PubMed
Metabolomics Identifies a Biomarker Revealing in Vivo Loss of Functional ß-Cell Mass Before Diabetes Onset.
Related Articles
Metabolomics Identifies a Biomarker Revealing in Vivo Loss of Functional ß-Cell Mass Before Diabetes Onset.
Diabetes. 2019 Sep 19;:
Authors: Li L, Krznar P, Erban A, Agazzi A, Martin-Levilain J, Supale S, Kopka J, Zamboni N, Maechler P
Abstract
Identification of pre-diabetic individuals with decreased functional ß-cell mass is essential for the prevention of diabetes. However, in vivo detection of early asymptomatic ß-cell defect remains unsuccessful. Metabolomics emerged as a powerful tool in providing read-outs of early disease states before clinical manifestation. We aimed at identifying novel plasma biomarkers for loss of functional ß-cell mass in the asymptomatic pre-diabetic stage. Non-targeted and targeted metabolomics were applied on both lean ß-Phb2-/- mice (ß-cell-specific prohibitin-2 knockout) and obese db/db mice (leptin receptor mutant), two distinct mouse models requiring neither chemical nor diet treatments to induce spontaneous decline of functional ß-cell mass promoting progressive diabetes development. Non-targeted metabolomics on ß-Phb2-/- mice identified 48 and 82 significantly affected metabolites in liver and plasma, respectively. Machine learning analysis pointed to deoxyhexose sugars consistently reduced at the asymptomatic pre-diabetic stage, including in db/db mice, showing strong correlation with the gradual loss of ß-cells. Further targeted metabolomics by GC-MS uncovered the identity of the deoxyhexose with 1,5-anhydroglucitol displaying the most significant changes. In conclusion, this study identified 1,5-anhydroglucitol associated with the loss of functional ß-cell mass and uncovered metabolic similarities between liver and plasma, providing insights into the systemic effects caused by early decline in ß-cells.
PMID: 31537525 [PubMed - as supplied by publisher]
Comparison of metabolic profiles of yeasts based on the difference of the Crabtree positive and negative.
Related Articles
Comparison of metabolic profiles of yeasts based on the difference of the Crabtree positive and negative.
J Biosci Bioeng. 2019 Sep 16;:
Authors: Imura M, Nitta K, Iwakiri R, Matsuda F, Shimizu H, Fukusaki E
Abstract
The Crabtree effect involves energy management in which yeasts utilize glycolysis as the terminal electron acceptor instead of oxygen, despite the presence of sufficient dissolved oxygen, when oxygen concentrations exceed a certain limit. The Crabtree effect is detrimental to bakery yeast production, because it results in lower cellular glucose yields. Batch culture of Saccharomyces cerevisiae, a Crabtree positive yeast, decreased the cell yield of glucose and produced large amounts of ethanol despite a high specific glucose consumption rate compared to Candida utilis, a Crabtree negative yeast. This study investigated the effect of these characteristics on metabolite levels. We performed metabolome analysis of both yeasts during each growth phase of batch culture using liquid chromatography-tandem mass spectrometry and gas chromatography-mass spectrometry. Principle component analysis of metabolome data indicated that the Crabtree effect affected metabolites related to NADH synthesis in central metabolism. The amount of these metabolites in S. cerevisiae was lower than that in C. utilis. However, to maintain the specific glucose consumption rate at high levels, yeasts must avoid depletion of NAD+, which is essential for glucose utilization. Our results indicated that NADH was oxidized by converting acetaldehyde to ethanol in S. cerevisiae, which is in accordance with previous reports. Therefore, the specific NADH production rates of S. cerevisiae and C. utilis did not show a difference. This study suggested that NAD+/NADH ratio is disrupted by the Crabtree effect, which in turn influenced central metabolism and that S. cerevisiae maintained the NAD+/NADH ratio by producing ethanol.
PMID: 31537452 [PubMed - as supplied by publisher]
Characterization of the cold and hot natures of raw and processed Rehmanniae Radix by integrated metabolomics and network pharmacology.
Related Articles
Characterization of the cold and hot natures of raw and processed Rehmanniae Radix by integrated metabolomics and network pharmacology.
