PubMed
Novel urinary metabolite signature for diagnosing postpartum depression.
Related Articles
Novel urinary metabolite signature for diagnosing postpartum depression.
Neuropsychiatr Dis Treat. 2017;13:1263-1270
Authors: Lin L, Chen XM, Liu RH
Abstract
BACKGROUND: Postpartum depression (PPD) could affect ~10% of women and impair the quality of mother-infant interactions. Currently, there are no objective methods to diagnose PPD. Therefore, this study was conducted to identify potential biomarkers for diagnosing PPD.
MATERIALS AND METHODS: Morning urine samples of PPD subjects, postpartum women without depression (PPWD) and healthy controls (HCs) were collected. The gas chromatography-mass spectroscopy (GC-MS)-based urinary metabolomic approach was performed to characterize the urinary metabolic profiling. The orthogonal partial least-squares-discriminant analysis (OPLS-DA) was used to identify the differential metabolites. The logistic regression analysis and Bayesian information criterion rule were further used to identify the potential biomarker panel. The receiver operating characteristic curve analysis was conducted to evaluate the diagnostic performance of the identified potential biomarker panel.
RESULTS: Totally, 73 PPD subjects, 73 PPWD and 74 HCs were included, and 68 metabolites were identified using GC-MS. The OPLS-DA model showed that there were 22 differential metabolites (14 upregulated and 8 downregulated) responsible for separating PPD subjects from HCs and PPWD. Meanwhile, a panel of five potential biomarkers - formate, succinate, 1-methylhistidine, α-glucose and dimethylamine - was identified. This panel could effectively distinguish PPD subjects from HCs and PPWD with an area under the curve (AUC) curve of 0.948 in the training set and 0.944 in the testing set.
CONCLUSION: These results demonstrated that the potential biomarker panel could aid in the future development of an objective diagnostic method for PPD.
PMID: 28546751 [PubMed - in process]
Metabolic profiling of polycystic ovary syndrome reveals interactions with abdominal obesity.
Related Articles
Metabolic profiling of polycystic ovary syndrome reveals interactions with abdominal obesity.
Int J Obes (Lond). 2017 May 26;:
Authors: Couto Alves A, Valcarcel B, Mäkinen VP, Morin-Papunen L, Sebert S, Kangas AJ, Soininen P, Das S, De Iorio M, Coin L, Ala-Korpela M, Järvelin MR, Franks S
Abstract
BACKGROUND: Polycystic ovary syndrome (PCOS) is a common reproductive disorder associated with metabolic disturbances including obesity, insulin resistance, and diabetes mellitus. Here we investigate whether changes in the metabolic profile of PCOS women are driven by increased tendency to obesity or are specific features of PCOS related to increased testosterone levels.
DESIGN AND METHODS: We conducted an NMR metabolomics association study of PCOS cases (n=145) and controls (n=687) nested in a population-based birth cohort (n=3,127). Subjects were 31 years old at examination. The main analyses were adjusted for waist circumference (WC) as a proxy measure of central obesity. Subsequently, metabolite concentrations were compared between cases and controls within pre-defined WC strata. On each stratum, additional metabolomics association analyses with testosterone levels were conducted separately among cases and controls.
RESULTS: Overall, women with PCOS showed more adverse metabolite profiles than the controls. Four lipid fractions in different subclasses of very low density lipoprotein (VLDL) were associated with PCOS, after adjusting for WC and correction for multiple testing (P<0.002). In stratified analysis the PCOS women within large WC strata (≥98 cm) had significantly lower high density lipoprotein (HDL) levels, ApoA1 and albumin values compared to the controls. Testosterone levels were significantly associated with VLDL and serum lipids in PCOS cases with large WC but not in the controls. The higher testosterone levels, adjusted for WC, adversely associated with insulin levels and HOMA IR in cases but not in the controls.
CONCLUSIONS: Our findings show that both abdominal obesity and hyperandrogenism contribute to the dyslipidaemia and other metabolic traits of PCOS which all may negatively contribute to the long term health of women with PCOS.International Journal of Obesity accepted article preview online, 26 May 2017. doi:10.1038/ijo.2017.126.
PMID: 28546543 [PubMed - as supplied by publisher]
A sensitive mass spectrometry platform identifies metabolic changes of life history traits in C. elegans.
Related Articles
A sensitive mass spectrometry platform identifies metabolic changes of life history traits in C. elegans.
