Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

Whole Blood Reveals More Metabolic Detail of the Human Metabolome Than Serum as Measured by 1H-NMR Spectroscopy: Implications for Sepsis Metabolomics.

Wed, 27/05/2015 - 14:14
Whole Blood Reveals More Metabolic Detail of the Human Metabolome Than Serum as Measured by 1H-NMR Spectroscopy: Implications for Sepsis Metabolomics. Shock. 2015 May 22; Authors: Stringer KA, Younger JG, McHugh C, Yeomans L, Finkel MA, Puskarich MA, Jones AE, Trexel J, Karnovsky A Abstract Serum is a common sample of convenience for metabolomics studies. Its processing time can be lengthy and may result in the loss of metabolites including those of red blood cells (RBC). Unlike serum, whole blood (WB) is quickly processed, minimizing the influence of variable hemolysis while including RBC metabolites. To determine differences between serum and WB metabolomes, both sample types, collected from healthy volunteers, were assayed by H-NMR spectroscopy. A total of 34 and 50 aqueous metabolites were quantified from serum and WB, respectively. Free hemoglobin (Hgb) levels in serum were measured and the correlation between Hgb and metabolite concentrations was determined. All metabolites detected in serum were at higher concentrations in WB with the exception of acetoacetate and propylene glycol. The 18 unique metabolites of WB included adenosine, AMP, ADP and ATP, which are associated with RBC metabolism. The use of serum results in the underrepresentation of a number of metabolic pathways including branched chain amino acid degradation and glycolysis and gluconeogenesis. The range of free Hgb in serum was 0.03-0.01 g/dL and 8 metabolites were associated (p ≤ 0.05) with free Hgb. The range of free Hgb in serum samples from 18 sepsis patients was 0.02-0.46 g/dL. WB and serum have unique aqueous metabolite profiles but the use of serum may introduce potential pathway bias. Use of WB for metabolomics may be particularly important for studies in diseases like sepsis in which RBC metabolism is altered and mechanical and sepsis-induced hemolysis contributes to variance in the metabolome. PMID: 26009817 [PubMed - as supplied by publisher]

Investigation of vitamin B6 inadequacy, induced by exposure to the anti-B6 factor 1-amino D-proline, on plasma lipophilic metabolites of rats: a metabolomics approach.

Wed, 27/05/2015 - 14:14
Investigation of vitamin B6 inadequacy, induced by exposure to the anti-B6 factor 1-amino D-proline, on plasma lipophilic metabolites of rats: a metabolomics approach. Eur J Nutr. 2015 May 26; Authors: Mayengbam S, House JD, Aliani M Abstract PURPOSE: Vitamin B6 status in the body is affected by several factors including dietary supply of the antivitamin B6 factor, 1-amino D-proline (1ADP), which is present in flaxseed. Owing to the prevalence of moderate B6 deficiency in the general population, a co-occurrence of 1ADP may lead to a further deterioration of B6 status. To this end, we applied a nontargeted metabolomics approach to identify potential plasma lipophilic biomarkers of deleterious effect of 1ADP on moderately vitamin B6-deficient rats using a high-performance liquid chromatography/quadrupole time-of-flight mass spectrometry. METHODS: Twenty-four rats were fed with a semi-purified diet containing pyridoxine·HCl (PN·HCl) either 7 mg/kg diet (optimal B6) or 0.7 mg/kg diet (moderate B6). The rats were divided into four treatments (n = 6), and one treatment in each B6 diet group was also fed ad libitum with 10 mg/kg diet of synthetic 1ADP. After 5 weeks of study, plasma was collected from the rats and lipophilic metabolites were extracted using acetonitrile as a solvent for analysis. RESULTS: Ten potential plasma lipophilic biomarkers were identified out of >2500 detected entities, which showed significant differences between the treatments. Plasma glycocholic acid, glycoursodeoxycholic acid, murocholic acid, N-docosahexaenoyl GABA, N-arachidonoyl GABA, lumula, nandrolone and orthothymotinic acid concentrations were significantly elevated, while plasma cystamine and 3-methyleneoxindole concentrations were significantly reduced as a result of either low B6 status or 1ADP or their interaction. CONCLUSION: Changes in these metabolites revealed a potential defect in pathways linked with the biosynthesis and metabolism of bile acid components, N-acyl amino acids, analgesic androgens, anti-inflammatory and neuroprotective molecules. We also noted that the changes in these biomarkers can be alleviated by the application of adequate vitamin B6. PMID: 26009005 [PubMed - as supplied by publisher]

