PubMed
Transcriptional coactivator with PDZ-binding motif suppresses the expression of steroidogenic enzymes by nuclear receptor 4 A1 in Leydig cells.
Related Articles
Transcriptional coactivator with PDZ-binding motif suppresses the expression of steroidogenic enzymes by nuclear receptor 4 A1 in Leydig cells.
FASEB J. 2020 Feb 17;:
Authors: Shin JH, Lee G, Jeong MG, Kim HK, Won HY, Choi Y, Lee JH, Nam M, Choi CS, Hwang GS, Hwang ES
Abstract
Transcriptional coactivator with PDZ-binding motif (TAZ) plays crucial role in maintaining testicular structure and function via regulation of senescence of spermatogenic cells. However, it remains unclear whether TAZ is involved in testosterone biosynthesis in testicular Leydig cells. We found that TAZ deficiency caused aberrant Leydig cell expansion and increased lipid droplet formation, which was significantly associated with increased lipogenic enzyme expression. Additionally, the expression of key steroidogenic enzymes, including steroidogenic acute regulatory protein, cytochrome P450 (CYP) 11A1, CYP17A1, and 3β-hydroxysteroid dehydrogenase, was greatly increased in TAZ-deficient testes and primary Leydig cells. Interestingly, the transcriptional activity of nuclear receptor 4 A1 (NR4A1) was dramatically suppressed by TAZ; however, the protein expression and the subcellular localization of NR4A1 were not affected by TAZ. TAZ directly associated with the N-terminal region of NR4A1 and substantially suppressed its DNA-binding and transcriptional activities. Stable expression of TAZ in the mouse Leydig TM3 cell line decreased the expression of key steroidogenic enzymes, whereas knockdown of endogenous TAZ in TM3 cells increased transcripts of steroidogenic genes induced by NR4A1. Consistently, testosterone production was enhanced within TAZ-deficient Leydig cells. However, TAZ deficiency resulted in decreased testosterone secretion caused by dysfunctional mitochondria and lysosomes. Therefore, TAZ plays essential role in NR4A1-induced steroidogenic enzyme expression and testosterone production in Leydig cells.
PMID: 32067268 [PubMed - as supplied by publisher]
Germinal center B cells selectively oxidize fatty acids for energy while conducting minimal glycolysis.
Related Articles
Germinal center B cells selectively oxidize fatty acids for energy while conducting minimal glycolysis.
Nat Immunol. 2020 Feb 17;:
Authors: Weisel FJ, Mullett SJ, Elsner RA, Menk AV, Trivedi N, Luo W, Wikenheiser D, Hawse WF, Chikina M, Smita S, Conter LJ, Joachim SM, Wendell SG, Jurczak MJ, Winkler TH, Delgoffe GM, Shlomchik MJ
Abstract
Germinal center B cells (GCBCs) are critical for generating long-lived humoral immunity. How GCBCs meet the energetic challenge of rapid proliferation is poorly understood. Dividing lymphocytes typically rely on aerobic glycolysis over oxidative phosphorylation for energy. Here we report that GCBCs are exceptional among proliferating B and T cells, as they actively oxidize fatty acids (FAs) and conduct minimal glycolysis. In vitro, GCBCs had a very low glycolytic extracellular acidification rate but consumed oxygen in response to FAs. [13C6]-glucose feeding revealed that GCBCs generate significantly less phosphorylated glucose and little lactate. Further, GCBCs did not metabolize glucose into tricarboxylic acid (TCA) cycle intermediates. Conversely, [13C16]-palmitic acid labeling demonstrated that GCBCs generate most of their acetyl-CoA and acetylcarnitine from FAs. FA oxidation was functionally important, as drug-mediated and genetic dampening of FA oxidation resulted in a selective reduction of GCBCs. Hence, GCBCs appear to uncouple rapid proliferation from aerobic glycolysis.
PMID: 32066950 [PubMed - as supplied by publisher]
Dl-3-n-butylphthalide attenuates mouse behavioral deficits to chronic social defeat stress by regulating energy metabolism via AKT/CREB signaling pathway.
Related Articles
Dl-3-n-butylphthalide attenuates mouse behavioral deficits to chronic social defeat stress by regulating energy metabolism via AKT/CREB signaling pathway.