Sci Rep. 2017 May 25;7(1):2408
Authors: Gao AW, Chatzispyrou IA, Kamble R, Liu YJ, Herzog K, Smith RL, van Lenthe H, Vervaart MAT, van Cruchten A, Luyf AC, van Kampen A, Pras-Raves ML, Vaz FM, Houtkooper RH
Abstract
Abnormal nutrient metabolism is a hallmark of aging, and the underlying genetic and nutritional framework is rapidly being uncovered, particularly using C. elegans as a model. However, the direct metabolic consequences of perturbations in life history of C. elegans remain to be clarified. Based on recent advances in the metabolomics field, we optimized and validated a sensitive mass spectrometry (MS) platform for identification of major metabolite classes in worms and applied it to study age and diet related changes. Using this platform that allowed detection of over 600 metabolites in a sample of 2500 worms, we observed marked changes in fatty acids, amino acids and phospholipids during worm life history, which were independent from the germ-line. Worms underwent a striking shift in lipid metabolism after early adulthood that was at least partly controlled by the metabolic regulator AAK-2/AMPK. Most amino acids peaked during development, except aspartic acid and glycine, which accumulated in aged worms. Dietary intervention also influenced worm metabolite profiles and the regulation was highly specific depending on the metabolite class. Altogether, these MS-based methods are powerful tools to perform worm metabolomics for aging and metabolism-oriented studies.
PMID: 28546536 [PubMed - in process]
Autophagy and Mitophagy in Cardiovascular Disease.
Related Articles
Autophagy and Mitophagy in Cardiovascular Disease.
Circ Res. 2017 May 26;120(11):1812-1824
Authors: Bravo-San Pedro JM, Kroemer G, Galluzzi L
Abstract
Autophagy contributes to the maintenance of intracellular homeostasis in most cells of cardiovascular origin, including cardiomyocytes, endothelial cells, and arterial smooth muscle cells. Mitophagy is an autophagic response that specifically targets damaged, and hence potentially cytotoxic, mitochondria. As these organelles occupy a critical position in the bioenergetics of the cardiovascular system, mitophagy is particularly important for cardiovascular homeostasis in health and disease. Consistent with this notion, genetic defects in autophagy or mitophagy have been shown to exacerbate the propensity of laboratory animals to spontaneously develop cardiodegenerative disorders. Moreover, pharmacological or genetic maneuvers that alter the autophagic or mitophagic flux have been shown to influence disease outcome in rodent models of several cardiovascular conditions, such as myocardial infarction, various types of cardiomyopathy, and atherosclerosis. In this review, we discuss the intimate connection between autophagy, mitophagy, and cardiovascular disorders.
PMID: 28546358 [PubMed - in process]
Alterations in metabolic pathways in stomach of mice infected with Helicobacter pylori.
Related Articles
Alterations in metabolic pathways in stomach of mice infected with Helicobacter pylori.
Microb Pathog. 2017 May 22;:
Authors: Nishiumi S, Yoshida M, Azuma T
Abstract
Numerous studies of Helicobacter pylori (H. pylori) have been performed, but few studies have evaluated the effects of H. pylori infections using metabolome analysis, which involves the comprehensive study of low molecular weight metabolites. In this study, the metabolites in the stomach tissue of mice that had been infected with H. pylori SS1 for 1, 3, or 6 months were analyzed, and then evaluations of various metabolic pathways were performed to gain novel understandings of H. pylori infections. As a result, it was found that the glycolytic pathway, the tricarboxylic acid cycle, and the choline pathway tended to be upregulated at 1 month after the H. pylori SS1 infection. The urea cycle tended to be downregulated at 6 months after the infection. High levels of some amino acids were observed in the stomach tissue of the H. pylori SS1-infected mice at 1 month after the infection, whereas low levels of many amino acids were detected at 3 and 6 months after the infection. These results suggest that H. pylori infection causes various metabolic alterations at lesional sites, and these alterations might be linked to the crosstalk between H. pylori and the host leading to transition of disease conditions.
PMID: 28546118 [PubMed - as supplied by publisher]
Urinary metabolomics study on the protective role of Orthosiphon stamineus in Streptozotocin induced diabetes mellitus in rats via (1)H NMR spectroscopy.
Related Articles
Urinary metabolomics study on the protective role of Orthosiphon stamineus in Streptozotocin induced diabetes mellitus in rats via (1)H NMR spectroscopy.
BMC Complement Altern Med. 2017 May 25;17(1):278
Authors: Azam AA, Pariyani R, Ismail IS, Ismail A, Khatib A, Abas F, Shaari K
Abstract
BACKGROUND: Orthosiphon stamineus (OS) is a herb known in ethnomedicine for treating diabetes mellitus (DM). In this study, a (1)H NMR based urine metabolomics tool has been used for the first time to identify the metabolic protective mechanism of OS in DM using Streptozotocin (STZ) induced experimental model in rats.
