PubMed
Alterations in the carnitine cycle in a mouse model of Rett syndrome.
Related Articles
Alterations in the carnitine cycle in a mouse model of Rett syndrome.
Sci Rep. 2017 02 02;7:41824
Authors: Mucerino S, Di Salle A, Alessio N, Margarucci S, Nicolai R, Melone MA, Galderisi U, Peluso G
Abstract
Rett syndrome (RTT) is a neurodevelopmental disease that leads to intellectual deficit, motor disability, epilepsy and increased risk of sudden death. Although in up to 95% of cases this disease is caused by de novo loss-of-function mutations in the X-linked methyl-CpG binding protein 2 gene, it is a multisystem disease associated also with mitochondrial metabolic imbalance. In addition, the presence of long QT intervals (LQT) on the patients' electrocardiograms has been associated with the development of ventricular tachyarrhythmias and sudden death. In the attempt to shed light on the mechanism underlying heart failure in RTT, we investigated the contribution of the carnitine cycle to the onset of mitochondrial dysfunction in the cardiac tissues of two subgroups of RTT mice, namely Mecp2+/- NQTc and Mecp2+/- LQTc mice, that have a normal and an LQT interval, respectively. We found that carnitine palmitoyltransferase 1 A/B and carnitine acylcarnitine translocase were significantly upregulated at mRNA and protein level in the heart of Mecp2+/- mice. Moreover, the carnitine system was imbalanced in Mecp2+/- LQTc mice due to decreased carnitine acylcarnitine transferase expression. By causing accumulation of intramitochondrial acylcarnitines, this imbalance exacerbated incomplete fatty acid oxidation, which, in turn, could contribute to mitochondrial overload and sudden death.
PMID: 28150739 [PubMed - indexed for MEDLINE]
MPLEx: a method for simultaneous pathogen inactivation and extraction of samples for multi-omics profiling.
Related Articles
MPLEx: a method for simultaneous pathogen inactivation and extraction of samples for multi-omics profiling.
Analyst. 2017 Jan 26;142(3):442-448
Authors: Burnum-Johnson KE, Kyle JE, Eisfeld AJ, Casey CP, Stratton KG, Gonzalez JF, Habyarimana F, Negretti NM, Sims AC, Chauhan S, Thackray LB, Halfmann PJ, Walters KB, Kim YM, Zink EM, Nicora CD, Weitz KK, Webb-Robertson BM, Nakayasu ES, Ahmer B, Konkel ME, Motin V, Baric RS, Diamond MS, Kawaoka Y, Waters KM, Smith RD, Metz TO
Abstract
The continued emergence and spread of infectious agents is of great concern, and systems biology approaches to infectious disease research can advance our understanding of host-pathogen relationships and facilitate the development of new therapies and vaccines. Molecular characterization of infectious samples outside of appropriate biosafety containment can take place only subsequent to pathogen inactivation. Herein, we describe a modified Folch extraction using chloroform/methanol that facilitates the molecular characterization of infectious samples by enabling simultaneous pathogen inactivation and extraction of proteins, metabolites, and lipids for subsequent mass spectrometry-based multi-omics measurements. This single-sample metabolite, protein and lipid extraction (MPLEx) method resulted in complete inactivation of clinically important bacterial and viral pathogens with exposed lipid membranes, including Yersinia pestis, Salmonella Typhimurium, and Campylobacter jejuni in pure culture, and Yersinia pestis, Campylobacter jejuni, and West Nile, MERS-CoV, Ebola, and influenza H7N9 viruses in infection studies. In addition, >99% inactivation, which increased with solvent exposure time, was also observed for pathogens without exposed lipid membranes including community-associated methicillin-resistant Staphylococcus aureus, Clostridium difficile spores and vegetative cells, and adenovirus type 5. The overall pipeline of inactivation and subsequent proteomic, metabolomic, and lipidomic analyses was evaluated using a human epithelial lung cell line infected with wild-type and mutant influenza H7N9 viruses, thereby demonstrating that MPLEx yields biomaterial of sufficient quality for subsequent multi-omics analyses. Based on these experimental results, we believe that MPLEx will facilitate systems biology studies of infectious samples by enabling simultaneous pathogen inactivation and multi-omics measurements from a single specimen with high success for pathogens with exposed lipid membranes.
PMID: 28091625 [PubMed - indexed for MEDLINE]
Human White Adipose Tissue Metabolome: Current Perspective.