Phytomedicine. 2019 Aug 21;:153071
Authors: Xia F, Liu C, Wan JB
Abstract
BACKGROUND: The processing of Chinese materia medica (CMM) is one of the characteristics and advantages of traditional Chinese medicine (TCM). Occasionally, the processing of CMM might reverse the cold/hot nature of CMM. For example, the nature of raw Rehmanniae Radix (RR) is cool, while the processed Rehmanniae Radix (PR) by steaming is hot. Because the cold/hot nature of CMM is defined by the body's response to CMMs, a metabolomics approach, allowing the monitoring of the fluctuation of endogenous metabolites related to an exogenous stimulus, might be an ideal tool to uncover the cold/hot nature of different forms of Rehmanniae Radix.
PURPOSE: An integrated strategy combining metabolomics and network pharmacology was applied to illuminate the different natures of raw and processed Rehmanniae Radix.
STUDY DESIGN: Mice were orally administered RR and PR once daily for ten days. The entire metabolic changes in the plasma of mice were profiled by ultra-high performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UHPLC/Q-TOF MS). Furthermore, network pharmacology analysis was performed to identify the underlying targets related to iridoids that significantly changed during the processing.
RESULTS: The metabolomics analysis results demonstrated a clear separation of the metabolic phenotypes among the control, RR and two PR groups in both the positive and negative modes. Nine lysophosphatidylcholines (LysoPCs), LysoPC (16:0), LysoPC (18:2), LysoPC (18:1), LysoPC (22:6), LysoPC (20:2), LysoPC (18:0), LysoPC (16:1), LysoPC (20:4) and LysoPC (20:5), that decreased in the RR-treated group, but increased in the PR-treated group, were identified to be potential biomarkers related to the natures of RR and PR. The network pharmacology results indicated that four iridoids in Rehmanniae Radix, 8-epiloganic acid, 6-O-p-coumaroyl ajugol, 6-O-p-hydroxybenzoyl ajugol and ajugol, might play important roles in the different natures of raw and processed Rehmanniae Radix.
CONCLUSIONS: There might be a strong connection between the cold/hot nature of different forms of Rehmanniae Radix and LysoPC metabolism. This study offers new insight into the cold/hot nature of Rehmanniae Radix.
PMID: 31537418 [PubMed - as supplied by publisher]
Biomarker Glycoprotein Acetyls Is Associated With the Risk of a Wide Spectrum of Incident Diseases and Stratifies Mortality Risk in Angiography Patients.
Related Articles
Biomarker Glycoprotein Acetyls Is Associated With the Risk of a Wide Spectrum of Incident Diseases and Stratifies Mortality Risk in Angiography Patients.
Circ Genom Precis Med. 2018 11;11(11):e002234
Authors: Kettunen J, Ritchie SC, Anufrieva O, Lyytikäinen LP, Hernesniemi J, Karhunen PJ, Kuukasjärvi P, Laurikka J, Kähönen M, Lehtimäki T, Havulinna AS, Salomaa V, Männistö S, Ala-Korpela M, Perola M, Inouye M, Würtz P
Abstract
BACKGROUND: Integration of systems-level biomolecular information with electronic health records has led to recent interest in the glycoprotein acetyls (GlycA) biomarker-a serum- or plasma-derived nuclear magnetic resonance spectroscopy signal that represents the abundance of circulating glycated proteins. GlycA predicts risk of diverse outcomes, including cardiovascular disease, type 2 diabetes mellitus, and all-cause mortality; however, the underlying detailed associations of GlycA's morbidity and mortality risk are currently unknown.
METHODS: We used 2 population-based cohorts totaling 11 861 adults from the Finnish general population to test for an association with 468 common incident hospitalization and mortality outcomes during an 8-year follow-up. Further, we utilized 900 angiography patients to test for GlycA association with mortality risk and potential utility for mortality risk discrimination during 12-year follow-up.