Liquid chromatography-mass spectrometry coupled with multivariate analysis for the characterization and discrimination of extractable and nonextractable polyphenols and glucosinolates from red cabbage and Brussels sprout waste streams.

Wed, 27/05/2015 - 14:14
Liquid chromatography-mass spectrometry coupled with multivariate analysis for the characterization and discrimination of extractable and nonextractable polyphenols and glucosinolates from red cabbage and Brussels sprout waste streams. J Chromatogr A. 2015 May 12; Authors: Gonzales GB, Raes K, Vanhoutte H, Coelus S, Smagghe G, Van Camp J Abstract Nonextractable polyphenol (NEP) fractions are usually ignored because conventional extraction methods do not release them from the plant matrix. In this study, we optimized the conditions for sonicated alkaline hydrolysis to the residues left after conventional polyphenol extraction of Brussels sprouts top (80°C, 4M NaOH, 30min) and stalks (60°C, 4M NaOH, 30min), and red cabbage waste streams (80°C, 4M NaOH, 45min) to release and characterize the NEP fraction. The NEP fractions of Brussels sprouts top (4.8±1.2mg gallic acid equivalents [GAE]/g dry waste) and stalks (3.3±0.2mg GAE/g dry waste), and red cabbage (11.5mg GAE/g dry waste) waste have significantly higher total polyphenol contents compared to their respective extractable polyphenol (EP) fractions (1.5±0.0, 2.0±0.0 and 3.7±0.0mg GAE/g dry waste, respectively). An LC-MS method combined with principal components analysis (PCA) and orthogonal partial least squares-discriminant analysis (OPLS-DA) was used to tentatively identify and discriminate the polyphenol and glucosinolate composition of the EP and NEP fractions. Results revealed that phenolic profiles of the EP and NEP fractions are different and some compounds are only found in either fraction in all of the plant matrices. This suggests the need to account both fractions when analyzing the polyphenol and glucosinolate profiles of plant matrices to attain a global view of their composition. This is the first report on the discrimination of the phenolic and glucosinolate profiles of the EP and NEP fractions using metabolomics techniques. PMID: 26008597 [PubMed - as supplied by publisher]

Techniques to monitor glycolysis.

Wed, 27/05/2015 - 14:14
Related Articles Techniques to monitor glycolysis. Methods Enzymol. 2014;542:91-114 Authors: TeSlaa T, Teitell MA Abstract An increased flux through glycolysis supports the proliferation of cancer cells by providing additional energy in the form of ATP as well as glucose-derived metabolic intermediates for nucleotide, lipid, and protein biosynthesis. Thus, glycolysis and other metabolic pathways that control cell proliferation may represent valuable targets for therapeutic interventions and diagnostic procedures. In this context, the measurement of glucose uptake and lactate excretion by malignant cells may be useful to detect shifts in glucose catabolism, while determining the activity of rate-limiting glycolytic enzymes can provide insights into points of metabolic regulation. Moreover, metabolomic studies can be used to generate large, integrated datasets to track changes in carbon flux through glycolysis and its collateral anabolic pathways. As discussed here, these approaches can reveal and quantify the metabolic alterations that underlie malignant cell proliferation. PMID: 24862262 [PubMed - indexed for MEDLINE]

Metabolic Signatures of Human Breast Cancer.

