine, were significantly reversed by antcin A. In addition, antcin A significantly inhibited SARS-CoV-2 spike protein-mediated up-regulation of TLR-4 and ACE2 receptors, while GRP78 inhibition was not statistically significant. This is the first study to use 1 H-NMR to investigate SARS-CoV-2 spike protein-induced metabolomic changes in PMA-induced THP-1 cells. Antcin A significantly reversed metabolomic alters while dexamethasone failed to fix them. Therefore, we believe that antcin A could be a potential candidate for therapeutic agents for viral infections related to a metabolic abnormality.PMID:36411492 | DOI:10.1002/ptr.7670

Tumor microenvironment-associated lactate metabolism regulates the prognosis and precise checkpoint immunotherapy outcomes of patients with lung adenocarcinoma

Mon, 21/11/2022 - 12:00
Eur J Med Res. 2022 Nov 21;27(1):256. doi: 10.1186/s40001-022-00895-6.ABSTRACTBACKGROUND: Despite the wide clinical application of checkpoint inhibitor immunotherapy in lung adenocarcinoma, its limited benefit to patients remains puzzling to researchers. One of the mechanisms of immunotherapy resistance may be the dysregulation of lactate metabolism in the immunosuppressive tumor microenvironment (TME), which can inhibit dendritic cell maturation and prevent T-cell invasion into tumors. However, the key genes related to lactate metabolism and their influence on the immunotherapeutic effects in lung adenocarcinoma have not yet been investigated in depth.METHODS: In this study, we first surveyed the dysregulated expression of genes related to lactate metabolism in lung adenocarcinoma and then characterized their biological functions. Using machine learning methods, we constructed a lactate-associated gene signature in The Cancer Genome Atlas cohort and validated its effectiveness in predicting the prognosis and immunotherapy outcomes of patients in the Gene Expression Omnibus cohorts.RESULTS: A 7-gene signature based on the metabolomics related to lactate metabolism was found to be associated with multiple important clinical features of cancer and was an independent prognostic factor.CONCLUSIONS: These results suggest that rather than being simply a metabolic byproduct of glycolysis, lactate in the TME can affect immunotherapy outcomes. Therefore, the mechanism underlying this effect of lactate is worthy of further study.PMID:36411477 | DOI:10.1186/s40001-022-00895-6

Investigation of reversible histone acetylation and dynamics in gene expression regulation using 3D liver spheroid model

Mon, 21/11/2022 - 12:00
Epigenetics Chromatin. 2022 Nov 21;15(1):35. doi: 10.1186/s13072-022-00470-7.ABSTRACTBACKGROUND: Three-dimensional (3D) cell culture has emerged as an alternative approach to 2D flat culture to model more accurately the phenotype of solid tissue in laboratories. Culturing cells in 3D more precisely recapitulates physiological conditions of tissues, as these cells reduce activities related to proliferation, focusing their energy consumption toward metabolism and homeostasis.RESULTS: Here, we demonstrate that 3D liver spheroids are a suitable system to model chromatin dynamics and response to epigenetics inhibitors. To delay necrotic tissue formation despite proliferation arrest, we utilize rotating bioreactors that apply active media diffusion and low shearing forces. We demonstrate that the proteome and the metabolome of our model resemble typical liver functions. We prove that spheroids respond to sodium butyrate (NaBut) treatment, an inhibitor of histone deacetylases (HDACi), by upregulating histone acetylation and transcriptional activation. As expected, NaBut treatment impaired specific cellular functions, including the energy metabolism. More importantly, we demonstrate that spheroids reestablish their original proteome and transcriptome, including pre-treatment levels of histone acetylation, metabolism, and protein expression once the standard culture condition is restored after treatment. Given the slow replication rate (> 40 days) of cells in 3D spheroids, our model enables to monitor the recovery of approximately the same cells that underwent treatment, demonstrating that NaBut does not have long-lasting effects on histone acetylation and gene expression. These results suggest that our model system can be used to quantify molecular memory on chromatin.CONCLUSION: Together, we established an innovative cell culture system that can be used to model anomalously decondensing chromatin in physiological cell growth and rule out epigenetics inheritance if cells recover the original phenotype after treatment. The transient epigenetics effects demonstrated here highlight the relevance of using a 3D culture model system that could be very useful in studies requiring long-term drug treatment conditions that would not be possible using a 2D cell monolayer system.PMID:36411440 | DOI:10.1186/s13072-022-00470-7