Related Articles
Human White Adipose Tissue Metabolome: Current Perspective.
Obesity (Silver Spring). 2018 Oct 28;:
Authors: Kučera J, Spáčil Z, Friedecký D, Novák J, Pekař M, Bienertová-Vašků J
Abstract
OBJECTIVE: Interest in metabolites produced by adipose tissue has increased substantially in the past several decades. Previously regarded as an inert energy storage depot, adipose tissue is now viewed as a complex metabolically active organ with considerable impact on human health. The emerging field of mass spectrometry-based metabolomics presents a powerful tool for the study of processes in complex biological matrices including adipose tissue.
RESULTS: A large number of structurally distinct metabolites can be analyzed to facilitate the investigation of differences between physiological and pathophysiological metabolic profiles associated with adipose tissue. Understanding the molecular basis of adipose tissue regulation can thereby provide insight into the monitoring of obesity-related metabolic disorders and lead to the development of novel diagnostic and prognostic biomarkers.
CONCLUSIONS: This review provides the current state of knowledge, recent progress, and critical evaluation of metabolomics approaches in the context of white adipose tissue and obesity. An overview of basic principles and resources describing individual groups of metabolites analyzed in white adipose tissue and biological fluids is given. The focus is on metabolites that can serve as reliable biomarkers indicative of metabolic alterations associated with obesity.
PMID: 30369078 [PubMed - as supplied by publisher]
Extensive exploration of a novel rat model of Parkinson's disease using partial 6-hydroxydopamine lesion of dopaminergic neurons suggests new therapeutic approaches.
Related Articles
Extensive exploration of a novel rat model of Parkinson's disease using partial 6-hydroxydopamine lesion of dopaminergic neurons suggests new therapeutic approaches.
Synapse. 2018 Oct 28;:
Authors: Vetel S, Sérrière S, Vercouillie J, Vergote J, Chicheri G, Deloye JB, Dollé F, Bodard S, Tronel C, Nadal-Desbarats L, Lefèvre A, Emond P, Chalon S
Abstract
Parkinson's disease (PD) is characterized by the degeneration of dopaminergic (DA) neurons constituting the nigrostriatal pathway. Neuroinflammation, related to microglial activation, plays an important role in this process. Exploration of animal models of PD using neuroimaging modalities allows to better understand the pathophysiology of the disease. Here, we fully explored a moderate lesion model in the rat in which 6-hydroxydopamine was unilaterally delivered in 3 sites along the striatum. The degenerative process was assessed through in vivo Positron Emission Tomography (PET) imaging and in vitro autoradiographic quantitation of the striatal dopamine transporter (DAT) and immunostaining of tyrosine hydroxylase (TH). The microglial activation was studied through in vitro autoradiographic quantitation of the 18 kDa translocator protein (TSPO) in the striatum and CD11b staining in the SN. In addition, a targeted metabolomics exploration was performed in both these structures using mass spectrometry coupled to HPLC. Our results showed a reproducible decrease in the striatal DAT density associated with a reduction in the number of TH-positive cells in the SN and striatum, reflecting a robust moderate degeneration of nigrostriatal DA neurons. In addition, we observed strong microglia activation in both the striatum and SN ipsilateral to the lesion, highlighting that this moderate degeneration of DA neurons was associated with a marked neuroinflammation. Our metabolomics studies revealed alterations of specific metabolites and metabolic pathways such as carnitine, arginine/proline and histidine metabolisms. These results bring new insights in the PD mechanism knowledge and new potential targets for future therapeutic strategies. This article is protected by copyright. All rights reserved.
PMID: 30368914 [PubMed - as supplied by publisher]
Integrated proteomic and metabolomic analysis of a reconstructed three-species microbial consortium for one-step fermentation of 2-keto-L-gulonic acid, the precursor of vitamin C.
Related Articles
Integrated proteomic and metabolomic analysis of a reconstructed three-species microbial consortium for one-step fermentation of 2-keto-L-gulonic acid, the precursor of vitamin C.