RESULTS: New associations with GlycA and incident alcoholic liver disease, chronic renal failure, glomerular diseases, chronic obstructive pulmonary disease, inflammatory polyarthropathies, and hypertension were uncovered, and known incident disease associations were replicated. GlycA associations for incident disease outcomes were in general not attenuated when adjusting for hsCRP (high-sensitivity C-reactive protein). Among 900 patients referred to angiography, GlycA had hazard ratios of 4.87 (95% CI, 2.45-9.65) and 5.00 (95% CI, 2.38-10.48) for 12-year risk of mortality in the fourth and fifth quintiles by GlycA levels, demonstrating its prognostic potential for identification of high-risk individuals. When modeled together, both hsCRP and GlycA were attenuated but remained significant.
CONCLUSIONS: GlycA was predictive of myriad incident diseases across many major internal organs and stratified mortality risk in angiography patients. Both GlycA and hsCRP had shared and independent contributions to mortality risk, suggesting chronic inflammation as an etiological factor. GlycA may be useful in improving risk prediction in specific disease settings.
PMID: 30571186 [PubMed - indexed for MEDLINE]
Anionic 1,2-distearoyl-sn-glycero-3-phosphoglycerol (DSPG) liposomes induce antigen-specific regulatory T cells and prevent atherosclerosis in mice.
Related Articles
Anionic 1,2-distearoyl-sn-glycero-3-phosphoglycerol (DSPG) liposomes induce antigen-specific regulatory T cells and prevent atherosclerosis in mice.
J Control Release. 2018 12 10;291:135-146
Authors: Benne N, van Duijn J, Lozano Vigario F, Leboux RJT, van Veelen P, Kuiper J, Jiskoot W, Slütter B
Abstract
Atherosclerosis is the predominant underlying pathology of many types of cardiovascular disease and is one of the leading causes of death worldwide. It is characterized by the retention of oxidized low-density lipoprotein (ox-LDL) in lipid-rich macrophages (foam cells) in the intima of arteries. Autoantigens derived from oxLDL can be used to vaccinate against atherosclerosis. However, a major challenge is the induction of antigen-specific Tregs in a safe and effective way. Here we report that liposomes containing the anionic phospholipid 1,2-distearoyl-sn-glycero-3-phosphoglycerol (DSPG) induce Tregs that are specific for the liposomes' cargo. Mechanistically, we show a crucial role for the protein corona that forms on the liposomes in the circulation, as uptake of DSPG-liposomes by antigen-presenting cells is mediated via complement component 1q (C1q) and scavenger receptors (SRs). Vaccination of atherosclerotic mice on a western-type diet with DSPG-liposomes encapsulating an LDL-derived peptide antigen significantly reduced plaque formation by 50% and stabilized the plaques, and reduced serum cholesterol concentrations. These results indicate that DSPG-liposomes have potential as a delivery system in vaccination against atherosclerosis.
PMID: 30365993 [PubMed - indexed for MEDLINE]
BASIS: High-performance bioinformatics platform for processing of large-scale mass spectrometry imaging data in chemically augmented histology.
Related Articles
BASIS: High-performance bioinformatics platform for processing of large-scale mass spectrometry imaging data in chemically augmented histology.
Sci Rep. 2018 03 06;8(1):4053
Authors: Veselkov K, Sleeman J, Claude E, Vissers JPC, Galea D, Mroz A, Laponogov I, Towers M, Tonge R, Mirnezami R, Takats Z, Nicholson JK, Langridge JI
Abstract
Mass Spectrometry Imaging (MSI) holds significant promise in augmenting digital histopathologic analysis by generating highly robust big data about the metabolic, lipidomic and proteomic molecular content of the samples. In the process, a vast quantity of unrefined data, that can amount to several hundred gigabytes per tissue section, is produced. Managing, analysing and interpreting this data is a significant challenge and represents a major barrier to the translational application of MSI. Existing data analysis solutions for MSI rely on a set of heterogeneous bioinformatics packages that are not scalable for the reproducible processing of large-scale (hundreds to thousands) biological sample sets. Here, we present a computational platform (pyBASIS) capable of optimized and scalable processing of MSI data for improved information recovery and comparative analysis across tissue specimens using machine learning and related pattern recognition approaches. The proposed solution also provides a means of seamlessly integrating experimental laboratory data with downstream bioinformatics interpretation/analyses, resulting in a truly integrated system for translational MSI.
