PubMed
metabolomics; +17 new citations
17 new pubmed citations were retrieved for your search.
Click on the search hyperlink below to display the complete search results:
metabolomics
These pubmed results were generated on 2017/12/21PubMed comprises more than millions of citations for biomedical literature from MEDLINE, life science journals, and online books.
Citations may include links to full-text content from PubMed Central and publisher web sites.
Enterohemorrhagic Escherichia coli outwits hosts through sensing small molecules.
Enterohemorrhagic Escherichia coli outwits hosts through sensing small molecules.
Curr Opin Microbiol. 2017 Dec 16;41:83-88
Authors: Carlson-Banning KM, Sperandio V
Abstract
Small molecules help intestinal pathogens navigate the complex human gastrointestinal tract to exploit favorable microhabitats. These small molecules provide spatial landmarks for pathogens to regulate synthesis of virulence caches and are derived from the host, ingested plant and animal material, and the microbiota. Their concentrations and fluxes vary along the length of the gut and provide molecular signatures that are beginning to be explored through metabolomics and genetics. However, while many small molecules have been identified and are reviewed here, there are undoubtedly others that may also profoundly affect how enteric pathogens infect their hosts.
PMID: 29258058 [PubMed - as supplied by publisher]
Simultaneous determination of thirteen different steroid hormones using micro UHPLC-MS/MS with on-line SPE system.
Simultaneous determination of thirteen different steroid hormones using micro UHPLC-MS/MS with on-line SPE system.
J Pharm Biomed Anal. 2017 Dec 12;150:258-267
Authors: Márta Z, Bobály B, Fekete J, Magda B, Imre T, Mészáros KV, Bálint M, Szabó PT
Abstract
Ultratrace analysis of sample components requires excellent analytical performance in terms of limits of quantitation (LOQ). Micro UHPLC coupled to sensitive tandem mass spectrometry provides state of the art solution for such analytical problems. Using on-line SPE with column switching on a micro UHPLC-MS/MS system allowed to decrease LOQ without any complex sample preparation protocol. The presented method is capable of reaching satisfactory low LOQ values for analysis of thirteen different steroid molecules from human plasma without the most commonly used off-line SPE or compound derivatization. Steroids were determined by using two simple sample preparation methods, based on lower and higher plasma steroid concentrations. In the first method, higher analyte concentrations were directly determined after protein precipitation with methanol. The organic phase obtained from the precipitation was diluted with water and directly injected into the LC-MS system. In the second method, low steroid levels were determined by concentrating the organic phase after steroid extraction. In this case, analytes were extracted with ethyl acetate and reconstituted in 90/10 water/acetonitrile following evaporation to dryness. This step provided much lower LOQs, outperforming previously published values. The method has been validated and subsequently applied to clinical laboratory measurement.
PMID: 29258045 [PubMed - as supplied by publisher]
Metabolomics of the Wolfram Syndrome 1 Gene (Wfs1) Deficient Mice.
Metabolomics of the Wolfram Syndrome 1 Gene (Wfs1) Deficient Mice.
OMICS. 2017 Dec;21(12):721-732
Authors: Porosk R, Terasmaa A, Mahlapuu R, Soomets U, Kilk K
Abstract
Wolfram syndrome 1 is a rare autosomal recessive neurodegenerative disease characterized by diabetes insipidus, diabetes mellitus, optic atrophy, and deafness. Mutations in the WFS1 gene encoding the wolframin glycoprotein can lead to endoplasmic reticulum stress and unfolded protein responses in cells, but the pathophysiology at whole organism level is poorly understood. In this study, several organs (heart, liver, kidneys, and pancreas) and bodily fluids (trunk blood and urine) of 2- and 6-month old Wfs1 knockout (KO), heterozygote (HZ), and wild-type (WT) mice were analyzed by untargeted and targeted metabolomics using liquid chromatography-mass spectrometry. The key findings were significant perturbations in the metabolism of pancreas and heart before the onset of related clinical signs such as glycosuria that precedes hyperglycemia and thus implies a kidney dysfunction before the onset of classical diabetic nephropathy. The glucose use and gluconeogenesis in KO mice are intensified in early stages, but later the energetic needs are mainly covered by lipolysis. Furthermore, in young mice liver and trunk blood hypouricemia, which in time turns to hyperuricemia, was detected. In summary, we show that the metabolism in Wfs1-deficient mice markedly differs from the metabolism of WT mice in many aspects and discuss the future biological and clinical relevance of these observations.