Transl Psychiatry. 2020 Feb 03;10(1):49
Authors: Wang W, Wang T, Bai S, Chen Z, Qi X, Xie P
Abstract
Major depressive disorder (MDD) is a severe mental disorder associated with high rates of morbidity and mortality. Current first-line pharmacotherapies for MDD are based on enhancement of monoaminergic neurotransmission, but these antidepressants are still insufficient and produce significant side-effects. Consequently, the development of novel antidepressants and therapeutic targets is desired. Dl-3-n-butylphthalide (NBP) is a compound with proven efficacy in treating ischemic stroke, yet its therapeutic effects and mechanisms for depression remain unexplored. The aim of this study was to investigate the effect of NBP in a chronic social defeat stress model of depression and its underlying molecular mechanisms. Here, we examined depression-related behavior and performed a targeted metabolomics analysis. Real-time quantitative polymerase chain reaction and western blotting were used to examine key genes and proteins involved in energy metabolism and the AKT/cAMP response element-binding protein (CREB) signaling pathway. Our results reveal NBP attenuates stress-induced social deficits, anxiety-like behavior and despair behavior, and alters metabolite levels of glycolysis and tricarboxylic acid (TCA) cycle components. NBP affected gene expression of key enzymes of the TCA cycle, as well as protein expression of p-AKT and p-CREB. Our findings provide the first evidence showing that NBP can attenuate stress-induced behavioral deficits by modulating energy metabolism by regulating activation of the AKT/CREB signaling pathway.
PMID: 32066705 [PubMed - in process]
Metabolomic analyses of the bio-corona formed on TiO2 nanoparticles incubated with plant leaf tissues.
Related Articles
Metabolomic analyses of the bio-corona formed on TiO2 nanoparticles incubated with plant leaf tissues.
J Nanobiotechnology. 2020 Feb 17;18(1):28
Authors: Kurepa J, Shull TE, Smalle JA
Abstract
BACKGROUND: The surface of a nanoparticle adsorbs molecules from its surroundings with a specific affinity determined by the chemical and physical properties of the nanomaterial. When a nanoparticle is exposed to a biological system, the adsorbed molecules form a dynamic and specific surface layer called a bio-corona. The present study aimed to identify the metabolites that form the bio-corona around anatase TiO2 nanoparticles incubated with leaves of the model plant Arabidopsis thaliana.
RESULTS: We used an untargeted metabolomics approach and compared the metabolites isolated from wild-type plants with plants deficient in a class of polyphenolic compounds called flavonoids.
CONCLUSIONS: These analyses showed that TiO2 nanoparticle coronas are enriched for flavonoids and lipids and that these metabolite classes compete with each other for binding the nanoparticle surface.
PMID: 32066442 [PubMed - in process]
Feature selection for OPLS discriminant analysis of cancer tissue lipidomics data.
Related Articles
Feature selection for OPLS discriminant analysis of cancer tissue lipidomics data.
J Mass Spectrom. 2020 Jan;55(1):e4457
Authors: Tokareva AO, Chagovets VV, Starodubtseva NL, Nazarova NM, Nekrasova ME, Kononikhin AS, Frankevich VE, Nikolaev EN, Sukhikh GT
Abstract
The mass spectrometry-based molecular profiling can be used for better differentiation between normal and cancer tissues and for the detection of neoplastic transformation, which is of great importance for diagnostics of a pathology, prognosis of its evolution trend, and development of a treatment strategy. The aim of the present study is the evaluation of tissue classification approaches based on various data sets derived from the molecular profile of the organic solvent extracts of a tissue. A set of possibilities are considered for the orthogonal projections to latent structures discriminant analysis: all mass spectrometric peaks over 300 counts threshold, subset of peaks selected by ranking with support vector machine algorithm, peaks selected by random forest algorithm, peaks with the statistically significant difference of the intensity determined by the Mann-Whitney U test, peaks identified as lipids, and both identified and significantly different peaks. The best predictive potential is obtained for OPLS-DA model built on nonpolar glycerolipids (Q2 = 0.64, area under curve [AUC] = 0.95); the second one is OPLS-DA model with lipid peaks selected by random forest algorithm (Q2 = 0.58, AUC = 0.87). Moreover, models based on particular molecular classes are more preferable from biological point of view, resulting in new explanatory mechanisms of pathophysiology and providing a pathway analysis. Another promising features for OPLS-DA modeling are phosphatidylethanolamines (Q2 = 0.48, AUC = 0.86).
PMID: 31661719 [PubMed - indexed for MEDLINE]
Non-invasive assessment of hepatic lipid subspecies matched with non-alcoholic fatty liver disease phenotype.