PMID: 29511258 [PubMed - indexed for MEDLINE]
Rice intermediate filament, OsIF, stabilizes photosynthetic machinery and yield under salinity and heat stress.
Related Articles
Rice intermediate filament, OsIF, stabilizes photosynthetic machinery and yield under salinity and heat stress.
Sci Rep. 2018 03 06;8(1):4072
Authors: Soda N, Gupta BK, Anwar K, Sharan A, Govindjee, Singla-Pareek SL, Pareek A
Abstract
Cytoskeleton plays a vital role in stress tolerance; however, involvement of intermediate filaments (IFs) in such a response remains elusive in crop plants. This study provides clear evidence about the unique involvement of IFs in cellular protection against abiotic stress in rice. Transcript abundance of Oryza sativa intermediate filament (OsIF) encoding gene showed 2-10 fold up-regulation under different abiotic stress. Overexpression of OsIF in transgenic rice enhanced tolerance to salinity and heat stress, while its knock-down (KD) rendered plants more sensitive thereby indicating the role of IFs in promoting survival under stress. Seeds of OsIF overexpression rice germinated normally in the presence of high salt, showed better growth, maintained chloroplast ultrastructure and favourable K+/Na+ ratio than the wild type (WT) and KD plants. Analysis of photosynthesis and chlorophyll a fluorescence data suggested better performance of both photosystem I and II in the OsIF overexpression rice under salinity stress as compared to the WT and KD. Under salinity and high temperature stress, OsIF overexpressing plants could maintain significantly high yield, while the WT and KD plants could not. Further, metabolite profiling revealed a 2-4 fold higher accumulation of proline and trehalose in OsIF overexpressing rice than WT, under salinity stress.
PMID: 29511223 [PubMed - indexed for MEDLINE]
metabolomics; +32 new citations
32 new pubmed citations were retrieved for your search.
Click on the search hyperlink below to display the complete search results:
metabolomics
These pubmed results were generated on 2019/09/20PubMed comprises more than millions of citations for biomedical literature from MEDLINE, life science journals, and online books.
Citations may include links to full-text content from PubMed Central and publisher web sites.
metabolomics; +32 new citations
32 new pubmed citations were retrieved for your search.
Click on the search hyperlink below to display the complete search results:
metabolomics
These pubmed results were generated on 2019/09/20PubMed comprises more than millions of citations for biomedical literature from MEDLINE, life science journals, and online books.
Citations may include links to full-text content from PubMed Central and publisher web sites.
metabolomics; +33 new citations
33 new pubmed citations were retrieved for your search.
Click on the search hyperlink below to display the complete search results:
metabolomics
These pubmed results were generated on 2019/09/19PubMed comprises more than millions of citations for biomedical literature from MEDLINE, life science journals, and online books.
Citations may include links to full-text content from PubMed Central and publisher web sites.
metabolomics; +16 new citations
16 new pubmed citations were retrieved for your search.
Click on the search hyperlink below to display the complete search results:
metabolomics
These pubmed results were generated on 2019/09/17PubMed comprises more than millions of citations for biomedical literature from MEDLINE, life science journals, and online books.
Citations may include links to full-text content from PubMed Central and publisher web sites.
metabolomics; +16 new citations
16 new pubmed citations were retrieved for your search.
Click on the search hyperlink below to display the complete search results:
metabolomics
These pubmed results were generated on 2019/09/17PubMed comprises more than millions of citations for biomedical literature from MEDLINE, life science journals, and online books.
Citations may include links to full-text content from PubMed Central and publisher web sites.
Toward collaborative open data science in metabolomics using Jupyter Notebooks and cloud computing.
Related Articles
Toward collaborative open data science in metabolomics using Jupyter Notebooks and cloud computing.