PMID: 29257731 [PubMed - in process]
Ash leaf metabolomes reveal differences between trees tolerant and susceptible to ash dieback disease.
Ash leaf metabolomes reveal differences between trees tolerant and susceptible to ash dieback disease.
Sci Data. 2017 Dec 19;4:170190
Authors: Sambles CM, Salmon DL, Florance H, Howard TP, Smirnoff N, Nielsen LR, McKinney LV, Kjær ED, Buggs RJA, Studholme DJ, Grant M
Abstract
European common ash, Fraxinus excelsior, is currently threatened by Ash dieback (ADB) caused by the fungus, Hymenoscyphus fraxineus. To detect and identify metabolites that may be products of pathways important in contributing to resistance against H. fraxineus, we performed untargeted metabolomic profiling on leaves from five high-susceptibility and five low-susceptibility F. excelsior individuals identified during Danish field trials. We describe in this study, two datasets. The first is untargeted LC-MS metabolomics raw data from ash leaves with high-susceptibility and low-susceptibility to ADB in positive and negative mode. These data allow the application of peak picking, alignment, gap-filling and retention-time correlation analyses to be performed in alternative ways. The second, a processed dataset containing abundances of aligned features across all samples enables further mining of the data. Here we illustrate the utility of this dataset which has previously been used to identify putative iridoid glycosides, well known anti-herbivory terpenoid derivatives, and show differential abundance in tolerant and susceptible ash samples.
PMID: 29257137 [PubMed - in process]
Two complementary reversed-phase separations for comprehensive coverage of the semipolar and nonpolar metabolome.
Related Articles
Two complementary reversed-phase separations for comprehensive coverage of the semipolar and nonpolar metabolome.
Anal Bioanal Chem. 2017 Dec 18;:
Authors: Naser FJ, Mahieu NG, Wang L, Spalding JL, Johnson SL, Patti GJ
Abstract
Although it is common in untargeted metabolomics to apply reversed-phase liquid chromatography (RPLC) and hydrophilic interaction liquid chromatography (HILIC) methods that have been systematically optimized for lipids and central carbon metabolites, here we show that these established protocols provide poor coverage of semipolar metabolites because of inadequate retention. Our objective was to develop an RPLC approach that improved detection of these metabolites without sacrificing lipid coverage. We initially evaluated columns recently released by Waters under the CORTECS line by analyzing 47 small-molecule standards that evenly span the nonpolar and semipolar ranges. An RPLC method commonly used in untargeted metabolomics was considered a benchmarking reference. We found that highly nonpolar and semipolar metabolites cannot be reliably profiled with any single method because of retention and solubility limitations of the injection solvent. Instead, we optimized a multiplexed approach using the CORTECS T3 column to analyze semipolar compounds and the CORTECS C8 column to analyze lipids. Strikingly, we determined that combining these methods allowed detection of 41 of the total 47 standards, whereas our reference RPLC method detected only 10 of the 47 standards. We then applied credentialing to compare method performance at the comprehensive scale. The tandem method showed more than a fivefold increase in credentialing coverage relative to our RPLC benchmark. Our results demonstrate that comprehensive coverage of metabolites amenable to reversed-phase separation necessitates two reconstitution solvents and chromatographic methods. Thus, we suggest complementing HILIC methods with a dual T3 and C8 RPLC approach to increase coverage of semipolar metabolites and lipids for untargeted metabolomics. Graphical abstract Analysis of semipolar and nonpolar metabolites necessitates two reversed-phase chromatography (RPLC) methods, which extend metabolome coverage more than fivefold for untargeted profiling. HILIC hydrophilic interaction liquid chromatography.
PMID: 29256075 [PubMed - as supplied by publisher]
Genome-scale model guided design of Propionibacterium for enhanced propionic acid production.
Related Articles
Genome-scale model guided design of Propionibacterium for enhanced propionic acid production.