Related Articles
Non-invasive assessment of hepatic lipid subspecies matched with non-alcoholic fatty liver disease phenotype.
Nutr Metab Cardiovasc Dis. 2019 11;29(11):1197-1204
Authors: Erickson ML, Haus JM, Malin SK, Flask CA, McCullough AJ, Kirwan JP
Abstract
BACKGROUND AND AIMS: Nonalcoholic fatty liver disease (NAFLD) is characterized by excessive hepatic fat accumulation. Increased hepatic saturated fats and decreased hepatic polyunsaturated fats may be particularly lipotoxic, contributing to metabolic dysfunction. We compared hepatic lipid subspecies in adults with and without NAFLD, and examined links with hallmark metabolic and clinical characteristics of NAFLD.
METHODS AND RESULTS: Nineteen adults with NAFLD (total hepatic fat:18.8 ± 0.1%) were compared to sixteen adults without NAFLD (total hepatic fat: 2.1 ± 0.01%). 1H-MRS was used to assess hepatic lipid subspecies. Methyl, allylic, methylene, and diallylic proton peaks were measured. Saturation, unsaturation, and polyunsaturation indices were calculated. Whole-body phenotyping in a subset of participants included insulin sensitivity (40 mU/m2 hyperinsulinemic-euglycemic clamps), CT-measured abdominal adipose tissue depots, exercise capacity, and serum lipid profiles. Participants with NAFLD exhibited more saturated and less unsaturated hepatic fat, accompanied by increased insulin resistance, total and visceral adiposity, triglycerides, and reduced exercise capacity compared to controls (all P < 0.05). All proton lipid peaks were related to insulin resistance and hypertriglyceridemia (P < 0.05).
CONCLUSION: Participants with NAFLD preferentially stored excess hepatic lipids as saturated fat, at the expense of unsaturated fat, compared to controls. This hepatic lipid profile was accompanied by an unhealthy metabolic phenotype.
PMID: 31371265 [PubMed - indexed for MEDLINE]
Secretome Profiling Reveals Virulence-Associated Proteins of Fusarium proliferatum during Interaction with Banana Fruit.
Related Articles
Secretome Profiling Reveals Virulence-Associated Proteins of Fusarium proliferatum during Interaction with Banana Fruit.
Biomolecules. 2019 06 23;9(6):
Authors: Li T, Wu Y, Wang Y, Gao H, Gupta VK, Duan X, Qu H, Jiang Y
Abstract
Secreted proteins are vital for the pathogenicity of many fungi through manipulating their hosts for efficient colonization. Fusarium proliferatum is a phytopathogenic fungus infecting many crops, vegetables, and fruit, including banana fruit. To access the proteins involved in pathogen-host interaction, we used label-free quantitative proteomics technology to comparatively analyze the secretomes of F. proliferatum cultured with and without banana peel in Czapek's broth medium. By analyzing the secretomes of F. proliferatum, we have identified 105 proteins with 40 exclusively secreted and 65 increased in abundance in response to a banana peel. These proteins were involved in the promotion of invasion of banana fruit, and they were mainly categorized into virulence factors, cell wall degradation, metabolic process, response to stress, regulation, and another unknown biological process. The expressions of corresponding genes confirmed the existence of these secreted proteins in the banana peel. Furthermore, expression pattern suggested variable roles for these genes at different infection stages. This study expanded the current database of F. proliferatum secreted proteins which might be involved in the infection strategy of this fungus. Additionally, this study warranted the further attention of some secreted proteins that might initiate infection of F. proliferatum on banana fruit.
PMID: 31234604 [PubMed - indexed for MEDLINE]
Associations among tourist camp management, high and low tourist seasons, and welfare factors in female Asian elephants in Thailand.
Related Articles
Associations among tourist camp management, high and low tourist seasons, and welfare factors in female Asian elephants in Thailand.