An odorant-binding protein in the elephant's trunk is finely tuned to sex pheromone (Z)-7-dodecenyl acetate

Mon, 21/11/2022 - 12:00
Sci Rep. 2022 Nov 21;12(1):19982. doi: 10.1038/s41598-022-24214-5.ABSTRACTChemical communication in elephants has been well studied at the chemical and behavioural levels. Pheromones have been identified in the Asian elephant (Elephas maximus), including (Z)-7-dodecenyl acetate and frontalin, and their specific effects on the sexual behaviour of elephants have been accurately documented. In contrast, our knowledge on the proteins mediating detection of pheromones in elephants remains poor and superficial, with only three annotated and reliable entries in sequence databases, two of them being odorant-binding proteins (OBPs), and the third a member of von Ebner's gland (VEG) proteins. Proteomic analysis of trunk wash extract from African elephant (Loxodonta africana) identified one of the OBPs (LafrOBP1) as the main component. We therefore expressed LafrOBP1 and its Asian elephant orthologue in yeast Pichia pastoris and found that both recombinant proteins, as well as the natural LafrOBP1 are tuned to (Z)-7-dodecenyl acetate, but have no affinity for frontalin. Both the natural and recombinant LafrOBP1 carry post-translational modifications such as O-glycosylation, phosphorylation and acetylation, but as these modifications affect only a very small amount of the protein, we cannot establish their potential effects on the ligand-binding properties of OBP1.PMID:36411331 | DOI:10.1038/s41598-022-24214-5

Differential integrated stress response and asparagine production drive symbiosis and therapy resistance of pancreatic adenocarcinoma cells

Mon, 21/11/2022 - 12:00
Nat Cancer. 2022 Nov 21. doi: 10.1038/s43018-022-00463-1. Online ahead of print.ABSTRACTThe pancreatic tumor microenvironment drives deregulated nutrient availability. Accordingly, pancreatic cancer cells require metabolic adaptations to survive and proliferate. Pancreatic cancer subtypes have been characterized by transcriptional and functional differences, with subtypes reported to exist within the same tumor. However, it remains unclear if this diversity extends to metabolic programming. Here, using metabolomic profiling and functional interrogation of metabolic dependencies, we identify two distinct metabolic subclasses among neoplastic populations within individual human and mouse tumors. Furthermore, these populations are poised for metabolic cross-talk, and in examining this, we find an unexpected role for asparagine supporting proliferation during limited respiration. Constitutive GCN2 activation permits ATF4 signaling in one subtype, driving excess asparagine production. Asparagine release provides resistance during impaired respiration, enabling symbiosis. Functionally, availability of exogenous asparagine during limited respiration indirectly supports maintenance of aspartate pools, a rate-limiting biosynthetic precursor. Conversely, depletion of extracellular asparagine with PEG-asparaginase sensitizes tumors to mitochondrial targeting with phenformin.PMID:36411320 | DOI:10.1038/s43018-022-00463-1