METHODS: Four different solvent extracts of OS, namely aqueous, ethanolic, 50% aqueous ethanolic and methanolic, at a dose of 500 mg/kg body weight (bw) were orally administered for 14 days to diabetic rats induced via intraperitoneal injection of 60 mg/kg bw STZ. NMR metabolomics approach using pattern recognition combined with multivariate statistical analysis was applied in the rat urine to study the resulted metabolic perturbations.
RESULTS: OS aqueous extract (OSAE) caused a reversal of DM comparable to that of 10 mg/kg bw glibenclamide. A total of 15 urinary metabolites, which levels changed significantly upon treatment were identified as the biomarkers of OSAE in diabetes. A systematic metabolic pathways analysis identified that OSAE contributed to the antidiabetic activity mainly through regulating the tricarboxylic acid cycle, glycolysis/gluconeogenesis, lipid and amino acid metabolism.
CONCLUSIONS: The results of this study validated the ethnopharmacological use of OS in diabetes and unveiled the biochemical and metabolic mechanisms involved.
PMID: 28545435 [PubMed - in process]
Metabolic profiling of five flavonoids from Dragon's Blood in human liver microsomes using high-performance liquid chromatography coupled with high resolution mass spectrometry.
Related Articles
Metabolic profiling of five flavonoids from Dragon's Blood in human liver microsomes using high-performance liquid chromatography coupled with high resolution mass spectrometry.
J Chromatogr B Analyt Technol Biomed Life Sci. 2017 May 01;1052:91-102
Authors: Li Y, Zhang Y, Wang R, Wei L, Deng Y, Ren W
Abstract
Although much is known about the pharmacological activities of Dragon's Blood (DB, a traditional Chinese herb), its metabolism in human liver microsomes (HLMs) and the cytochrome P450 (CYP) enzymes has not been studied. This study aims to identify the metabolic profile of five flavonoids (loureirin A, loureirin B, loureirin C, 7,4'-dihydroxyflavone and 5,7,4'-trihydroxyflavanone) from DB in HLMs as well as the CYP enzymes that are involved in the metabolism of them. High-resolution mass spectrometry was used to characterize the structures of their metabolites and 10 cDNA-expressed CYP enzymes (CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4 and CYP3A5) were used to verify which isozymes mediate in the metabolism of the metabolites. Totally, 29 metabolites including 10 metabolites of loureirin A, 10 metabolites of loureirin B, 4 metabolites of loureirin C, 2 metabolites of 7,4'-dihydroxyflavone and 3 metabolites of 5,7,4'-trihydroxyflavanone were elucidated and identified on the basis of the high-resolution MS(n) data. The metabolic profile of the five flavonoids in HLMs involved hydroxylation, oxidation and demethylation. Among them, hydroxylation was the predominant biotransformation of the five flavonoids in HLMs, occurring in combination with other metabolic reactions. Assay with recombinant P450s revealed that CYP2C9 and CYP2C19 played an important role in the hydroxylation of flavonoids in HLMs. To the best of our knowledge, this is the first in vitro evaluation of the metabolic profile of loureirin A, loureirin B, loureirin C, 7,4'-dihydroxyflavone and 5,7,4'-trihydroxyflavanone in HLMs.
PMID: 28376352 [PubMed - indexed for MEDLINE]
Effect of Furan Fatty Acids and 3-Methyl-2,4-nonanedione on Light-Induced Off-Odor in Soybean Oil.
Related Articles
Effect of Furan Fatty Acids and 3-Methyl-2,4-nonanedione on Light-Induced Off-Odor in Soybean Oil.
J Agric Food Chem. 2017 Mar 15;65(10):2136-2140
Authors: Sano T, Okabe R, Iwahashi M, Imagi J, Sato T, Yamashita T, Fukusaki E, Bamba T
Abstract
Soybean oil is one of the most widely consumed vegetable oils. However, under photooxidative conditions, this oil develops a beany and green off-odor through a mechanism that has not yet been elucidated. Upon photooxidation, 3-methyl-2,4-nonanedione (3-MND) produces a strong aroma. In this study, the effect of furan fatty acids and 3-MND on odor reversion in soybean oil was investigated. Our findings suggest that the observed light-induced off-odor was likely attributable to the furan fatty acids present in the oil through the generation of 3-MND. While 3-MND may not be directly responsible for the development of light-induced off-odor, this compound appears to be involved because off-odor was detected in canola oil samples containing added 3-MND. In addition, in the present work, 3-hydroxy-3-methyl-2,4-nonanedione, which is derived from 3-MND, was identified for the first time in light-exposed soybean oil and shown to be one of the compounds responsible for odor reversion.