PLoS One. 2019;14(6):e0218579
Authors: Norkaew T, Brown JL, Thitaram C, Bansiddhi P, Somgird C, Punyapornwithaya V, Punturee K, Vongchan P, Somboon N, Khonmee J
Abstract
This study investigated how camp management and tourist activities affect body condition, adrenocortical function, lipid profiles and metabolic status in female tourist elephants. We compared twice monthly serum insulin, glucose, fructosamine, total cholesterol (TC), triglyceride (TG), low density lipoprotein (LDL), high density lipoprotein (HDL), and fecal glucocorticoid metabolite (FGM) concentrations to body condition scores (BCS) at five camps with different management styles (e.g., tourist activities, work type, diet) between the High (November-February) and Low (March-October) tourist seasons. There were significant camp effects on health parameters, with BCS, TC, HDL, insulin and glucose being among the highest, and G:I being the lowest (less heathy) in elephants at an observation camp compared to those at camps where elephants received exercise by providing rides to tourists. Differences between High and Low tourist season months also were found for all measures, except TG and FGM concentrations. Both work time and walking distance were negatively correlated to glucose, fructosamine and insulin, while walking distance was negatively related to FGM concentrations. By contrast, positive associations were found between tourist number and BCS, TG, and insulin, perhaps related to tourists feeding elephants. Quantity of supplementary diet items (e.g., bananas, sugar cane, pumpkin) were positively correlated with FGM concentrations, glucose, fructosamine, and insulin. This study provides evidence that body condition, adrenal activity, metabolic markers, and lipid profiles in captive elephants may be affected by visitor numbers, work activities, and the amount of supplementary foods offered by tourists. Some activities appear to have negative (e.g., feeding), while others (e.g., exercise) may have positive effects on health and welfare. We conclude that camps adopting a more hands-off approach to tourism need to ensure elephants remain healthy by providing environments that encourage activity and rely on more natural diets or foraging.
PMID: 31206564 [PubMed - indexed for MEDLINE]
Elevated O-GlcNAcylation enhances pro-inflammatory Th17 function by altering the intracellular lipid microenvironment.
Related Articles
Elevated O-GlcNAcylation enhances pro-inflammatory Th17 function by altering the intracellular lipid microenvironment.
J Biol Chem. 2019 05 31;294(22):8973-8990
Authors: Machacek M, Saunders H, Zhang Z, Tan EP, Li J, Li T, Villar MT, Artigues A, Lydic T, Cork G, Slawson C, Fields PE
Abstract
Chronic, low-grade inflammation increases the risk for atherosclerosis, cancer, and autoimmunity in diseases such as obesity and diabetes. Levels of CD4+ T helper 17 (Th17) cells, which secrete interleukin 17A (IL-17A), are increased in obesity and contribute to the inflammatory milieu; however, the relationship between signaling events triggered by excess nutrient levels and IL-17A-mediated inflammation is unclear. Here, using cytokine, quantitative real-time PCR, immunoprecipitation, and ChIP assays, along with lipidomics and MS-based approaches, we show that increased levels of the nutrient-responsive, post-translational protein modification, O-GlcNAc, are present in naive CD4+ T cells from a diet-induced obesity murine model and that elevated O-GlcNAc levels increase IL-17A production. We also found that increased binding of the Th17 master transcription factor RAR-related orphan receptor γ t variant (RORγt) at the IL-17 gene promoter and enhancer, as well as significant alterations in the intracellular lipid microenvironment, elevates the production of ligands capable of increasing RORγt transcriptional activity. Importantly, the rate-limiting enzyme of fatty acid biosynthesis, acetyl-CoA carboxylase 1 (ACC1), is O-GlcNAcylated and necessary for production of these RORγt-activating ligands. Our results suggest that increased O-GlcNAcylation of cellular proteins may be a potential link between excess nutrient levels and pathological inflammation.
PMID: 31010828 [PubMed - indexed for MEDLINE]
metabolomics; +27 new citations
27 new pubmed citations were retrieved for your search.
Click on the search hyperlink below to display the complete search results:
metabolomics
These pubmed results were generated on 2020/02/18PubMed comprises more than millions of citations for biomedical literature from MEDLINE, life science journals, and online books.
Citations may include links to full-text content from PubMed Central and publisher web sites.
Metabolism and Effects on Endogenous Metabolism of Paracetamol (Acetaminophen) in a Porcine Model of Liver Failure.
Metabolism and Effects on Endogenous Metabolism of Paracetamol (Acetaminophen) in a Porcine Model of Liver Failure.