Multi-omics signatures of the human early life exposome

Mon, 21/11/2022 - 12:00
Nat Commun. 2022 Nov 21;13(1):7024. doi: 10.1038/s41467-022-34422-2.ABSTRACTEnvironmental exposures during early life play a critical role in life-course health, yet the molecular phenotypes underlying environmental effects on health are poorly understood. In the Human Early Life Exposome (HELIX) project, a multi-centre cohort of 1301 mother-child pairs, we associate individual exposomes consisting of >100 chemical, outdoor, social and lifestyle exposures assessed in pregnancy and childhood, with multi-omics profiles (methylome, transcriptome, proteins and metabolites) in childhood. We identify 1170 associations, 249 in pregnancy and 921 in childhood, which reveal potential biological responses and sources of exposure. Pregnancy exposures, including maternal smoking, cadmium and molybdenum, are predominantly associated with child DNA methylation changes. In contrast, childhood exposures are associated with features across all omics layers, most frequently the serum metabolome, revealing signatures for diet, toxic chemical compounds, essential trace elements, and weather conditions, among others. Our comprehensive and unique resource of all associations ( https://helixomics.isglobal.org/ ) will serve to guide future investigation into the biological imprints of the early life exposome.PMID:36411288 | DOI:10.1038/s41467-022-34422-2

Mass spectrometry imaging techniques: a versatile toolbox for plant metabolomics

Mon, 21/11/2022 - 12:00
Trends Plant Sci. 2022 Nov 18:S1360-1385(22)00294-1. doi: 10.1016/j.tplants.2022.10.009. Online ahead of print.NO ABSTRACTPMID:36411181 | DOI:10.1016/j.tplants.2022.10.009

Targeted Discovery of Sorbicillinoid Pigments with Anti-Inflammatory Activity from the Sponge-Derived Fungus <em>Stagonospora</em> sp. SYSU-MS7888 Using the PMG Strategy

Mon, 21/11/2022 - 12:00
J Agric Food Chem. 2022 Nov 21. doi: 10.1021/acs.jafc.2c05940. Online ahead of print.ABSTRACTAn effective identification and discovery of fungal pigments is very important to illustrate the role of fungal pigments in the life process and conduce to the discovery of new bioactive and edible pigments. The phenotype combined with metabolomic and genomic (PMG) strategy led to the discovery and characterization of three new sorbicillinoid pigments, stasorbicillinoids A-C (1-3), and five known analogues (4-8) from the sponge-derived fungus Stagonospora sp. SYSU-MS7888. Their structures were elucidated by the application of spectroscopic methods (NMR, MS, UV, IR, and ECD) and modified Mosher's method. Compounds 1 and 2 featured novel naphthone nuclei linked by two alkyl side chains possibly undergoing inter- and intramolecular Michael reactions. Compounds 1-8 exhibited potent anti-inflammatory activity with IC50 values in the range of 3.56-22.8 μM. Furthermore, compound 2 inhibited the production of IL-1β, IL-6, and TNF-α in a dose-dependent manner. This study provides an effective strategy to accelerate the discovery of new fungal pigments and further exploration of their potential applications in different fields such as medicine and food industries.PMID:36410725 | DOI:10.1021/acs.jafc.2c05940

Effect of Acylated and Nonacylated Anthocyanins on Urine Metabolic Profile during the Development of Type 2 Diabetes in Zucker Diabetic Fatty Rats

Mon, 21/11/2022 - 12:00
J Agric Food Chem. 2022 Nov 21. doi: 10.1021/acs.jafc.2c06802. Online ahead of print.ABSTRACTThe effect of nonacylated and acylated anthocyanins on urinary metabolites in diabetic rats was investigated. Nonacylated anthocyanins extract from bilberries (NAAB) or acylated anthocyanins extract from purple potatoes (AAPP) was given to Zucker diabetic fatty (ZDF) rats for 8 weeks at daily doses of 25 and 50 mg/kg body weight. 1H NMR metabolomics was applied to study alterations in urinary metabolites from three time points (weeks 1, 4, and 8). Both types of anthocyanins modulated the metabolites associated with the tricarboxylic acid cycle, gut microbiota metabolism, and renal function at weeks 1 and 4, such as 2-oxoglutarate, fumarate, alanine, trigonelline, and hippurate. In addition, only a high dose of AAPP decreased monosaccharides, formate, lactate, and glucose levels at week 4, suggesting improvement in energy production in mitochondria, glucose homeostasis, and oxidative stress. This study suggested different impacts of AAPP and NAAB on the metabolic profile of urine in diabetes.PMID:36410712 | DOI:10.1021/acs.jafc.2c06802