Tue, 26/05/2015 - 13:37
Metabolic Signatures of Human Breast Cancer. Mol Cell Oncol. 2015 Jul-Sep;2(3) Authors: Mishra P, Ambs S Abstract Metabolomics has emerged as a new discovery tool with the promise of identifying therapeutic targets in cancer. Recent discoveries described essential metabolomic pathways in breast cancer and characterized oncometabolites that drive tumor growth and progression. Oncogenes like MYC and tumor suppressor genes like TP53 prominently affect breast cancer biology through regulation of cell metabolism and mitochondrial biogenesis. These findings indicate that tumors with dominant mutations could be susceptible to inhibitors of disease metabolism. Moreover, various pre-clinical and clinical studies have linked tumor metabolism to therapeutic response and patient survival. Thus, recent advances suggest that metabolic profiling provides new opportunities to improve outcomes in breast cancer. In this review, we have summarized some of the identified roles of oncometabolites in breast cancer biology and highlight their clinical utility. PMID: 26005711 [PubMed - as supplied by publisher]

BioMiner: Paving the Way for Personalized Medicine.

Tue, 26/05/2015 - 13:37
BioMiner: Paving the Way for Personalized Medicine. Cancer Inform. 2015;14:55-63 Authors: Bauer C, Stec K, Glintschert A, Gruden K, Schichor C, Or-Guil M, Selbig J, Schuchhardt J Abstract Personalized medicine is promising a revolution for medicine and human biology in the 21st century. The scientific foundation for this revolution is accomplished by analyzing biological high-throughput data sets from genomics, transcriptomics, proteomics, and metabolomics. Currently, access to these data has been limited to either rather simple Web-based tools, which do not grant much insight or analysis by trained specialists, without firsthand involvement of the physician. Here, we present the novel Web-based tool "BioMiner," which was developed within the scope of an international and interdisciplinary project (SYSTHER) and gives access to a variety of high-throughput data sets. It provides the user with convenient tools to analyze complex cross-omics data sets and grants enhanced visualization abilities. BioMiner incorporates transcriptomic and cross-omics high-throughput data sets, with a focus on cancer. A public instance of BioMiner along with the database is available at http://systherDB.microdiscovery.de/, login and password: "systher"; a tutorial detailing the usage of BioMiner can be found in the Supplementary File. PMID: 26005322 [PubMed]

Shifts in metabolomic profiles of the parasitoid Nasonia vitripennis associated with elevated cold tolerance induced by the parasitoid's diapause, host diapause and host diet augmented with proline.

Tue, 26/05/2015 - 13:37
Shifts in metabolomic profiles of the parasitoid Nasonia vitripennis associated with elevated cold tolerance induced by the parasitoid's diapause, host diapause and host diet augmented with proline. Insect Biochem Mol Biol. 2015 May 21; Authors: Li Y, Zhang L, Chen H, Kostal V, Simek P, Moos M, Denlinger DL Abstract The ectoparasitoid wasp, Nasonia vitripennis can enhance its cold tolerance by exploiting a maternally-induced larval diapause. A simple manipulation of the fly host diapause status and supplementation of the host diet with proline also dramatically increase cold tolerance in the parasitoid. In this study, we used a metabolomics approach to define alterations in metabolite profiles of N. vitripennis caused by diapause in the parasitoid, diapause of the host, and augmentation of the host's diet with proline. Metabolic profiles of diapausing and nondiapausing parasitoid were significantly differentiated, with pronounced distinctions in levels of multiple cryoprotectants, amino acids, and carbohydrates. The dynamic nature of diapause was underscored by a shift in the wasp's metabolomic profile as the duration of diapause increased, a feature especially evident for increased concentrations of a suite of cryoprotectants. Metabolic pathways involved in amino acid and carbohydrate metabolism were distinctly enriched during diapause in the parasitoid. Host diapause status also elicited a pronounced effect on metabolic signatures of the parasitoid, noted by higher cryoprotectants and elevated compounds derived from glycolysis. Proline supplementation of the host diet did not translate directly into elevated proline in the parasitoid but resulted in an alteration in the abundance of many other metabolites, including elevated concentrations of essential amino acids, and reduction in metabolites linked to energy utilization, lipid and amino acid metabolism. Thus, the enhanced cold tolerance of N. vitripennis associated with proline augmentation of the host diet appears to be an indirect effect caused by the metabolic perturbations associated with diet supplementation. PMID: 26005120 [PubMed - as supplied by publisher]

Dysfunctional glycosynapses in schizophrenia: Disease and regional specificity.