Toxicol Sci. 2020 Feb 15;:
Authors: Dargue R, Zia R, Lau C, Nicholls AW, Dare TO, Lee K, Jalan R, Coen M, Wilson ID
Abstract
The metabolic fate, toxicity and effects on endogenous metabolism of paracetamol (acetaminophen, APAP) in 22 female Landrace cross large white pigs were evaluated in a model of acute liver failure (ALF). Anaesthetized pigs were initially dosed at 250 mg/kg via an oroduodenal tube with APAP serum concentrations maintained above 300 mg/L using maintenance doses of 0.5-4g/h until ALF. Studies were undertaken to determine both the metabolic fate of APAP and its effects on the endogenous metabolic phenotype of ALF in using 1H NMR spectroscopy. Increased concentrations of citrate combined with pre-ALF increases in circulating lactate, pyruvate and alanine in plasma suggest mitochondrial dysfunction and a switch in hepatic energy metabolism to glycolysis in response to APAP treatment. A specific liquid chromatography-tandem mass spectrometry assay was used to quantify APAP and metabolites. The major circulating and urinary metabolite of APAP was the phenolic glucuronide (APAP-G), followed by p-aminophenol glucuronide (PAP-G) formed from N-deacetylated APAP. The PAP produced by N-deacetylation was the likely cause of the methaemoglobinemia and kidney toxicity observed in this, and previous, studies in the pig. The phenolic sulfate of APAP, and the glutathione-derived metabolites of the drug were only found as minor components (with the cysteinyl conjugate detected but not the mercapturate). Given its low sulfation, combined with significant capacity for N-deacetylation the pig may represent a poor translational model for toxicology studies for compounds undergoing significant metabolism by sulfation, or which contain amide bonds which when hydrolysed to unmask an aniline lead to toxicity. However, the pig may provide a useful model where extensive amide hydrolysis is seen for drugs or environmental chemicals in humans, but not in e.g., the rat and dog which are the pre-clinical species normally employed for safety assessment.
PMID: 32061126 [PubMed - as supplied by publisher]
Inhibition of human CYP1 enzymes by a classical inhibitor α-naphthoflavone and a novel inhibitor N-(3, 5- dichlorophenyl)cyclopropanecarboxamide - an in vitro and in silico study.
Related Articles
Inhibition of human CYP1 enzymes by a classical inhibitor α-naphthoflavone and a novel inhibitor N-(3, 5- dichlorophenyl)cyclopropanecarboxamide - an in vitro and in silico study.
Chem Biol Drug Des. 2020 Feb 14;:
Authors: Juvonen RO, Jokinen EM, Javaid A, Lehtonen M, Raunio H, Pentikäinen OT
Abstract
Enzymes in the cytochrome P450 family 1 (CYP1) catalyze metabolic activation of procarcinogens and deactivation of certain anticancer drugs. Inhibition of these enzymes is a potential approach for cancer chemoprevention and treatment of CYP1-mediated drug resistance. We characterized inhibition of human CYP1A1, CYP1A2 and CYP1B1 enzymes by the novel inhibitor N-(3,5-dichlorophenyl) cyclopropanecarboxamide (DCPCC) and α-naphthoflavone (ANF). Depending on substrate, IC50 values of DCPCC for CYP1A1 or CYP1B1 were 10-95 times higher than for CYP1A2. IC50 of DCPCC for CYP1A2 was 100-fold lower than for enzymes in CYP2 and CYP3 families. DCPCC IC50 values were 10-680 times higher than the ones of ANF. DCPCC was a mixed type inhibitor of CYP1A2. ANF was a competitive tight-binding inhibitor of CYP1A1, CYP1A2 and CYP1B1. CYP1A1 oxidized DCPCC more rapidly than CYP1A2 or CYP1B1 to the same metabolite. Molecular dynamics simulations and binding free energy calculations explained the differences of binding of DCPCC and ANF to the active sites of all three CYP1 enzymes. We conclude that DCPCC is a more selective inhibitor for CYP1A2 than ANF. DCPCC is a candidate structure to modulate CYP1A2 mediated metabolism of procarcinogens and anticancer drugs.
PMID: 32060993 [PubMed - as supplied by publisher]
Targeted Metabolomics Analysis Reveals that Dietary Supranutritional Selenium Regulates Sugar and Acylcarnitine Metabolism Homeostasis in Pig Liver.
Related Articles
Targeted Metabolomics Analysis Reveals that Dietary Supranutritional Selenium Regulates Sugar and Acylcarnitine Metabolism Homeostasis in Pig Liver.
J Nutr. 2020 Feb 14;:
Authors: Zhang K, Han Y, Zhao Q, Zhan T, Li Y, Sun W, Li S, Sun D, Si X, Yu X, Qin Y, Tang C, Zhang J
Abstract
BACKGROUND: The association between high selenium (Se) intake and metabolic disorders such as type 2 diabetes has raised great concern, but the underlying mechanism remains unclear.