PMID: 28215079 [PubMed - indexed for MEDLINE]
CLUH regulates mitochondrial metabolism by controlling translation and decay of target mRNAs.
Related Articles
CLUH regulates mitochondrial metabolism by controlling translation and decay of target mRNAs.
J Cell Biol. 2017 Mar 06;216(3):675-693
Authors: Schatton D, Pla-Martin D, Marx MC, Hansen H, Mourier A, Nemazanyy I, Pessia A, Zentis P, Corona T, Kondylis V, Barth E, Schauss AC, Velagapudi V, Rugarli EI
Abstract
Mitochondria are essential organelles that host crucial metabolic pathways and produce adenosine triphosphate. The mitochondrial proteome is heterogeneous among tissues and can dynamically change in response to different metabolic conditions. Although the transcriptional programs that govern mitochondrial biogenesis and respiratory function are well known, posttranscriptional regulatory mechanisms remain unclear. In this study, we show that the cytosolic RNA-binding protein clustered mitochondria homologue (CLUH) regulates the expression of a mitochondrial protein network supporting key metabolic programs required under nutrient deprivation. CLUH exerts its function by controlling the stability and translation of target messenger RNAs. In the absence of Cluh, mitochondria are severely depleted of crucial enzymes involved in catabolic energy-converting pathways. CLUH preserves oxidative mitochondrial function and glucose homeostasis, thus preventing death at the fetal-neonatal transition. In the adult liver, CLUH ensures maximal respiration capacity and the metabolic response to starvation. Our results shed new light on the posttranscriptional mechanisms controlling the expression of mitochondrial proteins and suggest novel strategies to tailor mitochondrial function to physiological and pathological conditions.
PMID: 28188211 [PubMed - indexed for MEDLINE]
metabolomics; +23 new citations
23 new pubmed citations were retrieved for your search.
Click on the search hyperlink below to display the complete search results:
metabolomics
These pubmed results were generated on 2017/05/26PubMed comprises more than millions of citations for biomedical literature from MEDLINE, life science journals, and online books.
Citations may include links to full-text content from PubMed Central and publisher web sites.
Gastric cancer: Metabolic and metabolomics perspectives (Review).
Related Articles
Gastric cancer: Metabolic and metabolomics perspectives (Review).
Int J Oncol. 2017 May 16;:
Authors: Xiao S, Zhou L
Abstract
Gastric cancer is one of the most malignant tumors worldwide and remains a major health threat in Asia-Pacific regions, while its pathological mechanism is generally unknown. Recent research has advanced the understanding of the relationship between metabolic reprogramming and carcinogenesis. In particular, metabolic regulation and cancer research are being further brought into sharp focus with the emergence of metabolomics. Not only can metabolomics provide global information on metabolic profiles of specific tumors, but it can also act as a promising tool to discover biomarkers regarding diagnosis, metastatic surveillance and chemotherapeutic sensitivity prediction. Meanwhile, metabolism-based anticancer therapies will be further discovered. Up to now, accumulative studies have highlighted the application of metabolomics in gastric cancer research regarding different aspects; therefore we summarized the current available results of how metabolic changes are linked to gastric carcinogenesis, and how metabolomics holds promise for the diagnosis, metastatic surveillance, treatment and prognosis prediction of gastric cancer.
PMID: 28535006 [PubMed - as supplied by publisher]
Metabolomics for improving pregnancy outcomes in women undergoing assisted reproductive technologies.
Related Articles
Metabolomics for improving pregnancy outcomes in women undergoing assisted reproductive technologies.
Cochrane Database Syst Rev. 2017 May 23;5:CD011872
Authors: Siristatidis CS, Sertedaki E, Vaidakis D
Abstract
BACKGROUND: In order to overcome the low effectiveness of assisted reproductive technologies (ART) and the high incidence of multiple births, metabolomics is proposed as a non-invasive method to assess oocyte quality, embryo viability, and endometrial receptivity, and facilitate a targeted subfertility treatment.
OBJECTIVES: To evaluate the effectiveness and safety of metabolomic assessment of oocyte quality, embryo viability, and endometrial receptivity for improving live birth or ongoing pregnancy rates in women undergoing ART, compared to conventional methods of assessment.
SEARCH METHODS: We searched the Cochrane Gynaecology and Fertility Group Trials Register, CENTRAL, MEDLINE, Embase, CINAHL and two trial registers (November 2016). We also examined the reference lists of primary studies and review articles, citation lists of relevant publications, and abstracts of major scientific meetings.