Tue, 26/05/2015 - 13:37
Dysfunctional glycosynapses in schizophrenia: Disease and regional specificity. Schizophr Res. 2015 May 21; Authors: Wood PL, Holderman NR Abstract BACKGROUND: Our previous lipidomics studies demonstrated elevated sulfatides, plasmalogens, and N-acylphosphatidylserines in the frontal cortex of schizophrenia subjects. These data suggest that there may be an abnormal function of glycosynapses in schizophrenia. We further examined the disease and anatomical specificity of these observations. METHODS: We undertook a targeted lipidomics analysis of plasmalogens, sulfatides, and N-acyl-phosphatidylserines in the frontal cortex obtained from schizophrenia, bipolar, and ALS subjects and the cerebellum of schizophrenia subjects. RESULTS: We demonstrate that sulfatides, plasmalogens, and N-acyl-phosphatidylserines are significantly elevated in the frontal cortex of patients suffering from schizophrenia and bipolar depression but not in ALS patients. These lipids were unchanged in the cerebellum of subjects with schizophrenia. CONCLUSIONS: Our data suggest that dysfunction of oligodendrocyte glycosynapses may be specific to limbic circuits in schizophrenia and that this dysfunction is also detected in bipolar depression, suggesting that these disorders possess several common pathophysiological features. PMID: 26004690 [PubMed - as supplied by publisher]

Interaction between AIF and CHCHD4 Regulates Respiratory Chain Biogenesis.

Tue, 26/05/2015 - 13:37
Interaction between AIF and CHCHD4 Regulates Respiratory Chain Biogenesis. Mol Cell. 2015 May 20; Authors: Hangen E, Féraud O, Lachkar S, Mou H, Doti N, Fimia GM, Lam NV, Zhu C, Godin I, Muller K, Chatzi A, Nuebel E, Ciccosanti F, Flamant S, Bénit P, Perfettini JL, Sauvat A, Bennaceur-Griscelli A, Ser-Le Roux K, Gonin P, Tokatlidis K, Rustin P, Piacentini M, Ruvo M, Blomgren K, Kroemer G, Modjtahedi N Abstract Apoptosis-inducing factor (AIF) is a mitochondrial flavoprotein that, beyond its apoptotic function, is required for the normal expression of major respiratory chain complexes. Here we identified an AIF-interacting protein, CHCHD4, which is the central component of a redox-sensitive mitochondrial intermembrane space import machinery. Depletion or hypomorphic mutation of AIF caused a downregulation of CHCHD4 protein by diminishing its mitochondrial import. CHCHD4 depletion sufficed to induce a respiratory defect that mimicked that observed in AIF-deficient cells. CHCHD4 levels could be restored in AIF-deficient cells by enforcing its AIF-independent mitochondrial localization. This modified CHCHD4 protein reestablished respiratory function in AIF-deficient cells and enabled AIF-deficient embryoid bodies to undergo cavitation, a process of programmed cell death required for embryonic morphogenesis. These findings explain how AIF contributes to the biogenesis of respiratory chain complexes, and they establish an unexpected link between the vital function of AIF and the propensity of cells to undergo apoptosis. PMID: 26004228 [PubMed - as supplied by publisher]

GC-MS based metabolomics study of stems and roots of Ephedra sinica.