Dysregulated energy metabolism impairs chondrocyte function in osteoarthritis

Mon, 21/11/2022 - 12:00
Osteoarthritis Cartilage. 2022 Nov 18:S1063-4584(22)00927-X. doi: 10.1016/j.joca.2022.11.004. Online ahead of print.ABSTRACTOBJECTIVES: Metabolic pathways are a series of chemical reactions by which cells take in nutrient substrates for energy and building blocks needed to maintain critical cellular processes. Details of chondrocyte metabolism and how it rewires during the progression of osteoarthritis (OA) are unknown. This research aims to identify what changes in the energy metabolic state occur in OA cartilage.METHODS: Patient matched OA and non-OA cartilage specimens were harvested from total knee replacement patients. Cartilage was first collected for metabolomics, proteomics, and transcriptomics analyses to study global alterations in OA metabolism. We then determined the metabolic routes by tracking [U-13C] isotope with liquid chromatography-mass spectrometry (LC-MS). We further evaluated cellular bioenergetic profiles by measuring oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) and investigated the effects of low-dose and short-term effects of 2-deoxyglucose (2DG) on chondrocytes.RESULTS: OA chondrocytes showed increased basal ECAR and more lactate production compared to non-OA chondrocytes. [U-13C] glucose labelling revealed that less glucose-derived carbon entered the TCA cycle. On the other hand, mitochondrial respiratory rates were markedly decreased in the OA chondrocytes compared to non-OA chondrocytes. These changes were accompanied by decreased cellular ATP production, mitochondrial membrane potential and disrupted mitochondrial morphology. We further demonstrated in vitro that short-term inhibition of glycolysis suppressed matrix degeneration gene expression in chondrocytes and bovine cartilage explants cultured under inflammatory conditions.CONCLUSION: This study represents the first comprehensive comparative analysis of metabolism in OA chondrocytes and lays the groundwork for therapeutic targeting of metabolism in OA.PMID:36410637 | DOI:10.1016/j.joca.2022.11.004

UPLC-Q-Exactive-based rats serum metabolomics for characterization of traditional Chinese medicine Natures and Flavors

Mon, 21/11/2022 - 12:00
J Ethnopharmacol. 2022 Nov 18:115931. doi: 10.1016/j.jep.2022.115931. Online ahead of print.ABSTRACTETHNOPHARMACOLOGY RELEVANT: "Four Natures and five "Flavors" comes from the high generalization of medicine pharmacological rules from clinical practice by ancients. "Flavor" and "Natures"are both descriptions of the effect properties of traditional Chinese medicine. At present, researchers have realized that the "Flavors" (Pungent, Sour, Sweet, Bitter and Salty) are related to the different pharmacological effects of treatment. The "Natures" (Warm, Hot, Cold and Cool) are closely related to energy and substance metabolism and contribute to the effect of the "Flavors". Since "Four Natures and five Flavors" are the rules derived from clinical practice, how to describe and characterize "Natures" and "Flavors" scientifically is still a problem that needs to be solved.AIM OF THE STUDY: the aim is to objectively further understand the scientific connotations of properties ("Flavors"and "Natures") from the perspective of metabolomics and characterize them by metabolites.MATERIALS AND METHOD: "Pungent-Neutral", "Sweet-Neutral and "Bitter-Neutral" TCMs were selected to characterize the "Flavors" (Pungent, Sweet and Bitter). "Pungent-Warm" and "Bitter-Cold" were selected to characterize the "Natures" (Warm and Cold). The rat serum metabolomics was performed on UHPLC-Q-Exactive. Metabolites were identified through the metabolites databases and related literature.RESULTS: The "Flavors" and "Natures" metabolites were identified, respectively, including four "Pungent", four "Sweet" and thirteen "Bitter" characterized metabolites and thirteen "Cold" and sixteen "Warm"related metabolites.CONCLUSIONS: The "Natures" characterized metabolites show the "Natures" are closely related to lipid and energy metabolism. The "Warm" may promote lipid metabolism to produce ATP to generate energy through bile acid metabolism and purine metabolism. The "Cold" may inhibit lipid metabolism to generate ATP to decrease energy through the way of tryptophan metabolism and purine metabolism. The "Flavors" characteristic metabolites can provide a theoretical basis for the rules of the "Flavors". These metabolites can also be used to characterize TCM's "Natures" and "Flavors" in the development of traditional Chinese medicine resources and quality control.PMID:36410573 | DOI:10.1016/j.jep.2022.115931