Metabolomics. 2019 Sep 14;15(10):125
Authors: Mendez KM, Pritchard L, Reinke SN, Broadhurst DI
Abstract
BACKGROUND: A lack of transparency and reporting standards in the scientific community has led to increasing and widespread concerns relating to reproduction and integrity of results. As an omics science, which generates vast amounts of data and relies heavily on data science for deriving biological meaning, metabolomics is highly vulnerable to irreproducibility. The metabolomics community has made substantial efforts to align with FAIR data standards by promoting open data formats, data repositories, online spectral libraries, and metabolite databases. Open data analysis platforms also exist; however, they tend to be inflexible and rely on the user to adequately report their methods and results. To enable FAIR data science in metabolomics, methods and results need to be transparently disseminated in a manner that is rapid, reusable, and fully integrated with the published work. To ensure broad use within the community such a framework also needs to be inclusive and intuitive for both computational novices and experts alike.
AIM OF REVIEW: To encourage metabolomics researchers from all backgrounds to take control of their own data science, mould it to their personal requirements, and enthusiastically share resources through open science.
KEY SCIENTIFIC CONCEPTS OF REVIEW: This tutorial introduces the concept of interactive web-based computational laboratory notebooks. The reader is guided through a set of experiential tutorials specifically targeted at metabolomics researchers, based around the Jupyter Notebook web application, GitHub data repository, and Binder cloud computing platform.
PMID: 31522294 [PubMed - in process]
An Integrated Gaussian Graphical Model to evaluate the impact of exposures on metabolic networks.
Related Articles
An Integrated Gaussian Graphical Model to evaluate the impact of exposures on metabolic networks.
Comput Biol Med. 2019 Aug 31;114:103417
Authors: Lee JW, Moen EL, Punshon T, Hoen AG, Stewart D, Li H, Karagas MR, Gui J
Abstract
Examining the effects of exogenous exposures on complex metabolic processes poses the unique challenge of identifying interactions among a large number of metabolites. Recent progress in the quantification of the metabolome through mass spectrometry (MS) and nuclear magnetic resonance (NMR) has given rise to high-dimensional biomedical data of specific metabolites that can be leveraged to study their effects in humans. These metabolic interactions can be evaluated using probabilistic graphical models (PGMs), which define conditional dependence and independence between components within and between heterogeneous biomedical datasets. This method allows for the detection and recovery of valuable but latent information that cannot be easily detected by other currently existing methods. Here, we develop a PGM method, referred to as an "Integrated Gaussian Graphical Model (IGGM)", to incorporate exposure concentrations of seven trace elements-arsenic (As), lead (Pb), mercury (Hg), cadmium (Cd), zinc (Zn), selenium (Se) and copper (Cu-into metabolic networks. We first conducted a simulation study demonstrating that the integration of trace elements into metabolomics data can improve the accuracy of detecting latent interactions of metabolites impacted by exposure in the network. We tested parameters such as sample size and the number of neighboring metabolites of a chosen trace element for their impact on the accuracy of detecting metabolite interactions. We then applied this method to measurements of cord blood plasma metabolites and placental trace elements collected from newborns in the New Hampshire Birth Cohort Study (NHBCS). We found that our approach can identify latent interactions among metabolites that are related to trace element concentrations. Application to similarly structured data may contribute to our understanding of the complex interplay between exposure-related metabolic interactions that are important for human health.
PMID: 31521894 [PubMed - as supplied by publisher]
Metabolomics and transcriptomics reveal defense mechanism of rice (Oryza sativa) grains under stress of 2,2',4,4'-tetrabromodiphenyl ether.
Related Articles
Metabolomics and transcriptomics reveal defense mechanism of rice (Oryza sativa) grains under stress of 2,2',4,4'-tetrabromodiphenyl ether.