Metab Eng Commun. 2018 Jun;6:1-12
Authors: Navone L, McCubbin T, Gonzalez-Garcia RA, Nielsen LK, Marcellin E
Abstract
Production of propionic acid by fermentation of propionibacteria has gained increasing attention in the past few years. However, biomanufacturing of propionic acid cannot compete with the current oxo-petrochemical synthesis process due to its well-established infrastructure, low oil prices and the high downstream purification costs of microbial production. Strain improvement to increase propionic acid yield is the best alternative to reduce downstream purification costs. The recent generation of genome-scale models for a number of Propionibacterium species facilitates the rational design of metabolic engineering strategies and provides a new opportunity to explore the metabolic potential of the Wood-Werkman cycle. Previous strategies for strain improvement have individually targeted acid tolerance, rate of propionate production or minimisation of by-products. Here we used the P. freudenreichii subsp. shermanii and the pan-Propionibacterium genome-scale metabolic models (GEMs) to simultaneously target these combined issues. This was achieved by focussing on strategies which yield higher energies and directly suppress acetate formation. Using P. freudenreichii subsp. shermanii, two strategies were assessed. The first tested the ability to manipulate the redox balance to favour propionate production by over-expressing the first two enzymes of the pentose-phosphate pathway (PPP), Zwf (glucose-6-phosphate 1-dehydrogenase) and Pgl (6-phosphogluconolactonase). Results showed a 4-fold increase in propionate to acetate ratio during the exponential growth phase. Secondly, the ability to enhance the energy yield from propionate production by over-expressing an ATP-dependent phosphoenolpyruvate carboxykinase (PEPCK) and sodium-pumping methylmalonyl-CoA decarboxylase (MMD) was tested, which extended the exponential growth phase. Together, these strategies demonstrate that in silico design strategies are predictive and can be used to reduce by-product formation in Propionibacterium. We also describe the benefit of carbon dioxide to propionibacteria growth, substrate conversion and propionate yield.
PMID: 29255672 [PubMed]
Plasma lipidomics of tuberculosis patients: altered phosphatidylcholine remodeling.
Related Articles
Plasma lipidomics of tuberculosis patients: altered phosphatidylcholine remodeling.
Future Sci OA. 2018 Jan;4(1):FSO255
Authors: Wood PL, Tippireddy S, Feriante J
Abstract
Aim: Decreased circulating levels of lysophosphatidylcholines have been monitored in the serum of tuberculosis (TB) patients. However, the etiology of these findings has not been explored and other critical lung surfactant lipids have not been examined.
Materials & methods: We undertook a lipidomics analysis of 30 controls and 30 TB patients, utilizing a high-resolution mass spectrometric analytical platform that assays over 1800 lipids.
Findings: As previously reported, we found decrements in the plasma levels of lysophosphatidylcholines in TB patients. In addition, we report for the first time that there are increases in the plasma levels of phosphatidylcholines and phosphatidylglycerols in TB patients.
Conclusion: These data suggest that TB results in altered glycerophosphocholine remodeling involving deacylation-reacylation reactions at sn-2 of the glycerol backbone. Such alterations in lipid remodeling have the potential to exert negative effects on the function of lung surfactant, on signal transduction mechanisms and membrane structural lipid architecture in TB patients.
PMID: 29255627 [PubMed]
A scheme for a flexible classification of dietary and health biomarkers.
Related Articles
A scheme for a flexible classification of dietary and health biomarkers.
Genes Nutr. 2017;12:34
Authors: Gao Q, Praticò G, Scalbert A, Vergères G, Kolehmainen M, Manach C, Brennan L, Afman LA, Wishart DS, Andres-Lacueva C, Garcia-Aloy M, Verhagen H, Feskens EJM, Dragsted LO
Abstract
Biomarkers are an efficient means to examine intakes or exposures and their biological effects and to assess system susceptibility. Aided by novel profiling technologies, the biomarker research field is undergoing rapid development and new putative biomarkers are continuously emerging in the scientific literature. However, the existing concepts for classification of biomarkers in the dietary and health area may be ambiguous, leading to uncertainty about their application. In order to better understand the potential of biomarkers and to communicate their use and application, it is imperative to have a solid scheme for biomarker classification that will provide a well-defined ontology for the field. In this manuscript, we provide an improved scheme for biomarker classification based on their intended use rather than the technology or outcomes (six subclasses are suggested: food compound intake biomarkers (FCIBs), food or food component intake biomarkers (FIBs), dietary pattern biomarkers (DPBs), food compound status biomarkers (FCSBs), effect biomarkers, physiological or health state biomarkers). The application of this scheme is described in detail for the dietary and health area and is compared with previous biomarker classification for this field of research.