Polygenic risk in Type III hyperlipidaemia and risk of cardiovascular disease: An epidemiological study in UK Biobank and Oxford Biobank

Mon, 21/11/2022 - 12:00
Int J Cardiol. 2022 Nov 18:S0167-5273(22)01711-9. doi: 10.1016/j.ijcard.2022.11.024. Online ahead of print.ABSTRACTBACKGROUND: Type III hyperlipidaemia (T3HL) is characterised by equimolar increases in plasma triglycerides (TG) and cholesterol in <10% of APOE22 carriers conveying high cardiovascular disease (CVD) risk. We investigate the role of a weighted triglyceride-raising polygenic score (TG.PS) precipitating T3HL.METHODS: The TG.PS (restricted to genome-wide significance and weighted by published independent effect estimates) was applied to the Oxford Biobank (OBB, n = 6952) and the UK Biobank (UKB, n = 460,037), to analyse effects on plasma lipid phenotypes. Fasting plasma lipid, lipoprotein biochemistry and NMR lipoprotein profiles were analysed in OBB. CVD prevalence/incidence was examined in UKB.RESULTS: One TG.PS standard-deviation (SD) was associated with 13.0% (95% confidence-interval 12.0-14.0%) greater TG in OBB and 15.2% (15.0-15.4%) in UKB. APOE22 carriers had 19.0% (1.0-39.0%) greater TG in UKB. Males were more susceptible to TG.PS effects (4.0% (2.0-6.0%) greater TG with 1 TG.PS SD in OBB, 1.6% (1.3-1.9%) in UKB) than females. There was no interaction between APOE22 and TG.PS, BMI, sex or age on TG. APOE22 carriers had lower apolipoprotein B (apoB) (OBB; -0.35 (-0.29 to -0.40)g/L, UKB; -0.41 (-0.405 to -0.42)g/L). NMR lipoprotein lipid concentrations were discordant to conventional biochemistry in APOE22 carriers. In APOE22 compared with APOE33, CVD was no more prevalent in similarly hypertriglyceridaemic participants (OR 0.97 95%CI 0.76-1.25), but was less prevalent in normolipidaemia (OR 0.81, 95%CI 0.69-0.95); no differences were observed in CVD incidence.CONCLUSIONS: TG.PS confers an additive risk for developing T3HL, that is of comparable effect size to conventional risk factors. The protective effect of APOE22 for prevalent CVD is consistent with lower apoB in APOE22 carriers.PMID:36410544 | DOI:10.1016/j.ijcard.2022.11.024

Divergent responses in the gut microbiome and liver metabolome to ammonia stress in three freshwater turtles