Environ Int. 2019 Sep 12;133(Pt A):105154
Authors: Chen J, Le XC, Zhu L
Abstract
2,2',4,4'-Tetrabromodiphenyl ether (BDE-47), a predominant polybrominated diphenyl ether (PBDE), has received extensive attention for its potential environmental impact. An integrated study of metabolomics and transcriptomics was conducted on two rice (Oryza sativa) cultivars, Lianjing-7 (LJ-7) and Yongyou-9 (YY-9), which have been identified as tolerant and sensitive cultivars to BDE-47, respectively. The objective was to investigate the molecular mechanisms of their different ability to tolerate BDE-47. Both rice plants were cultivated to maturity in soils containing three concentrations of BDE-47 (10, 20, and 50 mg/kg). Metabolomic analyses of rice grains identified 65 metabolites in LJ-7 and 45 metabolites in YY-9, including amino acids, saccharides, organic acids, fatty acids, and secondary metabolites. In the tolerant cultivar LJ-7 exposed to 50 mg/kg BDE-47, concentrations of most of the metabolites increased significantly, with α-ketoglutaric acid increased by 20-fold and stigmastanol increased by 12-fold. In the sensitive cultivar YY-9, the concentrations of most metabolites increased after the plant was exposed to 1 and 10 mg/kg BDE-47 but decreased after the plant was exposed to 50 mg/kg BDE-47. Transcriptomic data demonstrated that regulation of gene expressions was affected most in LJ-7 exposed to 50 mg/kg BDE-47 (966 genes up-regulated and 620 genes down-regulated) and in YY-9 exposed to 10 mg/kg BDE-47 (85 genes up-regulated and 291 genes down-regulated), in good accordance with the observed metabolic alternation in the two cultivars. Analyses of metabolic pathways and KEGG enrichment revealed that many biological processes, including energy consumption and biosynthesis, were perturbed in the two rice cultivars by BDE-47. A majority of metabolites and genes involved in dominating pathways of energy consumption (e.g., tricarboxylic acid cycle) and the biosynthesis (e.g., metabolism of saccharides and amino acids) were enhanced in LJ-7 by BDE-47. In contrast, energy consumption was increased while biosynthetic processes were inhibited in YY-9 by BDE-47, which could lead to the sensitivity of YY-9 to BDE-47. The combined results suggest that the different defensive abilities of these two rice cultivars in response to BDE-47 could be attributed to their differences in energy-consumption strategy and biosynthesis of nutritional components in grains. This study provides a useful reference for rice cultivation in PBDE-polluted areas.
PMID: 31521816 [PubMed - as supplied by publisher]
Skin metabolome reveals immune responses in yellow drum Nibea albiflora to Cryptocaryon irritans infection.
Related Articles
Skin metabolome reveals immune responses in yellow drum Nibea albiflora to Cryptocaryon irritans infection.
Fish Shellfish Immunol. 2019 Sep 12;:
Authors: Maha IF, Xie X, Zhou S, Yu Y, Liu X, Zahid A, Lei Y, Ma R, Yin F, Qian D
Abstract
The yellow drum Nibea albiflora is less susceptible to Cryptocaryon irritans infection than is the case with other marine fishes such as Larimichthys crocea, Lateolabrax japonicus, and Pagrus major. To investigate further their resistance mechanism, we infected the N. albiflora with the C. irritans at a median lethal concentration of 2050 theronts/g fish. The skins of the infected and the uninfected fishes were sampled at 24 h and 72 h followed by an extensive analysis of metabolism. The study results revealed that there were 2694 potential metabolites. At 24 h post-infection, 12 metabolites were up-regulated and 17 were down-regulated whereas at 72 h post-infection, 22 metabolites were up-regulated and 26 were down-regulated. Pathway enrichment analysis shows that the differential enriched pathways were higher at 24 h with 22 categories and 58 subcategories (49 up, 9 down) than at 72 h whereby the differential enriched pathways were 6 categories and 8 subcategories (4 up, 4 down). In addition, the principal component analysis (PCA) plot shows that at 24 h the metabolites composition of infected group were separately clustered to uninfected group while at 72 h the metabolites composition in infected group were much closer to uninfected group. This indicated that C. irritans caused strong metabolic stress on the N. albiflora at 24 h and restoration of the dysregulated metabolic state took place at 72 h of infection. Also, at 72 h post infection a total of 17 compounds were identified as potential biomarkers. Furthermore, out of 2694 primary metabolites detected, 23 metabolites could be clearly identified and semi quantified with a known identification number and assigned into 66 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Most of the enriched KEGG pathways were mainly from metabolic pathway classes, including the metabolic pathway, biosynthesis of secondary metabolites, taurine and hypotaurine metabolism, purine metabolism, linoleic acid metabolism, phenylalanine, tyrosine and tryptophan biosynthesis. Others were glyoxylate and dicarboxylate metabolism, glutathione metabolism, and alanine, aspartate, and glutamate metabolism. Moreover, out of the identified metabolites, only 6 metabolites were statistically differentially expressed, namely, L -glutamate (up-regulated) at 24 h was important for energy and precursor for other glutathiones and instruments of preventing oxidative injury; 15-hydroxy- eicosatetraenoic acid (15-HETE), (S)-(-)-2-Hydroxyisocaproic acid, and adenine (up-regulated) at 72 h were important for anti-inflammatory and immune responses during infection; others were delta-valerolactam and betaine which were down-regulated compared to uninfected group at 72 h, might be related to immure responses including stimulation of immune system such as production of antibodies. Our results therefore further advance our understanding on the immunological regulation of N. albiflora during immune response against infections as they indicated a strong relationship between skin metabolome and C. irritans infection.