J Ind Microbiol Biotechnol. 2018 Oct 27;:
Authors: Ma Q, Bi YH, Wang EX, Zhai BB, Dong XT, Qiao B, Ding MZ, Yuan YJ
Abstract
Microbial consortia, with the merits of strong stability, robustness, and multi-function, played critical roles in human health, bioenergy, and food manufacture, etc. On the basis of 'build a consortium to understand it', a novel microbial consortium consisted of Gluconobacter oxydans, Ketogulonicigenium vulgare and Bacillus endophyticus was reconstructed to produce 2-keto-L-gulonic acid (2-KGA), the precursor of vitamin C. With this synthetic consortium, 73.7 g/L 2-KGA was obtained within 30 h, which is comparable to the conventional industrial method. A combined time-series proteomic and metabolomic analysis of the fermentation process was conducted to further investigate the cell-cell interaction. The results suggested that the existence of B. endophyticus and G. oxydans together promoted the growth of K. vulgare by supplying additional nutrients, and promoted the 2-KGA production by supplying more substrate. Meanwhile, the growth of B. endophyticus and G. oxydans was compromised from the competition of the nutrients by K. vulgare, enabling the efficient production of 2-KGA. This study provides valuable guidance for further study of synthetic microbial consortia.
PMID: 30368638 [PubMed - as supplied by publisher]
Phenotyping analysis of the Japanese Kampo medicine maoto in healthy human subjects using wide-targeted plasma metabolomics.
Related Articles
Phenotyping analysis of the Japanese Kampo medicine maoto in healthy human subjects using wide-targeted plasma metabolomics.
J Pharm Biomed Anal. 2018 Oct 22;164:119-127
Authors: Kitagawa H, Ohbuchi K, Munekage M, Fujisawa K, Kawanishi Y, Namikawa T, Kushida H, Matsumoto T, Shimobori C, Nishi A, Sadakane C, Watanabe J, Yamamoto M, Hanazaki K
Abstract
Traditional herbal medicine (THM) consists of a vast number of compounds that exert pharmacological effects throughout the body. Comprehensive phenotyping analysis using omics is essential for understanding the nature of THM in detail. We previously reported that the Japanese Kampo medicine maoto ameliorated flu-like symptoms in a rat infection model and dynamically changed plasma metabolites as indicated by metabolome analysis. The aim of this study was to apply wide-targeted plasma metabolomics with quantitative analysis of maoto compounds in a human clinical trial to evaluate the effect of maoto on plasma metabolites. Four healthy human subjects were recruited. Plasma samples were collected before and 0.25, 0.5, 1, 2, 4 and 8 h after maoto treatment. Wide-targeted metabolomics and quantitative analysis of the main chemical constituents of maoto were then performed. Plasma metabolome analysis revealed that maoto administration decreased essential amino acids including branched-chain amino acids (BCAAs) and increased various kinds of ω-3 fatty acids including eicosapentaenoic acid and docosahexaenoic acid, consistent with previous studies in rats. Fifteen of the major compounds in maoto were identified in the systemic circulation. Finally, the correlation between endogenous metabolites and maoto compounds in plasma was analyzed and the results indicated that the decrease in plasma BCAAs might be caused by ephedrines present in maoto. The present study demonstrated that plasma metabolomic studies of endogenous and exogenous metabolites are useful for elucidating the mechanism of action of THM.
PMID: 30368117 [PubMed - as supplied by publisher]
Hepatic metabolite profiling of polychlorinated biphenyl (PCB)-resistant and sensitive populations of Atlantic killifish (Fundulus heteroclitus).
Related Articles
Hepatic metabolite profiling of polychlorinated biphenyl (PCB)-resistant and sensitive populations of Atlantic killifish (Fundulus heteroclitus).
Aquat Toxicol. 2018 Oct 16;205:114-122
Authors: Glazer L, Kido Soule MC, Longnecker K, Kujawinski EB, Aluru N
Abstract
Atlantic killifish inhabiting polluted sites along the east coast of the U.S. have evolved resistance to toxic effects of contaminants. One such contaminated site is the Acushnet River estuary, near New Bedford Harbor (NBH), Massachusetts, which is characterized by very high PCB concentrations in the sediments and in the tissues of resident killifish. Though killifish at this site appear to be thriving, the metabolic costs of survival in a highly contaminated environment are not well understood. In this study we compared the hepatic metabolite profiles of resistant (NBH) and sensitive populations (Scorton Creek (SC), Sandwich, MA) using a targeted metabolomics approach in which polar metabolites were extracted from adult fish livers and quantified. Our results revealed differences in the levels of several metabolites between fish from the two sites. The majority of these metabolites are associated with one-carbon metabolism, an important pathway that supports multiple physiological processes including DNA and protein methylation, nucleic acid biosynthesis and amino acid metabolism. We measured the gene expression of DNA methylation (DNA methyltransferase 1, dnmt1) and demethylation genes (Ten-Eleven Translocation (TET) genes) in the two populations, and observed lower levels of dnmt1 and higher levels of TET gene expression in the NBH livers, suggesting possible differences in DNA methylation profiles. Consistent with this, the two populations differed significantly in the levels of 5-methylcytosine and 5-hydroxymethylcytosine nucleotides. Overall, our results suggest that the unique hepatic metabolite signatures observed in NBH and SC reflect the adaptive mechanisms for survival in their respective habitats.