SELECTION CRITERIA: Randomised controlled trials (RCTs) on metabolomic assessment of oocyte quality, embryo viability, and endometrial receptivity in women undergoing ART.
DATA COLLECTION AND ANALYSIS: Two review authors independently assessed trial eligibility and risk of bias, and extracted the data. The primary outcomes were rates of live birth or ongoing pregnancy (composite outcome) and miscarriage. Secondary outcomes were clinical pregnancy, multiple and ectopic pregnancy, cycle cancellation, and foetal abnormalities. We combined data to calculate odds ratios (ORs) for dichotomous data and 95% confidence intervals (CIs). Statistical heterogeneity was assessed using the I² statistic. We assessed the overall quality of the evidence for the main comparisons using GRADE methods.
MAIN RESULTS: We included four trials with a total of 802 women, with a mean age of 33 years. All assessed the role of metabolomic investigation of embryo viability. We found no RCTs that addressed the metabolomic assessment of oocyte quality or endometrial receptivity.We found low-quality evidence of little or no difference between metabolomic and non-metabolomic assessment of embryos for rates of live birth or ongoing pregnancy (OR 1.11, 95% CI 0.83 to 1.48; I² = 0%; four RCTs; N = 802), or miscarriage (OR 0.96, 95% CI 0.52 to 1.78; I² = 0%; two RCTs; N = 434). A sensitivity analysis excluding studies at high risk of bias did not change the interpretation of the results for live birth or ongoing pregnancy (OR 0.99, 95% CI 0.71 to 1.38; I² = 0%; two RCTs; N = 621). Our findings suggested that if the rate of live birth or ongoing pregnancy was 36% in the non-metabolomic group, it would be between 32% and 45% with the use of metabolomics.We found low-quality evidence of little or no difference between groups in rates of clinical pregnancy (OR 1.22, 95% CI 0.92 to 1.62; I²= 26%; four trials; N = 802), or multiple pregnancy (OR 1.52, 95% CI 0.71 to 3.23; I² = 0%; two RCTs, N = 181). There was very low-quality evidence of little or no difference between groups in ectopic pregnancy rates (OR 3.37, 95% CI 0.14 to 83.40; one RCT; N = 309), and foetal abnormalities (no events; one RCT; N = 125), and very low-quality evidence of higher rates of cycle cancellation in the metabolomics group (OR 1.78, 95% CI 1.18 to 2.69; I² = 51%; two RCTs; N = 744). Data were lacking on other adverse effects. A sensitivity analysis excluding studies at high risk of bias did not change the interpretation of the results for clinical pregnancy (OR 1.14, 95% CI 0.83 to 1.57; I² = 0%; two RCTs; N = 621).The overall quality of the evidence ranged from very low to low. Limitations included serious risk of bias (associated with poor reporting of methods, attrition bias, selective reporting, and other biases), imprecision, and inconsistency across trials.
AUTHORS' CONCLUSIONS: According to current trials in women undergoing ART, there is insufficient evidence to show that metabolomic assessment of embryos before implantation has any meaningful effect on rates of live birth, ongoing pregnancy, or miscarriage rates. The existing evidence varied from very low to low-quality. Data on adverse events were sparse, so we could not reach conclusions on these. At the moment, there is no evidence to support or refute the use of this technique for subfertile women undergoing ART. Robust evidence is needed from further RCTs, which study the effects on live birth and miscarriage rates for the metabolomic assessment of embryo viability. Well designed and executed trials are also needed to study the effects on oocyte quality and endometrial receptivity, since none are currently available.
PMID: 28534597 [PubMed - as supplied by publisher]
The alpha-1A adrenergic receptor agonist A61603 reduces cardiac polyunsaturated fatty acid and endocannabinoid metabolites associated with inflammation in vivo.
Related Articles
The alpha-1A adrenergic receptor agonist A61603 reduces cardiac polyunsaturated fatty acid and endocannabinoid metabolites associated with inflammation in vivo.
Metabolomics. 2016 Oct;12(10):
Authors: Willis MS, Ilaiwy A, Montgomery MD, Simpson PC, Jensen BC
Abstract
INTRODUCTION: Alpha-1-adrenergic receptors (α1-ARs) are G-protein coupled receptors (GPCRs) with three highly homologous subtypes (α1A, α1B, and α1D). Of these three subtypes, only the α1A and α1B are expressed in the heart. Multiple pre-clinical models of heart injury demonstrate cardioprotective roles for the α1A. Non-selective α1-AR activation promotes glycolysis in the heart, but the functional α1-AR subtype and broader metabolic effects have not been studied.