PMID: 31521785 [PubMed - as supplied by publisher]
Commensal-derived metabolites govern Vibrio cholerae pathogenesis in host intestine.
Related Articles
Commensal-derived metabolites govern Vibrio cholerae pathogenesis in host intestine.
Microbiome. 2019 Sep 14;7(1):132
Authors: You JS, Yong JH, Kim GH, Moon S, Nam KT, Ryu JH, Yoon MY, Yoon SS
Abstract
BACKGROUND: Recent evidence suggests that the commensal microbes act as a barrier against invading pathogens and enteric infections are the consequences of multi-layered interactions among commensals, pathogens, and the host intestinal tissue. However, it remains unclear how perturbations of the gut microbiota compromise host infection resistance, especially through changes at species and metabolite levels.
RESULTS: Here, we illustrate how Bacteroides vulgatus, a dominant species of the Bacteroidetes phylum in mouse intestine, suppresses infection by Vibrio cholerae, an important human pathogen. Clindamycin (CL) is an antibiotic that selectively kills anaerobic bacteria, and accordingly Bacteroidetes are completely eradicated from CL-treated mouse intestines. The Bacteroidetes-depleted adult mice developed severe cholera-like symptoms, when infected with V. cholerae. Germ-free mice mono-associated with B. vulgatus became resistant to V. cholerae infection. Levels of V. cholerae growth-inhibitory metabolites including short-chain fatty acids plummeted upon CL treatment, while levels of compounds that enhance V. cholerae proliferation were elevated. Furthermore, the intestinal colonization process of V. cholerae was well-simulated in CL-treated adult mice.
CONCLUSIONS: Overall, we provide insights into how a symbiotic microbe and a pathogenic intruder interact inside host intestine. We identified B. vulgatus as an indigenous microbial species that can suppress intestinal infection. Our results also demonstrate that commensal-derived metabolites are a critical determinant for host resistance against V. cholerae infection, and that CL pretreatment of adult mice generates a simple yet useful model of cholera infection.
PMID: 31521198 [PubMed - in process]
Metabolomic analysis reveals metabolic alterations of human peripheral blood lymphocytes by perfluorooctanoic acid.
Related Articles
Metabolomic analysis reveals metabolic alterations of human peripheral blood lymphocytes by perfluorooctanoic acid.
Chemosphere. 2019 Sep 07;239:124810
Authors: Li R, Guo C, Tse WKF, Su M, Zhang X, Lai KP
Abstract
Perfluorooctanoic acid (PFOA) is a dispersive persistent organic pollutant in the environment. Accumulating reports suggest that PFOA is toxic to human lymphocytes; however, the toxicological effects of PFOA on these cells remain largely unclear. In this study, ultra-performance liquid chromatography (UPLC)-based metabolomic analysis was employed to identify metabolites in human peripheral blood lymphocytes and to assess the metabolic alterations caused by PFOA exposure. Our comparative metabolomic analysis results demonstrated that PFOA treatment could increase the level of organic acids and reduce the level of lipid molecules. Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation further highlighted the fact that the PFOA treatment interfered with the metabolism of amino acids, carbohydrates and lipids, which may lead to disruption of the immune system.
PMID: 31520980 [PubMed - as supplied by publisher]
Prenatal dexamethasone exposure-induced a gender-difference and sustainable multi-organ damage in offspring rats via serum metabolic profile analysis.