PMID: 30368057 [PubMed - as supplied by publisher]
Application of Proteomics Technologies in Oil Palm Research.
Related Articles
Application of Proteomics Technologies in Oil Palm Research.
Protein J. 2018 Oct 26;:
Authors: Lau BYC, Othman A, Ramli US
Abstract
Proteomics technologies were first applied in the oil palm research back in 2008. Since proteins are the gene products that are directly correspond to phenotypic traits, proteomic tools hold a strong advantage above other molecular tools to comprehend the biological and molecular mechanisms in the oil palm system. These emerging technologies have been used as non-overlapping tools to link genome-wide transcriptomics and metabolomics-based studies to enhance the oil palm yield and quality through sustainable plant breeding. Many efforts have also been made using the proteomics technologies to address the oil palm's Ganoderma disease; the cause and management. At present, the high-throughput screening technologies are being applied to identify potential biomarkers involved in metabolism and cellular development through determination of protein expression changes that correlate with oil production and disease. This review highlights key elements in proteomics pipeline, challenges and some examples of their implementations in plant studies in the context of oil palm in particular. We foresee that the proteomics technologies will play more significant role to address diverse issues related to the oil palm in the effort to improve the oil crop.
PMID: 30367348 [PubMed - as supplied by publisher]
An automated framework for NMR chemical shift calculations of small organic molecules.
Related Articles
An automated framework for NMR chemical shift calculations of small organic molecules.
J Cheminform. 2018 Oct 26;10(1):52
Authors: Yesiltepe Y, Nuñez JR, Colby SM, Thomas DG, Borkum MI, Reardon PN, Washton NM, Metz TO, Teeguarden JG, Govind N, Renslow RS
Abstract
When using nuclear magnetic resonance (NMR) to assist in chemical identification in complex samples, researchers commonly rely on databases for chemical shift spectra. However, authentic standards are typically depended upon to build libraries experimentally. Considering complex biological samples, such as blood and soil, the entirety of NMR spectra required for all possible compounds would be infeasible to ascertain due to limitations of available standards and experimental processing time. As an alternative, we introduce the in silico Chemical Library Engine (ISiCLE) NMR chemical shift module to accurately and automatically calculate NMR chemical shifts of small organic molecules through use of quantum chemical calculations. ISiCLE performs density functional theory (DFT)-based calculations for predicting chemical properties-specifically NMR chemical shifts in this manuscript-via the open source, high-performance computational chemistry software, NWChem. ISiCLE calculates the NMR chemical shifts of sets of molecules using any available combination of DFT method, solvent, and NMR-active nuclei, using both user-selected reference compounds and/or linear regression methods. Calculated NMR chemical shifts are provided to the user for each molecule, along with comparisons with respect to a number of metrics commonly used in the literature. Here, we demonstrate ISiCLE using a set of 312 molecules, ranging in size up to 90 carbon atoms. For each, calculation of NMR chemical shifts have been performed with 8 different levels of DFT theory, and with solvation effects using the implicit solvent Conductor-like Screening Model. The DFT method dependence of the calculated chemical shifts have been systematically investigated through benchmarking and subsequently compared to experimental data available in the literature. Furthermore, ISiCLE has been applied to a set of 80 methylcyclohexane conformers, combined via Boltzmann weighting and compared to experimental values. We demonstrate that our protocol shows promise in the automation of chemical shift calculations and, ultimately, the expansion of chemical shift libraries.
PMID: 30367288 [PubMed]
Microbial structure and function in infant and juvenile rhesus macaques are primarily affected by age, not vaccination status.
Related Articles
Microbial structure and function in infant and juvenile rhesus macaques are primarily affected by age, not vaccination status.