OBJECTIVE: Through targeted metabolomics analysis, we examined the liver sugar and acylcarnitine metabolism responses to supranutritional selenomethionine (SeMet) supplementation in pigs.
METHODS: Thirty-six castrated male pigs (Duroc-Landrace-Yorkshire, 62.0 ± 3.3 kg) were fed SeMet adequate (Se-A, 0.25 mg Se/kg) or SeMet supranutritional (Se-S, 2.5 mg Se/kg) diets for 60 d. The Se concentration, biochemical, gene expression, enzyme activity, and energy-targeted metabolite profiles were analyzed.
RESULTS: The Se-S group had greater fasting serum concentrations of glucose (1.9-fold), insulin (1.4-fold), and free fatty acids (FFAs,1.3-fold) relative to the Se-A group (P < 0.05). The liver total Se concentration was 4.2-fold that of the Se-A group in the Se-S group (P < 0.05), but expression of most selenoprotein genes and selenoenzyme activity did not differ between the 2 groups. Seven of 27 targeted sugar metabolites and 4 of 21 acylcarnitine metabolites significantly changed in response to high SeMet (P < 0.05). High SeMet supplementation significantly upregulated phosphoenolpyruvate carboxy kinase (PEPCK) activity by 64.4% and decreased hexokinase and succinate dehydrogenase (SDH) activity by 46.5-56.7% (P < 0.05). The relative contents of glucose, dihydroxyacetone phosphate, α-ketoglutarate, fumarate, malate, erythrose-4-phosphate, and sedoheptulose-7-phosphate in the Se-S group were 21.1-360% greater than those in the Se-A group (P < 0.05). The expression of fatty acid synthase (FASN) and the relative contents of carnitine, hexanoyl-carnitine, decanoyl-carnitine, and tetradecanoyl-carnitine in the Se-S group were 35-97% higher than those in the Se-A group (P < 0.05).
CONCLUSIONS: Dietary high SeMet-induced hyperglycemia and hyperinsulinemia were associated with suppression of sugar metabolism and elevation of lipid synthesis in pig livers. Our research provides novel insights into high SeMet intake-induced type 2 diabetes.
PMID: 32060554 [PubMed - as supplied by publisher]
Glycolysis/gluconeogenesis- and tricarboxylic acid cycle-related metabolites, Mediterranean diet, and type 2 diabetes.
Related Articles
Glycolysis/gluconeogenesis- and tricarboxylic acid cycle-related metabolites, Mediterranean diet, and type 2 diabetes.
Am J Clin Nutr. 2020 Feb 14;:
Authors: Guasch-Ferré M, Santos JL, Martínez-González MA, Clish CB, Razquin C, Wang D, Liang L, Li J, Dennis C, Corella D, Muñoz-Bravo C, Romaguera D, Estruch R, Santos-Lozano JM, Castañer O, Alonso-Gómez A, Serra-Majem L, Ros E, Canudas S, Asensio EM, Fitó M, Pierce K, Martínez JA, Salas-Salvadó J, Toledo E, Hu FB, Ruiz-Canela M
Abstract
BACKGROUND: Glycolysis/gluconeogenesis and tricarboxylic acid (TCA) cycle metabolites have been associated with type 2 diabetes (T2D). However, the associations of these metabolites with T2D incidence and the potential effect of dietary interventions remain unclear.
OBJECTIVES: We aimed to evaluate the association of baseline and 1-y changes in glycolysis/gluconeogenesis and TCA cycle metabolites with insulin resistance and T2D incidence, and the potential modifying effect of Mediterranean diet (MedDiet) interventions.
METHODS: We included 251 incident T2D cases and 638 noncases in a nested case-cohort study within the PREDIMED Study during median follow-up of 3.8 y. Participants were allocated to MedDiet + extra-virgin olive oil, MedDiet + nuts, or control diet. Plasma metabolites were measured using a targeted approach by LC-tandem MS. We tested the associations of baseline and 1-y changes in glycolysis/gluconeogenesis and TCA cycle metabolites with subsequent T2D risk using weighted Cox regression models and adjusting for potential confounders. We designed a weighted score combining all these metabolites and applying the leave-one-out cross-validation approach.