Tue, 26/05/2015 - 13:37
GC-MS based metabolomics study of stems and roots of Ephedra sinica. J Pharm Biomed Anal. 2015 May 9;114:49-52 Authors: Lv M, Sun J, Wang M, Huang W, Fan H, Xu F, Zhang Z Abstract Therapeutic effects of herbal medicines differ greatly due to the use of different anatomical parts or processing methods in traditional Chinese medicine, and Ephedra sinica (ES) is just a case in point. To better understand different traditional uses of the stems (known as Mahuang, MH) and roots (known as Mahuanggen, MHG) of ES, their therapeutic material basis should be investigated. In this study, ephedrine alkaloids were profiled simultaneously with primary metabolites using GC-MS based metabolomics. Ephedrine (E) has been reported to be the major bioactive constituent in MH for the treatment of asthma. The results showed that compared with MH, MHG contained much lower levels of five ephedrine alkaloids, which may well explain that MHG has not been used as an antiasthmatic. Additionally, these pharmacologically important ephedrine alkaloids exhibited strong positive correlation with five primary metabolites. In conclusion, this study facilitates better understanding of different traditional uses of MH and MHG. PMID: 26004227 [PubMed - as supplied by publisher]

A Protocol to Collect Specific Mouse Skeletal Muscles for Metabolomics Studies.

Mon, 25/05/2015 - 12:42
A Protocol to Collect Specific Mouse Skeletal Muscles for Metabolomics Studies. Methods Mol Biol. 2015 May 24; Authors: Gan Z, Fu Z, Stowe JC, Powell FL, McCulloch AD Abstract Due to the highly sensitive nature of metabolic states, the quality of metabolomics data depends on the suitability of the experimental procedure. Metabolism could be affected by factors such as the method of euthanasia of the animals and the sample collection procedures. The effects of these factors on metabolites are tissue-specific. Thus, it is important to select proper methods to sacrifice the animal and appropriate procedures for collecting samples specific to the tissue of interest. Here, we present our protocol to collect specific mouse skeletal muscles with different fiber types for metabolomics studies. We also provide a protocol to measure lactate levels in tissue samples as a way to estimate the metabolic state in collected samples. PMID: 26003134 [PubMed - as supplied by publisher]

A tutorial review: Metabolomics and partial least squares-discriminant analysis - a marriage of convenience or a shotgun wedding.

Sun, 24/05/2015 - 12:07
Related Articles A tutorial review: Metabolomics and partial least squares-discriminant analysis - a marriage of convenience or a shotgun wedding. Anal Chim Acta. 2015 Jun 16;879:10-23 Authors: Gromski PS, Muhamadali H, Ellis DI, Xu Y, Correa E, Turner ML, Goodacre R Abstract The predominance of partial least squares-discriminant analysis (PLS-DA) used to analyze metabolomics datasets (indeed, it is the most well-known tool to perform classification and regression in metabolomics), can be said to have led to the point that not all researchers are fully aware of alternative multivariate classification algorithms. This may in part be due to the widespread availability of PLS-DA in most of the well-known statistical software packages, where its implementation is very easy if the default settings are used. In addition, one of the perceived advantages of PLS-DA is that it has the ability to analyze highly collinear and noisy data. Furthermore, the calibration model is known to provide a variety of useful statistics, such as prediction accuracy as well as scores and loadings plots. However, this method may provide misleading results, largely due to a lack of suitable statistical validation, when used by non-experts who are not aware of its potential limitations when used in conjunction with metabolomics. This tutorial review aims to provide an introductory overview to several straightforward statistical methods such as principal component-discriminant function analysis (PC-DFA), support vector machines (SVM) and random forests (RF), which could very easily be used either to augment PLS or as alternative supervised learning methods to PLS-DA. These methods can be said to be particularly appropriate for the analysis of large, highly-complex data sets which are common output(s) in metabolomics studies where the numbers of variables often far exceed the number of samples. In addition, these alternative techniques may be useful tools for generating parsimonious models through feature selection and data reduction, as well as providing more propitious results. We sincerely hope that the general reader is left with little doubt that there are several promising and readily available alternatives to PLS-DA, to analyze large and highly complex data sets. PMID: 26002472 [PubMed - as supplied by publisher]

Metabolomic analysis to define and compare the effects of PAHs and oxygenated PAHs in developing zebrafish.