Mon, 21/11/2022 - 12:00
Sci Total Environ. 2022 Nov 18:160372. doi: 10.1016/j.scitotenv.2022.160372. Online ahead of print.ABSTRACTAmmonia is a common pollutant in aquaculture system, and toxic to all aquatic animals. However, different aquatic animals exhibit diverse physiological responses to high-level ammonia exposure, potentially indicating their divergent resistance to ammonia stress. In this study, juveniles of three freshwater turtles (Mauremys reevesii, Pseudemys nelsoni and Trachemys scripta elegans) were exposed to different concentrations of ammonia (0, 0.3 and 3.0 mg/L) for 30 days, and their swimming, growth performance, gut microbiota, and hepatic metabolites were measured to evaluate the interspecific difference in physiological responses to ammonia stress. Despite no differences in swimming ability, growth rate, and gut microbial diversity, observable changes in microbial community composition and hepatic metabolite profiles were shown in ammonia-exposed turtles. A relatively higher abundance of potentially pathogenic bacteria was found in M. reevesii than in the other two species. Moreover, microbial compositions and metabolic responses differed significantly among the three species. M. reevesii was, out of the three tested species, the one in which exposure to ammonia had the greatest effect on changes in bacterial genera and hepatic metabolites. Conversely, only a few metabolites were significantly changed in T. scripta elegans. Integrating these findings, we speculated that native M. reevesii should be more vulnerable to ammonia stress compared to the invasive turtle species. Our results plausibly reflected divergent potential resistance to ammonia among these turtles, in view of differential physiological responses to ammonia exposure at environmentally relevant concentrations.PMID:36410481 | DOI:10.1016/j.scitotenv.2022.160372

Old known and possible new biomarkers of ANCA-associated vasculitis

Mon, 21/11/2022 - 12:00
J Autoimmun. 2022 Nov 18;133:102953. doi: 10.1016/j.jaut.2022.102953. Online ahead of print.ABSTRACTAntineutrophil cytoplasm antibody (ANCA)-associated vasculitis (AAV) comprises a group of multisystem disorders involving severe, systemic, small-vessel vasculitis with short- and long term serious and life-threating complications. Despite the simplification of treatment, fundamental aspects concerning assessment of its efficacy and its adaptation to encountered complications or to the relapsing/remitting/subclinical disease course remain still unknown. The pathogenesis of AAV is complex and unique, and despite the progress achieved in the last years, much has not to be learnt. Foremost, there is still no accurate marker enabling us to monitoring disease and guide therapy. Therefore, the disease management relays often on clinical judgment and follows a" trial and error approach". In the recent years, an increasing number of new molecules s have been explored and used for this purpose including genomics, B- and T-cell subpopulations, complement system factors, cytokines, metabolomics, biospectroscopy and components of our microbiome. The aim of this review is to discuss both the role of known historical and clinically established biomarkers of AAV, as well as to highlight potential new ones, which could be used for timely diagnosis and monitoring of this devastating disease, with the goal to improve the effectiveness and ameliorate the complications of its demanding therapy.PMID:36410262 | DOI:10.1016/j.jaut.2022.102953

Current and emerging target identification methods for novel antimalarials

Mon, 21/11/2022 - 12:00
Int J Parasitol Drugs Drug Resist. 2022 Nov 11;20:135-144. doi: 10.1016/j.ijpddr.2022.11.001. Online ahead of print.ABSTRACTNew antimalarial compounds with novel mechanisms of action are urgently needed to combat the recent rise in antimalarial drug resistance. Phenotypic high-throughput screens have proven to be a successful method for identifying new compounds, however, do not provide mechanistic information about the molecular target(s) responsible for antimalarial action. Current and emerging target identification methods such as in vitro resistance generation, metabolomics screening, chemoproteomic approaches and biophysical assays measuring protein stability across the whole proteome have successfully identified novel drug targets. This review provides an overview of these techniques, comparing their strengths and weaknesses and how they can be utilised for antimalarial target identification.PMID:36410177 | DOI:10.1016/j.ijpddr.2022.11.001

Zuogui-Jiangtang-Qinggan-Fang alleviates high-fat diet-induced type 2 diabetes mellitus with non-alcoholic fatty liver disease by modulating gut microbiome-metabolites-short chain fatty acid composition