PMID: 29255495 [PubMed]
Metabolic changes of different high-resolution computed tomography phenotypes of COPD after budesonide-formoterol treatment.
Related Articles
Metabolic changes of different high-resolution computed tomography phenotypes of COPD after budesonide-formoterol treatment.
Int J Chron Obstruct Pulmon Dis. 2017;12:3511-3521
Authors: Wang C, Li JX, Tang D, Zhang JQ, Fang LZ, Fu WP, Liu L, Dai LM
Abstract
Background: Metabolomics is the global unbiased analysis of all the small-molecule metabolites within a biological system. Metabolic profiling of different high-resolution computed tomography (HRCT) phenotypes of COPD patients before and after treatment may identify discriminatory metabolites that can serve as biomarkers and therapeutic agents.
Patients and methods: 1H nuclear magnetic resonance spectroscopy (1H-NMR)-based metabolomics was performed on a discovery set of plasma samples from 50 patients with stable COPD. Patients were assigned into two groups on the basis of HRCT findings including phenotype E (n=22) and phenotype M (n=28). After budesonide-formoterol treatment (160/4.5 µg ×2 inhalations twice daily for 3 months), clinical characteristics and metabolites were then compared between phenotype E pretreatment and posttreatment, phenotype M pretreatment and posttreatment, phenotype E pretreatment and phenotype M pretreatment, and phenotype E posttreatment and phenotype M posttreatment.
Results: Inhaled budesonide-formoterol therapy for both phenotype E (emphysema without bronchial wall thickening) and phenotype M (emphysema with bronchial wall thickening) was effective. However, phenotype E and phenotype M were different in response to therapy. Patients with phenotype M in response to therapeutic effects were significantly greater compared with phenotype E. Certain metabolites were identified, which were closely related to the treatment and phenotype. Metabolic changes in phenotype E or phenotype M after treatment may be involved with adenosine diphosphate (ADP), guanosine, choline, malonate, tyrosine, glycine, proline, l-alanine, l-valine, l-threonine leucine, uridine, pyruvic acid, acetone and metabolism disturbance. Metabolic differences between phenotype E and phenotype M in pretreatment and posttreatment covered glycine, d-glucose, pyruvic acid, succinate, lactate, proline, l-valine and leucine.
Conclusion: Bronchial wall thickening in COPD may be an indicator for predicting the better response to the treatment with bronchodilator and corticosteroid. The identification of metabolic alterations provides new insights into different HRCT phenotypes and therapeutic assessment of COPD.
PMID: 29255358 [PubMed - in process]
Organic matter processing by microbial communities throughout the Atlantic water column as revealed by metaproteomics.
Related Articles
Organic matter processing by microbial communities throughout the Atlantic water column as revealed by metaproteomics.
Proc Natl Acad Sci U S A. 2017 Dec 18;:
Authors: Bergauer K, Fernandez-Guerra A, Garcia JAL, Sprenger RR, Stepanauskas R, Pachiadaki MG, Jensen ON, Herndl GJ
Abstract
The phylogenetic composition of the heterotrophic microbial community is depth stratified in the oceanic water column down to abyssopelagic layers. In the layers below the euphotic zone, it has been suggested that heterotrophic microbes rely largely on solubilized particulate organic matter as a carbon and energy source rather than on dissolved organic matter. To decipher whether changes in the phylogenetic composition with depth are reflected in changes in the bacterial and archaeal transporter proteins, we generated an extensive metaproteomic and metagenomic dataset of microbial communities collected from 100- to 5,000-m depth in the Atlantic Ocean. By identifying which compounds of the organic matter pool are absorbed, transported, and incorporated into microbial cells, intriguing insights into organic matter transformation in the deep ocean emerged. On average, solute transporters accounted for 23% of identified protein sequences in the lower euphotic and ∼39% in the bathypelagic layer, indicating the central role of heterotrophy in the dark ocean. In the bathypelagic layer, substrate affinities of expressed transporters suggest that, in addition to amino acids, peptides and carbohydrates, carboxylic acids and compatible solutes may be essential substrates for the microbial community. Key players with highest expression of solute transporters were Alphaproteobacteria, Gammaproteobacteria, and Deltaproteobacteria, accounting for 40%, 11%, and 10%, respectively, of relative protein abundances. The in situ expression of solute transporters indicates that the heterotrophic prokaryotic community is geared toward the utilization of similar organic compounds throughout the water column, with yet higher abundances of transporters targeting aromatic compounds in the bathypelagic realm.