OBJECTIVES: Given the high metabolic demands of the heart and previous evidence indicating benefit from α1A activation, we chose to investigate the effects of α1A activation on the cardiac metabolome in vivo.
METHODS: Mice were treated for one week with a low, subpressor dose of A61603, a highly selective and potent α1A agonist. Cardiac tissue and serum were analyzed using a non-targeted metabolomics approach.
RESULTS: We identified previously unrecognized metabolic responses to α1A activation, most notably broad reduction in the abundance of polyunsaturated fatty acids (PUFAs) and endocannabinoids (ECs).
CONCLUSION: Given the well characterized roles of PUFAs and ECs in inflammatory pathways, these findings suggest a possible role for cardiac α1A-ARs in the regulation of inflammation and may offer novel insight into the mechanisms underlying the cardioprotective benefit of selective pharmacologic α1A activation.
PMID: 28533737 [PubMed - in process]
Sex-specific metabolic profiles of androgens and its main binding protein SHBG in a middle aged population without diabetes.
Related Articles
Sex-specific metabolic profiles of androgens and its main binding protein SHBG in a middle aged population without diabetes.
Sci Rep. 2017 May 22;7(1):2235
Authors: Piontek U, Wallaschofski H, Kastenmüller G, Suhre K, Völzke H, Do KT, Artati A, Nauck M, Adamski J, Friedrich N, Pietzner M
Abstract
The role of androgens in metabolism with respect to sex-specific disease associations is poorly understood. Therefore, we aimed to provide molecular signatures in plasma and urine of androgen action in a sex-specific manner using state-of-the-art metabolomics techniques. Our study population consisted of 430 men and 343 women, aged 20-80 years, who were recruited for the cross-sectional population-based Study of Health in Pomerania (SHIP-TREND), Germany. We used linear regression models to identify associations between testosterone, androstenedione and dehydroepiandrosterone-sulfate (DHEAS) as well as sex hormone-binding globulin and plasma or urine metabolites measured by mass spectrometry. The analyses revealed major sex-specific differences in androgen-associated metabolites, particularly for levels of urate, lipids and metabolic surrogates of lifestyle factors, like cotinine or piperine. In women, in particular in the postmenopausal state, androgens showed a greater impact on the metabolome than in men (especially DHEAS and lipids were highly related in women). We observed a novel association of androstenedione on the metabolism of biogenic amines and only a small sex-overlap of associations within steroid metabolism. The present study yields new insights in the interaction between androgens and metabolism, especially about their implication in female metabolism.
PMID: 28533544 [PubMed - in process]
Optimizing targeted/untargeted metabolomics by automating gas chromatography/mass spectrometry (GC-GC/MS and GC/MS) workflows.
Related Articles
Optimizing targeted/untargeted metabolomics by automating gas chromatography/mass spectrometry (GC-GC/MS and GC/MS) workflows.
J Chromatogr A. 2017 May 08;:
Authors: Robbat A, Kfoury N, Baydakov E, Gankin Y
Abstract
New database building and MS subtraction algorithms have been developed for automated, sequential two-dimensional gas chromatography/mass spectrometry (GC-GC/MS). This paper reports the first use of a database building tool, with full mass spectrum subtraction, that does not rely on high resolution MS data. The software was used to automatically inspect GC-GC/MS data of high elevation tea from Yunnan, China, to build a database of 350 target compounds. The database was then used with spectral deconvolution to identify 285 compounds by GC/MS of the same tea. Targeted analysis of low elevation tea by GC/MS resulted in the detection of 275 compounds. Non-targeted analysis, using MS subtraction, yielded an additional eight metabolites, unique to low elevation tea.
PMID: 28533028 [PubMed - as supplied by publisher]
Single nucleotide polymorphisms of ABCC2 modulate renal secretion of endogenous organic anions.
Related Articles
Single nucleotide polymorphisms of ABCC2 modulate renal secretion of endogenous organic anions.