Sun, 24/05/2015 - 12:07
Related Articles Metabolomic analysis to define and compare the effects of PAHs and oxygenated PAHs in developing zebrafish. Environ Res. 2015 May 20;140:502-510 Authors: Elie MR, Choi J, Nkrumah-Elie YM, Gonnerman GD, Stevens JF, Tanguay RL Abstract Polycyclic aromatic hydrocarbons (PAHs) and their oxygenated derivatives are ubiquitously present in diesel exhaust, atmospheric particulate matter and soils sampled in urban areas. Therefore, inhalation or non-dietary ingestion of both PAHs and oxy-PAHs are major routes of exposure for people; especially young children living in these localities. While there has been extensive research on the parent PAHs, limited studies exist on the biological effects of oxy-PAHs which have been shown to be more soluble and more mobile in the environment. Additionally, investigations comparing the metabolic responses resulting from parent PAHs and oxy-PAHs exposures have not been reported. To address these current gaps, an untargeted metabolomics approach was conducted to examine the in vivo metabolomic profiles of developing zebrafish (Danio rerio) exposed to 4µM of benz[a]anthracene (BAA) or benz[a]anthracene-7,12-dione (BAQ). By integrating multivariate, univariate and pathway analyses, a total of 63 metabolites were significantly altered after 5 days of exposure. The marked perturbations revealed that both BAA and BAQ affect protein biosynthesis, mitochondrial function, neural development, vascular development and cardiac function. Our previous transcriptomic and genomic data were incorporated in this metabolomics study to provide a more comprehensive view of the relationship between PAH and oxy-PAH exposures on vertebrate development. PMID: 26001975 [PubMed - as supplied by publisher]

metabolomics; +22 new citations

Sat, 23/05/2015 - 14:19
22 new pubmed citations were retrieved for your search. Click on the search hyperlink below to display the complete search results: metabolomics These pubmed results were generated on 2015/05/23PubMed comprises more than 24 million citations for biomedical literature from MEDLINE, life science journals, and online books. Citations may include links to full-text content from PubMed Central and publisher web sites.

Integrative Genomic Signatures Of Hepatocellular Carcinoma Derived from Nonalcoholic Fatty Liver Disease.

Thu, 21/05/2015 - 12:40
Integrative Genomic Signatures Of Hepatocellular Carcinoma Derived from Nonalcoholic Fatty Liver Disease. PLoS One. 2015;10(5):e0124544 Authors: Frades I, Andreasson E, Mato JM, Alexandersson E, Matthiesen R, Martínez-Chantar ML Abstract Nonalcoholic fatty liver disease (NAFLD) is a risk factor for Hepatocellular carcinoma (HCC), but he transition from NAFLD to HCC is poorly understood. Feature selection algorithms in human and genetically modified mice NAFLD and HCC microarray data were applied to generate signatures of NAFLD progression and HCC differential survival. These signatures were used to study the pathogenesis of NAFLD derived HCC and explore which subtypes of cancers that can be investigated using mouse models. Our findings show that: (I) HNF4 is a common potential transcription factor mediating the transcription of NAFLD progression genes (II) mice HCC derived from NAFLD co-cluster with a less aggressive human HCC subtype of differential prognosis and mixed etiology (III) the HCC survival signature is able to correctly classify 95% of the samples and gives Fgf20 and Tgfb1i1 as the most robust genes for prediction (IV) the expression values of genes composing the signature in an independent human HCC dataset revealed different HCC subtypes showing differences in survival time by a Logrank test. In summary, we present marker signatures for NAFLD derived HCC molecular pathogenesis both at the gene and pathway level. PMID: 25993042 [PubMed - as supplied by publisher]

Towards biomarker-based tests that can facilitate decisions about prevention and management of preeclampsia in low-resource settings.