PMID: 29255014 [PubMed - as supplied by publisher]
Proteomics and metabolomics analysis of hepatic mitochondrial metabolism in alcohol-preferring and non-preferring rats.
Related Articles
Proteomics and metabolomics analysis of hepatic mitochondrial metabolism in alcohol-preferring and non-preferring rats.
Oncotarget. 2017 Nov 24;8(60):102020-102032
Authors: Zeng HL, Yang Q, Du H, Li H, Shen Y, Liu T, Chen X, Kamal GM, Guan Q, Cheng L, Wang J, Xu F
Abstract
Alcohol preference induced tolerance in humans and animals when their bodily functions adapt to compensate for the disruption caused by alcohol consumption. This was thought to be an important component of the genetic predisposition to alcoholism. To investigate the underlying mechanisms of hepatic metabolic tolerance during alcohol preference, the alcohol preferring and alcohol non-preferring rats were used in this study. The liver mitochondria were purified for comparative quantitative proteomics analysis, and the liver metabolite extracts were collected for metabolomics analysis. Our study identified 96 differentially expressed hepatic mitochondrial proteins that associated with alcohol preference, the further gene ontology and protein interaction network analysis suggest a down-regulation of amino acid metabolism and up-regulation of lipid metabolism. We found alcohol preference induced a series of enzymes decreased (e.g. SSADH and GABA-T) and several amino acids increased (e.g. glutamate and aspartate) in rat liver, indicating down-regulations of glutamate degradation occurred during alcohol preference. Most of these changes were due to the genetic differences between alcohol preferring and non-preferring animals. Furthermore, this study would provided new insights to further clarify the mechanisms of hepatic metabolic tolerance during alcohol preference.
PMID: 29254222 [PubMed]
LC-MS-based metabolomics revealed SLC25A22 as an essential regulator of aspartate-derived amino acids and polyamines in KRAS-mutant colorectal cancer.
Related Articles
LC-MS-based metabolomics revealed SLC25A22 as an essential regulator of aspartate-derived amino acids and polyamines in KRAS-mutant colorectal cancer.
Oncotarget. 2017 Nov 24;8(60):101333-101344
Authors: Li X, Chung ACK, Li S, Wu L, Xu J, Yu J, Wong C, Cai Z
Abstract
SLC25A22, which encodes the mitochondrial glutamate transporter, is overexpressed in colorectal cancer (CRC) and is essential for the proliferation of CRC cells harboring KRAS mutations. However, the role of SLC25A22 on metabolic regulation in KRAS-mutant CRC cells has not been comprehensively characterized. We performed non-targeted metabolomics, targeted metabolomics and isotope kinetic analysis of KRAS-mutant DLD1 cells with or without SLC25A22 knockdown using ultra-high-performance liquid chromatography (UHPLC) coupled to Orbitrap mass spectrometry (MS) or tandem MS (MS/MS). Global metabolomics analysis identified 35 altered metabolites, which were attributed to alanine, aspartate and glutamate metabolism, urea cycle and polyamine metabolism. Targeted metabolomics including 24 metabolites revealed that most tricarboxylic acid (TCA) cycle intermediates, aspartate-derived asparagine, alanine and ornithine-derived polyamines were strongly down-regulated in SLC25A22 knockdown cells. Moreover, targeted kinetic isotope analysis showed that most of the 13C-labeled ornithine-derived polyamines were significantly decreased in SLC25A22 knockdown cells and culture medium. Exogenous addition of polyamines could significantly promote cell proliferation in DLD1 cells, highlighting their potential role as oncogenic metabolites that function downstream of SLC25A22-mediated glutamine metabolism. Collectively, SLC25A22 acts as an essential metabolic regulator during CRC progression as it promotes the synthesis of aspartate-derived amino acids and polyamines in KRAS mutant CRC cells.
PMID: 29254168 [PubMed]
Cerebrospinal fluid metabolomic profiles can discriminate patients with leptomeningeal carcinomatosis from patients at high risk for leptomeningeal metastasis.
Related Articles
Cerebrospinal fluid metabolomic profiles can discriminate patients with leptomeningeal carcinomatosis from patients at high risk for leptomeningeal metastasis.