Mon, 21/11/2022 - 12:00
Biomed Pharmacother. 2022 Nov 18;157:114002. doi: 10.1016/j.biopha.2022.114002. Online ahead of print.ABSTRACTNon-alcoholic fatty liver disease (NAFLD) pathogenesis is affected by dysbiosis of the gut microbiome and the metabolites it generates. Therefore, restoring the equilibrium between the gut microbiome and the generated metabolites may have therapeutic potential for the syndrome. Zuogui Jiangtang Qinggan Fang (ZGJTQGF) is a Chinese herbal formulation used clinically to treat type 2 diabetic mellitus (T2DM) and fatty liver disease. However, its pharmacological mechanisms have not been well characterized. This work aimed to evaluate the hepatoprotective mechanism of ZGJTQGF in T2DM with NAFLD mice by incorporating gut microbiota, short-chain fatty acids(SCFAs), and metabolomic analysis, and then to provide strong support for clinical treatment of T2DM with NAFLD. The sequencing of 16 S rRNA revealed that ZGJTQGF therapy modified the composition and abundance of the gut microbiome, raised the level of SCFAs, and restored the intestinal mucosal barrier. The non-targeted metabolomic analysis of liver tissues identified 212 compounds, of which108 were differentially expressed between the HFD and ZGJTQGF groups. Moreover, L-glutamic acid, L-Phenylalanine, Glycine, Taurine, Deoxycholic acid, and citric acid levels were also considerably altered by ZGJTQGF. Our findings suggest that ZGJTQGF ameliorates HFD-induced hepatic steatosis by modulating the gut microbiota composition and its metabolites and boosting the levels of SCFAs. More notably, ZGJTQGF may be a promising medication for preventing and treating NAFLD.PMID:36410120 | DOI:10.1016/j.biopha.2022.114002

Yishen-Qingli-Huoxue formula attenuates renal fibrosis by inhibiting indoxyl sulfate via AhR/snai1 signaling

Mon, 21/11/2022 - 12:00
Phytomedicine. 2022 Nov 11;108:154546. doi: 10.1016/j.phymed.2022.154546. Online ahead of print.ABSTRACTBACKGROUND: Chronic kidney disease (CKD) is challenging to reverse and its treatment options are limited. Yishen-Qingli-Huoxue Formula (YQHF) is an effective treatment Chinese formula for CKD, as verified by clinical randomized controlled trial. However, the correlative YQHF therapeutic mechanisms are still unknown.PURPOSE: The current study aimed to investigate the potential anti-renal fibrosis effects of YQHF as well as the underlying mechanism.METHODS: After affirming the curative effects of YQHF on adenine-induced CKD rats, Masson staining, immunohistochemistry, and ELISA were used to assess the effects of YQHF on renal fibrosis. Subsequently, metabolomics and transcriptomics analyses were conducted to clarify the potential mechanisms. Furthermore, high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS), molecular docking analysis and in vitro experiments were used to verify final mechanism of anti-fibrosis.RESULTS: Our results demonstrated that YQHF could improve renal morphology, decrease blood urea nitrogen (BUN), serum creatinine (Scr), and increase body weight gain of model rats. Masson staining, immunohistochemistry of collagen I, fibronectin (FN), α-smooth muscle actin (α-SMA), vimentin and E-cadherin showed that YQHF delayed CKD progression by alleviating renal fibrosis, and the expression of fibrotic factors smoc2 and cdh11 were obviously suppressed by YQHF. Metabolomic and transcriptomic measures discovered that indoxyl sulfate might be a crucial factor inducing renal fibrosis, and the antagonistic effect of YQHF on renal fibrosis may be exerted via AhR/snai1 signaling. Subsequently, western blot and immunohistochemical experiments revealed YQHF indeed inhibited AhR/snai1 signaling in adenine-induced renal fibrosis of CKD rat, which confirmed previous results. In addition, molecular docking and in vitro experiments further supported this conclusion, in which astilbin, the main compound identified YQHF, was certified to exert a significant effect on AhR.CONCLUSION: Our findings showed that YQHF can effectively treat CKD by antagonizing renal fibrosis, the potential mechanisms were relating with the regulation on AhR/snai1 signaling.PMID:36410103 | DOI:10.1016/j.phymed.2022.154546