Sci Rep. 2018 Oct 26;8(1):15867
Authors: Hasegawa Y, Curtis B, Yutuc V, Rulien M, Morrisroe K, Watkins K, Ferrier C, English C, Hewitson L, Slupsky CM
Abstract
Although thimerosal, an ethylmercury-based preservative, has been removed from most pediatric vaccines in the United States, some multidose vaccines, such as influenza vaccines, still contain thimerosal. Considering that a growing number of studies indicate involvement of the gut microbiome in infant immune development and vaccine responses, it is important to elucidate the impact of pediatric vaccines, including thimerosal-containing vaccines, on gut microbial structure and function. Here, a non-human primate model was utilized to assess how two vaccine schedules affect the gut microbiome in infants (5-9 days old) and juveniles (77-88 weeks old) through 16S ribosomal RNA sequencing and metabolomics analyses of the fecal samples. Two treatment groups (n = 12/group) followed either the vaccine schedule that was in place during the 1990s (intensive exposure to thimerosal) or an expanded schedule administered in 2008 (prenatal and postnatal exposure to thimerosal mainly via influenza vaccines), and were compared with a control group (n = 16) that received saline injections. The primary impact on gut microbial structure and function was age. Although a few statistically significant impacts of the two common pediatric vaccine schedules were observed when confounding factors were considered, the magnitude of the differences was small, and appeared to be positive with vaccination.
PMID: 30367140 [PubMed - in process]
Gut microbiota and plasma metabolites associated with diabetes in women with, or at high risk for, HIV infection.
Related Articles
Gut microbiota and plasma metabolites associated with diabetes in women with, or at high risk for, HIV infection.
EBioMedicine. 2018 Oct 23;:
Authors: Moon JY, Zolnik CP, Wang Z, Qiu Y, Usyk M, Wang T, Kizer JR, Landay AL, Kurland IJ, Anastos K, Kaplan RC, Burk RD, Qi Q
Abstract
BACKGROUND: Gut microbiota alteration has been implicated in HIV infection and metabolic disorders. The relationship between gut microbiota and diabetes has rarely been studied in HIV-infected individuals, who have excess risk of metabolic disorders.
METHODS: Our study during 2015-2016 enrolled predominantly African Americans and Hispanics in the Women's Interagency HIV Study. We studied 28 women with long-standing HIV infection under antiretroviral therapy and 20 HIV-uninfected, but at high risk of infection, women (16 HIV+ and 6 HIV- with diabetes). Fecal samples were analyzed by sequencing prokaryotic16S rRNA gene. Plasma metabolomics profiling was performed by liquid chromatography-tandem mass spectrometry.
FINDINGS: No significant differences in bacterial α- or β-diversity were observed by diabetes or HIV serostatus (all P > .1). Relative abundances of four genera (Finegoldia, Anaerococcus, Sneathia, and Adlercreutzia) were lower in women with diabetes compared to those without diabetes (all P < .01). In women with diabetes, plasma levels of several metabolites in tryptophan catabolism (e,g., kynurenine/tryptophan ratio), branched-chain amino acid and proline metabolism pathways were higher, while glycerophospholipids were lower (all P < .05). Results were generally consistent between HIV-infected and HIV-uninfected women, and no significant modification effects by HIV serostatus were observed (all Pinteraction > 0.05). Anaerococcus, known to produce butyrate which is involved in anti-inflammation and glucose metabolism, showed an inverse correlation with kynurenine/tryptophan ratio (r = -0.38, P < .01).
INTERPRETATION: Among women with or at high risk for HIV infection, diabetes is associated with gut microbiota and plasma metabolite alteration, including depletion of butyrate-producing bacterial population along with higher tryptophan catabolism. FUND: NHLBI (K01HL129892, R01HL140976) and FMF.
PMID: 30366816 [PubMed - as supplied by publisher]
Microbial Sterolomics as a Chemical Biology Tool.
Related Articles
Microbial Sterolomics as a Chemical Biology Tool.
Molecules. 2018 Oct 25;23(11):
Authors: Haubrich BA
Abstract
Metabolomics has become a powerful tool in chemical biology. Profiling the human sterolome has resulted in the discovery of noncanonical sterols, including oxysterols and meiosis-activating sterols. They are important to immune responses and development, and have been reviewed extensively. The triterpenoid metabolite fusidic acid has developed clinical relevance, and many steroidal metabolites from microbial sources possess varying bioactivities. Beyond the prospect of pharmacognostical agents, the profiling of minor metabolites can provide insight into an organism's biosynthesis and phylogeny, as well as inform drug discovery about infectious diseases. This review aims to highlight recent discoveries from detailed sterolomic profiling in microorganisms and their phylogenic and pharmacological implications.