Oncotarget. 2017 Nov 24;8(60):101203-101214
Authors: Yoo BC, Lee JH, Kim KH, Lin W, Kim JH, Park JB, Park HJ, Shin SH, Yoo H, Kwon JW, Gwak HS
Abstract
Purpose: Early diagnosis of leptomeningeal carcinomatosis (LMC) is necessary to improve outcomes of this formidable disease. However, cerebrospinal fluid (CSF) cytology is frequently false negative. We examined whether CSF metabolome profiles can be used to differentiate patients with LMC from patients having a risk for development of LMC.
Results: A total of 10,905 LMIs were evaluated using PCA-DA. The LMIs defined Group 2 with a sensitivity of 85% and a specificity of 91%. After selecting 33 LMIs, including diacetylspermine and fibrinogen fragments, the CSF metabolomics profile had a sensitivity of 100% and a specificity of 93% for discriminating Group 1b from the other groups. After selecting 21 LMIs, including phosphatidylcholine, the CSF metabolomics profile differentiated LMC (Group 2) patients from the high-risk groups of Group 3 and Group 4 with 100% sensitivity and 100% specificity.
Materials and Methods: We prospectively collected CSF from five groups of patients: Group 1a, systemic cancer; Group 1b, no tumor; Group 2, LMC; Group 3, brain metastasis; Group 4, brain tumor other than brain metastasis. All metabolites in the CSF samples were detected as low-mass ions (LMIs) using mass spectrometry. Principal component analysis-based discriminant analysis (PCA-DA) and two search algorithms were used to select the LMIs that differentiated the patient groups of interest from controls.
Conclusions: Analysis of CSF metabolite profiles could be used to diagnose LMC and exclude patients at high-risk of LMC with a 100% accuracy. We expect a future validation trial to evaluate CSF metabolic profiles supporting CSF cytology.
PMID: 29254157 [PubMed]
EcoSynther: A Customized Platform To Explore the Biosynthetic Potential in E. coli.
Related Articles
EcoSynther: A Customized Platform To Explore the Biosynthetic Potential in E. coli.
ACS Chem Biol. 2017 Nov 17;12(11):2823-2829
Authors: Ding S, Liao X, Tu W, Wu L, Tian Y, Sun Q, Chen J, Hu QN
Abstract
Developing computational tools for a chassis-centered biosynthetic pathway design is very important for a productive heterologous biosynthesis system by considering enormous foreign biosynthetic reactions. For many cases, a pathway to produce a target molecule consists of both native and heterologous reactions when utilizing a microbial organism as the host organism. Due to tens of thousands of biosynthetic reactions existing in nature, it is not trivial to identify which could be served as heterologous ones to produce the target molecule in a specific organism. In the present work, we integrate more than 10,000 E. coli non-native reactions and utilize a probability-based algorithm to search pathways. Moreover, we built a user-friendly Web server named EcoSynther. It is able to explore the precursors and heterologous reactions needed to produce a target molecule in Escherichia coli K12 MG1655 and then applies flux balance analysis to calculate theoretical yields of each candidate pathway. Compared with other chassis-centered biosynthetic pathway design tools, EcoSynther has two unique features: (1) allow for automatic search without knowing a precursor in E. coli and (2) evaluate the candidate pathways under constraints from E. coli physiological states and growth conditions. EcoSynther is available at http://www.rxnfinder.org/ecosynther/ .
PMID: 28952720 [PubMed - indexed for MEDLINE]
metabolomics; +21 new citations
21 new pubmed citations were retrieved for your search.
Click on the search hyperlink below to display the complete search results:
metabolomics
These pubmed results were generated on 2017/12/19PubMed comprises more than millions of citations for biomedical literature from MEDLINE, life science journals, and online books.
Citations may include links to full-text content from PubMed Central and publisher web sites.
metabolomics; +26 new citations
26 new pubmed citations were retrieved for your search.
Click on the search hyperlink below to display the complete search results:
metabolomics
These pubmed results were generated on 2017/12/19PubMed comprises more than millions of citations for biomedical literature from MEDLINE, life science journals, and online books.
Citations may include links to full-text content from PubMed Central and publisher web sites.
Metabolic responses of Mytilus galloprovincialis to fullerenes in mesocosms exposure experiments.
Related Articles
Metabolic responses of Mytilus galloprovincialis to fullerenes in mesocosms exposure experiments.