Aberrant L-Fucose accumulation and increased core fucosylation are metabolic liabilities in mesenchymal glioblastoma

Mon, 21/11/2022 - 12:00
Cancer Res. 2022 Nov 21:CAN-22-0677. doi: 10.1158/0008-5472.CAN-22-0677. Online ahead of print.ABSTRACTGlioblastoma (GBM) is a common and deadly form of brain tumor in adults. Dysregulated metabolism in GBM offers an opportunity to deploy metabolic interventions as precise therapeutic strategies. To identify the molecular drivers and the modalities by which different molecular subgroups of GBM exploit metabolic rewiring to sustain tumor progression, we interrogated the transcriptome, the metabolome, and the glycoproteome of human subgroup-specific GBM sphere-forming cells (GSCs). L-fucose abundance and core fucosylation activation were elevated in mesenchymal (MES) compared to proneural (PN) GSCs; this pattern was retained in subgroup-specific xenografts and in subgroup-affiliated human patient samples. Genetic and pharmacological inhibition of core fucosylation significantly reduced tumor growth in MES GBM preclinical models. Liquid chromatography-mass spectrometry (LC-MS)-based glycoproteomic screening indicated that most MES-restricted core fucosylated proteins are involved in therapeutically relevant GBM pathological processes, such as extracellular matrix interaction, cell adhesion, and integrin-mediated signaling. Selective L-fucose accumulation in MES GBMs was observed using pre-clinical minimally-invasive positron emission tomography (PET), implicating this metabolite as a potential subgroup-restricted biomarker. Overall, these findings indicate that L-fucose pathway activation in MES GBM is a subgroup-specific dependency that could provide diagnostic markers and actionable therapeutic targets.PMID:36409826 | DOI:10.1158/0008-5472.CAN-22-0677

JAK-STAT signaling in inflammatory breast cancer enables chemotherapy-resistant cell states

Mon, 21/11/2022 - 12:00
Cancer Res. 2022 Nov 21:CAN-22-0423. doi: 10.1158/0008-5472.CAN-22-0423. Online ahead of print.ABSTRACTInflammatory breast cancer (IBC) is a difficult-to-treat disease with poor clinical outcomes due to high risk of metastasis and resistance to treatment. In breast cancer, CD44+CD24- cells possess stem cell-like features and contribute to disease progression, and we previously described a CD44+CD24-pSTAT3+ breast cancer cell subpopulation that is dependent on JAK2/STAT3 signaling. Here we report that CD44+CD24- cells are the most frequent cell-type in IBC and are commonly pSTAT3+. Combination of JAK2/STAT3 inhibition with paclitaxel decreased IBC xenograft growth more than either agent alone. IBC cell lines resistant to paclitaxel and doxorubicin were developed and characterized to mimic therapeutic resistance in patients. Multi-omic profiling of parental and resistant cells revealed enrichment of genes associated with lineage identity and inflammation in chemotherapy resistant derivatives. Integrated pSTAT3 ChIP-seq and RNA-seq analyses showed pSTAT3 regulates genes related to inflammation and epithelial to mesenchymal transition (EMT) in resistant cells, as well as PDE4A, a cAMP-specific phosphodiesterase. Metabolomic characterization identified elevated cAMP signaling and CREB as a candidate therapeutic target in IBC. Investigation of cellular dynamics and heterogeneity at the single cell level during chemotherapy and acquired resistance by CyTOF and single cell RNA-seq identified mechanisms of resistance including a shift from luminal to basal/mesenchymal cell states through selection for rare pre-existing subpopulations or an acquired change. Lastly, combination treatment with paclitaxel and JAK2/STAT3 inhibition prevented the emergence of the mesenchymal chemo-resistant subpopulation. These results provide mechanistic rational for combination of chemotherapy with inhibition of JAK2/STAT3 signaling as a more effective therapeutic strategy in IBC.PMID:36409824 | DOI:10.1158/0008-5472.CAN-22-0423

Pages