RESULTS: Baseline circulating concentrations of hexose monophosphate, pyruvate, lactate, alanine, glycerol-3 phosphate, and isocitrate were significantly associated with higher T2D risk (17-44% higher risk for each 1-SD increment). The weighted score including all metabolites was associated with a 30% (95% CI: 1.12, 1.51) higher relative risk of T2D for each 1-SD increment. Baseline lactate and alanine were associated with baseline and 1-y changes of homeostasis model assessment of insulin resistance. One-year increases in most metabolites and in the weighted score were associated with higher relative risk of T2D after 1 y of follow-up. Lower risks were observed in the MedDiet groups than in the control group although no significant interactions were found after adjusting for multiple comparisons.
CONCLUSIONS: We identified a panel of glycolysis/gluconeogenesis-related metabolites that was significantly associated with T2D risk in a Mediterranean population at high cardiovascular disease risk. A MedDiet could counteract the detrimental effects of these metabolites.This trial was registered at controlled-trials.com as ISRCTN35739639.
PMID: 32060497 [PubMed - as supplied by publisher]
Genomic determinants of hypertension with a focus on metabolomics and the gut microbiome.
Related Articles
Genomic determinants of hypertension with a focus on metabolomics and the gut microbiome.
Am J Hypertens. 2020 Feb 15;:
Authors: Louca P, Menni C, Padmanabhan S
Abstract
Epidemiologic and genomic studies have progressively improved our understanding of the causation of hypertension and the complex relationship with diet and environment. The majority of mendelian forms of syndromic hypotension and HTN have all been linked to mutations in genes whose encoded proteins regulate salt-water balance in the kidney, supporting the primacy of the kidneys in BP regulation. There are over 1,477 single nucleotide polymorphisms associated with blood pressure and hypertension and the challenge is establishing a causal role for these variants. Hypertension is a complex multifactorial phenotype and it is likely to be influenced by multiple factors including interactions between diet and lifestyle factors, microbiome and epigenetics. Given the finite genetic variability that is possible in humans, it is likely that incremental gains from single marker analyses have now plateaued and a greater leap in our understanding of the genetic basis of disease will come from integration of other omics and the interacting environmental factors. In this review, we focus on emerging results from the microbiome and metabolomics and discuss how leveraging these findings may facilitate a deeper understanding of the interrelationships between genomics, diet and microbial ecology in humans in the causation of essential hypertension.
PMID: 32060494 [PubMed - as supplied by publisher]
Investigation of α-Glucosidase Inhibitory Metabolites from Tetracera scandens Leaves by GC-MS Metabolite Profiling and Docking Studies.
Related Articles
Investigation of α-Glucosidase Inhibitory Metabolites from Tetracera scandens Leaves by GC-MS Metabolite Profiling and Docking Studies.
Biomolecules. 2020 Feb 12;10(2):
Authors: Nokhala A, Siddiqui MJ, Ahmed QU, Ahamad Bustamam MS, Zakaria AZA
Abstract
Stone leaf (Tetracera scandens) is a Southeast Asian medicinal plant that has been traditionally used for the management of diabetes mellitus. The underlying mechanisms of the antidiabetic activity have not been fully explored yet. Hence, this study aimed to evaluate the α-glucosidase inhibitory potential of the hydromethanolic extracts of T. scandens leaves and to characterize the metabolites responsible for such activity through gas chromatography-mass spectrometry (GC-MS) metabolomics. Crude hydromethanolic extracts of different strengths were prepared and in vitro assayed for α-glucosidase inhibition. GC-MS analysis was further carried out and the mass spectral data were correlated to the corresponding α-glucosidase inhibitory IC50 values via an orthogonal partial least squares (OPLS) model. The 100%, 80%, 60% and 40% methanol extracts displayed potent α-glucosidase inhibitory potentials. Moreover, the established model identified 16 metabolites to be responsible for the α-glucosidase inhibitory activity of T. scandens. The putative α-glucosidase inhibitory metabolites showed moderate to high affinities (binding energies of -5.9 to -9.8 kcal/mol) upon docking into the active site of Saccharomyces cerevisiae isomaltase. To sum up, an OPLS model was developed as a rapid method to characterize the α-glucosidase inhibitory metabolites existing in the hydromethanolic extracts of T. scandens leaves based on GC-MS metabolite profiling.
PMID: 32059529 [PubMed - in process]
metabolomics; +42 new citations
42 new pubmed citations were retrieved for your search.