Related Articles
Prenatal dexamethasone exposure-induced a gender-difference and sustainable multi-organ damage in offspring rats via serum metabolic profile analysis.
Toxicol Lett. 2019 Sep 11;:
Authors: Chen G, Xiao H, Zhang J, Zhang H, Li B, Jiang T, Wen Y, Jiang Y, Fu K, Xu D, Guo Y, Ao Y, Bi H, Wang H
Abstract
Prenatal dexamethasone exposure (PDE) induces developmental toxicities of multiple organs in offspring, but its serum metabolic profile changes before and after birth are unclear. Here, we employed a LC-MS-based metabolomic approach to detect serum metabolites of PDE offspring rats in utero and adulthood, and explore its change characteristics and toxicological significances. Meanwhile, the bodyweight, serum index related to hepatic and renal function were detected. As compared to healthy control rats, PDE reduced offspring birthweight but caused postnatal catch-up growth accompanied by adult liver and kidney function injury. In utero, the differential metabolites in response to PDE were mainly manifested as enhanced glycolysis, increased protein breakdown and disordered lipid metabolism, and multiple metabolic pathways were changed, which displayed gender differences. In adulthood, PDE offspring showed fewer and inconsistent types of differential metabolites compared to those in utero, which exhibited significant gender differences. The main differential metabolites induced by PDE included lactic acid, carnitine, cortexolone, bile acid, phosphatidylcholine, uric acid and platelet activating factor, which may participate in dexamethasone multi-organ toxicities and multi-disease susceptibility. In conclusion, PDE could induce a gender-difference and sustainable multi-organ damage in the offspring rats via serum metabolic profile analysis, which will enhance offspring susceptibility to multiple adult diseases.
PMID: 31520701 [PubMed - as supplied by publisher]
No effect of triheptanoin on exercise performance in McArdle disease.
Related Articles
No effect of triheptanoin on exercise performance in McArdle disease.
Ann Clin Transl Neurol. 2019 Sep 14;:
Authors: Madsen KL, Laforêt P, Buch AE, Stemmerik MG, Ottolenghi C, Hatem SN, Raaschou-Pedersen DT, Poulsen NS, Atencio M, Luton MP, Ceccaldi A, Haller RG, Quinlivan R, Mochel F, Vissing J
Abstract
OBJECTIVE: To study if treatment with triheptanoin, a 7-carbon triglyceride, improves exercise tolerance in patients with McArdle disease. McArdle patients have a complete block in glycogenolysis and glycogen-dependent expansion of tricarboxylic acid cycle (TCA), which may restrict fat oxidation. We hypothesized that triheptanoin metabolism generates substrates for the TCA, which potentially boosts fat oxidation and improves exercise tolerance in McArdle disease.
METHODS: Double-blind, placebo-controlled, crossover study in patients with McArdle disease completing two treatment periods of 14 days each with a triheptanoin or placebo diet (1 g/kg/day). Primary outcome was change in mean heart rate during 20 min submaximal exercise on a cycle ergometer. Secondary outcomes were change in peak workload and oxygen uptake along with changes in blood metabolites and respiratory quotients.
RESULTS: Nineteen of 22 patients completed the trial. Malate levels rose on triheptanoin treatment versus placebo (8.0 ± SD2.3 vs. 5.5 ± SD1.8 µmol/L, P < 0.001), but dropped from rest to exercise (P < 0.001). There was no difference in exercise heart rates between triheptanoin (120 ± SD16 bpm) and placebo (121 ± SD16 bpm) treatments. Compared with placebo, triheptanoin did not change the submaximal respiratory quotient (0.82 ± SD0.05 vs. 0.84 ± SD0.03), peak workload (105 ± SD38 vs. 102 ± SD31 Watts), or peak oxygen uptake (1938 ± SD499 vs. 1977 ± SD380 mL/min).
INTERPRETATION: Despite increased resting plasma malate with triheptanoin, the increase was insufficient to generate a normal TCA turnover during exercise and the treatment has no effect on exercise capacity or oxidative metabolism in patients with McArdle disease.
PMID: 31520525 [PubMed - as supplied by publisher]