PMID: 30366429 [PubMed - in process]
Excavatolide-B Enhances Contextual Memory Retrieval via Repressing the Delayed Rectifier Potassium Current in the Hippocampus.
Related Articles
Excavatolide-B Enhances Contextual Memory Retrieval via Repressing the Delayed Rectifier Potassium Current in the Hippocampus.
Mar Drugs. 2018 Oct 25;16(11):
Authors: Huang IY, Hsu YL, Chen CC, Chen MF, Wen ZH, Huang HT, Liu IY
Abstract
Memory retrieval dysfunction is a symptom of schizophrenia, autism spectrum disorder (ASD), and absence epilepsy (AE), as well as an early sign of Alzheimer's disease. To date, few drugs have been reported to enhance memory retrieval. Here, we found that a coral-derived natural product, excavatolide-B (Exc-B), enhances contextual memory retrieval in both wild-type and Cav3.2-/- mice via repressing the delayed rectifier potassium current, thus lowering the threshold for action potential initiation and enhancing induction of long-term potentiation (LTP). The human CACNA1H gene encodes a T-type calcium channel (Cav3.2), and its mutation is associated with schizophrenia, ASD, and AE, which are all characterized by abnormal memory function. Our previous publication demonstrated that Cav3.2-/- mice exhibit impaired contextual-associated memory retrieval, whilst their retrieval of spatial memory and auditory cued memory remain intact. The effect of Exc-B on enhancing the retrieval of context-associated memory provides a hope for novel drug development.
PMID: 30366389 [PubMed - in process]
metabolomics; +23 new citations
23 new pubmed citations were retrieved for your search.
Click on the search hyperlink below to display the complete search results:
metabolomics
These pubmed results were generated on 2018/10/27PubMed comprises more than millions of citations for biomedical literature from MEDLINE, life science journals, and online books.
Citations may include links to full-text content from PubMed Central and publisher web sites.
metabolomics; +40 new citations
40 new pubmed citations were retrieved for your search.
Click on the search hyperlink below to display the complete search results:
metabolomics
These pubmed results were generated on 2018/10/26PubMed comprises more than millions of citations for biomedical literature from MEDLINE, life science journals, and online books.
Citations may include links to full-text content from PubMed Central and publisher web sites.
metabolomics; +40 new citations
40 new pubmed citations were retrieved for your search.
Click on the search hyperlink below to display the complete search results:
metabolomics
These pubmed results were generated on 2018/10/26PubMed comprises more than millions of citations for biomedical literature from MEDLINE, life science journals, and online books.
Citations may include links to full-text content from PubMed Central and publisher web sites.
metabolomics; +22 new citations
22 new pubmed citations were retrieved for your search.
Click on the search hyperlink below to display the complete search results:
metabolomics
These pubmed results were generated on 2018/10/24PubMed comprises more than millions of citations for biomedical literature from MEDLINE, life science journals, and online books.
Citations may include links to full-text content from PubMed Central and publisher web sites.
metabolomics; +22 new citations
22 new pubmed citations were retrieved for your search.
Click on the search hyperlink below to display the complete search results:
metabolomics
These pubmed results were generated on 2018/10/24PubMed comprises more than millions of citations for biomedical literature from MEDLINE, life science journals, and online books.
Citations may include links to full-text content from PubMed Central and publisher web sites.
metabolomics; +20 new citations
20 new pubmed citations were retrieved for your search.
Click on the search hyperlink below to display the complete search results:
metabolomics
These pubmed results were generated on 2018/10/23PubMed comprises more than millions of citations for biomedical literature from MEDLINE, life science journals, and online books.
Citations may include links to full-text content from PubMed Central and publisher web sites.
metabolomics; +20 new citations
20 new pubmed citations were retrieved for your search.
Click on the search hyperlink below to display the complete search results:
metabolomics
These pubmed results were generated on 2018/10/23PubMed comprises more than millions of citations for biomedical literature from MEDLINE, life science journals, and online books.
Citations may include links to full-text content from PubMed Central and publisher web sites.