Click on the search hyperlink below to display the complete search results:
metabolomics
These pubmed results were generated on 2020/02/15PubMed comprises more than millions of citations for biomedical literature from MEDLINE, life science journals, and online books.
Citations may include links to full-text content from PubMed Central and publisher web sites.
metabolomics; +42 new citations
42 new pubmed citations were retrieved for your search.
Click on the search hyperlink below to display the complete search results:
metabolomics
These pubmed results were generated on 2020/02/15PubMed comprises more than millions of citations for biomedical literature from MEDLINE, life science journals, and online books.
Citations may include links to full-text content from PubMed Central and publisher web sites.
Urinary chemical fingerprint left behind by repeated NSAID administration: Discovery of putative biomarkers using artificial intelligence.
Related Articles
Urinary chemical fingerprint left behind by repeated NSAID administration: Discovery of putative biomarkers using artificial intelligence.
PLoS One. 2020;15(2):e0228989
Authors: Broughton-Neiswanger LE, Rivera-Velez SM, Suarez MA, Slovak JE, Piñeyro PE, Hwang JK, Villarino NF
Abstract
Prediction and early detection of kidney damage induced by nonsteroidal anti-inflammatories (NSAIDs) would provide the best chances of maximizing the anti-inflammatory effects while minimizing the risk of kidney damage. Unfortunately, biomarkers for detecting NSAID-induced kidney damage in cats remain to be discovered. To identify potential urinary biomarkers for monitoring NSAID-based treatments, we applied an untargeted metabolomics approach to urine collected from cats treated repeatedly with meloxicam or saline for up to 17 days. Applying multivariate analysis, this study identified a panel of seven metabolites that discriminate meloxicam treated from saline treated cats. Combining artificial intelligence machine learning algorithms and an independent testing urinary metabolome data set from cats with meloxicam-induced kidney damage, a panel of metabolites was identified and validated. The panel of metabolites including tryptophan, tyrosine, taurine, threonic acid, pseudouridine, xylitol and lyxitol, successfully distinguish meloxicam-treated and saline-treated cats with up to 75-100% sensitivity and specificity. This panel of urinary metabolites may prove a useful and non-invasive diagnostic tool for monitoring potential NSAID induced kidney injury in feline patients and may act as the framework for identifying urine biomarkers of NSAID induced injury in other species.
PMID: 32053695 [PubMed - in process]
2'-O-ribose methylation of transfer RNA promotes recovery from oxidative stress in Saccharomyces cerevisiae.
Related Articles
2'-O-ribose methylation of transfer RNA promotes recovery from oxidative stress in Saccharomyces cerevisiae.
PLoS One. 2020;15(2):e0229103
Authors: Endres L, Rose RE, Doyle F, Rahn T, Lee B, Seaman J, McIntyre WD, Fabris D
Abstract
Chemical modifications that regulate protein expression at the translational level are emerging as vital components of the cellular stress response. Transfer RNAs (tRNAs) are significant targets for methyl-based modifications, which are catalyzed by tRNA methyltransferases (Trms). Here, Saccharomyces cerevisiae served as a model eukaryote system to investigate the role of 2'-O-ribose tRNA methylation in the cell's response to oxidative stress. Using 2'-O-ribose deletion mutants for trms 3, 7, 13, and 44, in acute and chronic exposure settings, we demonstrate a broad cell sensitivity to oxidative stress-inducing toxicants (i.e., hydrogen peroxide, rotenone, and acetic acid). A global analysis of hydrogen peroxide-induced tRNA modifications shows a complex profile of decreased, or undetectable, 2'-O-ribose modification events in 2'-O-ribose trm mutant strains, providing a critical link between this type of modification event and Trm status post-exposure. Based on the pronounced oxidative stress sensitivity observed for trm7 mutants, we used a bioinformatic tool to identify transcripts as candidates for regulation by Trm7-catalyzed modifications (i.e., enriched in UUC codons decoded by tRNAPheGmAA). This screen identified transcripts linked to diverse biological processes that promote cellular recovery after oxidative stress exposure, including DNA repair, chromatin remodeling, and nutrient acquisition (i.e., CRT10, HIR3, HXT2, and GNP1); moreover, these mutants were also oxidative stress-sensitive. Together, these results solidify a role for TRM3, 7, 13, and 44, in the cellular response to oxidative stress, and implicate 2'-O-ribose tRNA modification as an epitranscriptomic strategy for oxidative stress recovery.
PMID: 32053677 [PubMed - in process]