Biochem Pharmacol. 2017 May 19;:
Authors: Muhrez K, Largeau B, Emond P, Frédéric M, Halimi JM, Trouillas P, Barin-LE Guellec C
Abstract
The ATP-binding cassette family transporter MRP2 (multidrug resistance-associated protein 2), encoded by the ABCC2 gene, is involved in the renal excretion of numerous xenobiotics and it is likely that it also transports many endogenous molecules arising from not only normal essential metabolic processes but also from environmental toxins or food intake. We used a targeted gas chromatography-mass spectrometry metabolomics analysis to study whether endogenous organic anions are differentially excreted in urines of healthy volunteers according to their genotype for three functional single nucleotide polymorphisms (SNPs) in ABCC2. This was the case for 35 of the 108 metabolites analyzed. Eight of them are most likely substrates of MRP2 since they are the most contributive to the difference between carriers of a decreasing function allele vs those carrying an increasing function one. Seven out of 8 metabolites are fatty acids (dodecanoic acid; 3-hydroxypropanoic acid) or metabolites of polyphenols (caffeine; resorcinol; caffeic acid; 2-(3,4-dihydroxyphenyl) acetic acid; and 4-hydroxyhippuric acid). Most of them were structurally similar to a series of substances previously shown to interact with MRP2 function in vitro. Interestingly, coproporphyrin isomer I, a prototypical substrate of MRP2, also belonged to our final list although it was not significantly discriminant on its own. This suggests that the simultaneous measurement of a set of endogenous metabolites in urine, rather than that of unique metabolites, has the potential to provide a phenotypic measure of MRP2 function in vivo. This would represent an innovative tool to study the variability of the transport activity of MRP2 under a physiological or pathological condition, especially in pharmacokinetic studies of its substrates.
PMID: 28532626 [PubMed - as supplied by publisher]
Improvement of the omega 3 index of healthy subjects does not alter the effects of dietary saturated fats or n-6PUFA on LDL profiles.
Related Articles
Improvement of the omega 3 index of healthy subjects does not alter the effects of dietary saturated fats or n-6PUFA on LDL profiles.
Metabolism. 2017 Mar;68:11-19
Authors: Dias CB, Amigó N, Wood LG, Mallol R, Correig X, Garg ML
Abstract
BACKGROUND AND AIMS: Dietary fat composition is known to modulate circulating lipid and lipoprotein levels. Although supplementation with long chain omega-3 polyunsaturated fatty acids (LCn-3PUFA) has been shown to reduce plasma triglyceride levels, the effect of the interactions between LCn-3PUFA and the major dietary fats consumed has not been previously investigated.
METHODS: In a randomized controlled parallel design clinical intervention, we examined the effect of diets rich in either saturated fatty acids (SFA) or omega-6 polyunsaturated fatty acids (n-6PUFA) on plasma lipid levels and lipoprotein profiles (lipoprotein size, concentration and distribution in subclasses) in subjects with an adequate omega 3 index. Twenty six healthy subjects went through a four-week pre-supplementation period with LCn-3PUFA and were then randomized to diets rich in either n-6PUFA or SFA both supplemented with LCn-3PUFA.
RESULTS: The diet rich in n-6PUFA decreased low density lipoprotein (LDL) particle concentration (-8%, p=0.013) and LDL cholesterol (LDL-C) level (-8%, p=0.021), while the saturated fat rich diet did not affect LDL particle concentration or LDL-C levels significantly. Nevertheless, dietary saturated fatty acids increased LCn-3PUFA in plasma and tissue lipids compared with n-6PUFA, potentially reducing other cardiovascular risk factors such as inflammation and clotting tendency.
CONCLUSION: Improvement on the omega 3 index of healthy subjects did not alter the known effects of dietary saturated fats and n-6PUFA on LDL profiles.
PMID: 28183443 [PubMed - indexed for MEDLINE]
Serum metabolomic profiling of prostate cancer risk in the prostate, lung, colorectal, and ovarian cancer screening trial.
Related Articles
Serum metabolomic profiling of prostate cancer risk in the prostate, lung, colorectal, and ovarian cancer screening trial.
Br J Cancer. 2016 Oct 25;115(9):1087-1095
Authors: Huang J, Mondul AM, Weinstein SJ, Koutros S, Derkach A, Karoly E, Sampson JN, Moore SC, Berndt SI, Albanes D
Abstract
BACKGROUND: Two recent metabolomic analyses found serum lipid, energy, and other metabolites related to aggressive prostate cancer risk up to 20 years prior to diagnosis.
METHODS: We conducted a serum metabolomic investigation of prostate cancer risk in the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial that included annual serum total prostate-specific antigen measurement and digital rectal examination. This nested study included 380 cases diagnosed post-screening and 380 controls individually matched to cases on age, race, study centre, and blood-collection date (median time to diagnosis, 10 years (range 4.4-17 years)). Sera were analysed on a high-resolution accurate mass platform of ultrahigh-performance liquid and gas chromatography/mass spectroscopy that identified 695 known metabolites. Logistic regression conditioned on the matching factors estimated odds ratios (OR) and 95% confidence intervals of risk associated with an 80th percentile increase in the log-metabolite signal.