Environ Sci Technol. 2017 Dec 15;:
Authors: Sanchís J, Llorca M, Olmos M, Schirinzi GF, Bosch-Orea C, Abad E, Barcelo D, Farre M
Abstract
In this study, Mediterranean mussels (Mytilus galloprovincialis) were exposed through the diet to fullerene soot, at three concentrations in parallel to a control group. Their metabolomics response was assessed by high-performance liquid chromatography coupled to high-resolution mass spectrometry (HPLC-HRMS). The experiments were conducted in marine mesocosms, during 35 days (7 days of acclimatization, 21 days of exposure and 7 seven days of depuration). Real conditions were emulated in terms of physicochemical conditions of the habitat. Results confirmed the bioaccumulation of fullerenes, and the metabolome of the exposed organisms revealed significant differences in the concentrations of seven free amino acids when compared to the control group. An increase in small non-polar amino acids (e.g. alanine) and branched chain amino acids (leucine and isoleucine) were observed. Also, glutamine concentrations decreased significantly, suggesting the activation of facultative anaerobic energy metabolism. Branched chain amino acids, such as leucine and isoleucine, followed the opposite trend after the highest level of exposure, which can imply hormesis effects. Other significant differences were observed on lipids content, such as the general increase of free fatty acids, i.e. long chain fatty acids (lauric, myristic and palmitic acids) when increasing the concentration of exposure. These results were consistent with hypoxia and oxidative stress.
PMID: 29244952 [PubMed - as supplied by publisher]
Proteometabolomic response of Deinococcus radiodurans exposed to UVC and vacuum conditions: Initial studies prior to the Tanpopo space mission.
Related Articles
Proteometabolomic response of Deinococcus radiodurans exposed to UVC and vacuum conditions: Initial studies prior to the Tanpopo space mission.
PLoS One. 2017;12(12):e0189381
Authors: Ott E, Kawaguchi Y, Kölbl D, Chaturvedi P, Nakagawa K, Yamagishi A, Weckwerth W, Milojevic T
Abstract
The multiple extremes resistant bacterium Deinococcus radiodurans is able to withstand harsh conditions of simulated outer space environment. The Tanpopo orbital mission performs a long-term space exposure of D. radiodurans aiming to investigate the possibility of interplanetary transfer of life. The revealing of molecular machinery responsible for survivability of D. radiodurans in the outer space environment can improve our understanding of underlying stress response mechanisms. In this paper, we have evaluated the molecular response of D. radiodurans after the exposure to space-related conditions of UVC irradiation and vacuum. Notably, scanning electron microscopy investigations showed that neither morphology nor cellular integrity of irradiated cells was affected, while integrated proteomic and metabolomic analysis revealed numerous molecular alterations in metabolic and stress response pathways. Several molecular key mechanisms of D. radiodurans, including the tricarboxylic acid cycle, the DNA damage response systems, ROS scavenging systems and transcriptional regulators responded in order to cope with the stressful situation caused by UVC irradiation under vacuum conditions. These results reveal the effectiveness of the integrative proteometabolomic approach as a tool in molecular analysis of microbial stress response caused by space-related factors.
PMID: 29244852 [PubMed - in process]
Antifungal Activity of Ramulus cinnamomi Explored by ¹H-NMR Based Metabolomics Approach.
Related Articles
Antifungal Activity of Ramulus cinnamomi Explored by ¹H-NMR Based Metabolomics Approach.
Molecules. 2017 Dec 15;22(12):
Authors: Wan C, Li P, Chen C, Peng X, Li M, Chen M, Wang J, Chen J
Abstract
A ¹H nuclear magnetic resonance (NMR)-based approach to metabolomics combined bioassay was used to elucidate the antifungal activity of cinnamaldehyde (the main active compound of Ramulus cinnamomi) isolated from Ramulus cinnamomi (RC). Orthogonal signal correction partial least-squares discriminant analysis (OSC-PLS-DA) of NMR data was constructed to analyze all the P. italicum data acquired from the control and treatment groups at 4, 8, and 12 h. Metabolic profiles disclosed metabolic changes that were related to the antifungal effects of cinnamaldehyde against P. italicum including oxidative stress, disorder of energy metabolism, amino acids, and nucleic acids metabolism in treatment group. This integrated metabolomics approach provided an effective way to detect the antifungal effects of cinnamaldehyde against P. italicum dynamically.
PMID: 29244766 [PubMed - in process]