RESULTS: Twenty-seven metabolites were associated with prostate cancer at P<0.05. Pyroglutamine, gamma-glutamylphenylalanine, phenylpyruvate, N-acetylcitrulline, and stearoylcarnitine showed the strongest metabolite-risk signals (ORs=0.53, 0.51, 0.46, 0.58, and 1.74, respectively; 0.001⩽P⩽0.006). Findings were similar for aggressive disease (peptide chemical class, P=0.03). None of the P-values were below the threshold of Bonferroni correction, however.
CONCLUSIONS: A unique metabolomic profile associated with post-screening prostate cancer is identified that differs from that in a previously studied, unscreened population.
PMID: 27673363 [PubMed - indexed for MEDLINE]
An Integrated Multi-Omic Approach to Assess Radiation Injury on the Host-Microbiome Axis.
Related Articles
An Integrated Multi-Omic Approach to Assess Radiation Injury on the Host-Microbiome Axis.
Radiat Res. 2016 Sep;186(3):219-34
Authors: Goudarzi M, Mak TD, Jacobs JP, Moon BH, Strawn SJ, Braun J, Brenner DJ, Fornace AJ, Li HH
Abstract
Medical responders to radiological and nuclear disasters currently lack sufficient high-throughput and minimally invasive biodosimetry tools to assess exposure and injury in the affected populations. For this reason, we have focused on developing robust radiation exposure biomarkers in easily accessible biofluids such as urine, serum and feces. While we have previously reported on urine and serum biomarkers, here we assessed perturbations in the fecal metabolome resulting from exposure to external X radiation in vivo. The gastrointestinal (GI) system is of particular importance in radiation biodosimetry due to its constant cell renewal and sensitivity to radiation-induced injury. While the clinical GI symptoms such as pain, bloating, nausea, vomiting and diarrhea are manifested after radiation exposure, no reliable bioindicator has been identified for radiation-induced gastrointestinal injuries. To this end, we focused on determining a fecal metabolomic signature in X-ray irradiated mice. There is overwhelming evidence that the gut microbiota play an essential role in gut homeostasis and overall health. Because the fecal metabolome is tightly correlated with the composition and diversity of the microorganism in the gut, we also performed fecal 16S rRNA sequencing analysis to determine the changes in the microbial composition postirradiation. We used in-house bioinformatics tools to integrate the 16S rRNA sequencing and metabolomic data, and to elucidate the gut integrated ecosystem and its deviations from a stable host-microbiome state that result from irradiation. The 16S rRNA sequencing results indicated that radiation caused remarkable alterations of the microbiome in feces at the family level. Increased abundance of common members of Lactobacillaceae and Staphylococcaceae families, and decreased abundances of Lachnospiraceae, Ruminococcaceae and Clostridiaceae families were found after 5 and 12 Gy irradiation. The metabolomic data revealed statistically significant changes in the microbial-derived products such as pipecolic acid, glutaconic acid, urobilinogen and homogentisic acid. In addition, significant changes were detected in bile acids such as taurocholic acid and 12-ketodeoxycholic acid. These changes may be associated with the observed shifts in the abundance of intestinal microbes, such as R. gnavus , which can transform bile acids.
PMID: 27512828 [PubMed - indexed for MEDLINE]
Metabolic profiles of cow's blood; a review.
Related Articles
Metabolic profiles of cow's blood; a review.
J Sci Food Agric. 2016 Oct;96(13):4321-8
Authors: Puppel K, Kuczyńska B
Abstract
The term 'metabolic profile' refers to the analysis of blood biochemical parameters that are useful to assess and prevent metabolic and nutritional disorders in dairy herds. In the higher standards of milk production, the priority in modern breeding is keeping dairy cows in high lactation and healthy. The proper analysis, as well as control. of their feeding and metabolic status is immensely important for the health condition of the herd. The disproportion between the genetically determined ability for milk production and the limitations in improving the energy value of the ration may be the cause of metabolic disorders. Negative energy balance has a major impact on the body's hormonal balance and organ functions and mostly appears during transition periods: from 3 to 2 weeks prepartum until 2-3 weeks postpartum. The term 'transition' is used to underscore the important physiological, metabolic and nutritional changes occurring in this time. The manner in which these changes occur and how they are diagnosed and detected are extremely important, as they are closely related to clinical and subclinical postpartum diseases, lactation and reproductive performance - factors that significantly shape the profitability of production. Therefore the priority for intensive milk production is prevention of metabolic diseases and other disorders. It is the intent of this review to synthesize and summarize the information currently available on metabolic status and physiological changes in the cow's body that occur during lactation, as well as to discuss the interpretation of the results, which will be a useful diagnostic tool in nutritional evaluations of the dairy herd. © 2016 Society of Chemical Industry.
PMID: 27129620 [PubMed - indexed for MEDLINE]