Thu, 21/05/2015 - 12:40
Towards biomarker-based tests that can facilitate decisions about prevention and management of preeclampsia in low-resource settings. Clin Chem Lab Med. 2015 May 20; Authors: Acestor N, Goett J, Lee A, Herrick TM, Engelbrecht SM, Harner-Jay CM, Howell BJ, Weigl BH Abstract In recent years, an increasing amount of literature is emerging on candidate urine and blood-based biomarkers associated with incidence and severity of preeclampsia (PE) in pregnant women. While enthusiasm on the usefulness of several of these markers in predicting PE is evolving, essentially all work so far has focused on the needs of high-resource settings and high-income countries, resulting primarily in multi-parameter laboratory assays based on proteomic and metabolomics analysis techniques. These highly complex methods, however, require laboratory capabilities that are rarely available or affordable in low-resource settings (LRS). The importance of quantifying maternal and perinatal risks and identifying which pregnancies can be safely prolonged is also much greater in LRS, where intensive care facilities that can rapidly respond to PE-related health threats for women and infants are limited. For these reasons, simple, low cost, sensitive, and specific point-of-care (POC) tests are needed that can be performed by antenatal health care providers in LRS and that can facilitate decisions about detection and management of PE. Our study aims to provide a comprehensive systematic review of current and emerging blood and urine biomarkers for PE, not only on the basis of their clinical performance, but also of their suitability to be used in LRS-compatible test formats, such as lateral flow and other variants of POC rapid assays. PMID: 25992513 [PubMed - as supplied by publisher]

Metabolomic and lipidomic analyses of chronologically aging yeast.

Thu, 21/05/2015 - 12:40
Related Articles Metabolomic and lipidomic analyses of chronologically aging yeast. Methods Mol Biol. 2014;1205:359-73 Authors: Richard VR, Bourque SD, Titorenko VI Abstract Metabolomic and lipidomic analyses of yeast cells provide comprehensive empirical datasets for unveiling mechanisms underlying complex biological processes. In this chapter, we describe detailed protocols for using such analyses to study the age-related dynamics of changes in intracellular and extracellular levels of various metabolites and membrane lipids in chronologically aging yeast. The protocols for the following high-throughput analyses are described: (1) microanalytic biochemical assays for monitoring intracellular concentrations of trehalose and glycogen; (2) gas chromatographic quantitative assessment of extracellular concentrations of ethanol and acetic acid; and (3) mass spectrometric identification and quantitation of the entire complement of cellular lipids. These protocols are applicable to the exploration of the metabolic patterns associated not only with aging but also with many other vital processes in yeast. The described here methodology complements the powerful genetic approaches available for mechanistic studies of fundamental aspects of yeast biology. PMID: 25213255 [PubMed - indexed for MEDLINE]

Comparative metabolomic analysis of wild type and mads3 mutant rice anthers.

Thu, 21/05/2015 - 12:40
Related Articles Comparative metabolomic analysis of wild type and mads3 mutant rice anthers. J Integr Plant Biol. 2014 Sep;56(9):849-63 Authors: Qu G, Quan S, Mondol P, Xu J, Zhang D, Shi J Abstract Rice (Oryza sativa L.) MADS3 transcription factor regulates the homeostasis of reactive oxygen species (ROS) during late anther development, and one MADS3 mutant, mads3-4, has defective anther walls, aborted microspores and complete male sterility. Here, we report the untargeted metabolomic analysis of both wild type and mads3-4 mature anthers. Mutation of MADS3 led to an unbalanced redox status and caused oxidative stress that damages lipid, protein, and DNA. To cope with oxidative stress in mads3-4 anthers, soluble sugars were mobilized and carbohydrate metabolism was shifted to amino acid and nucleic acid metabolism to provide substrates for the biosynthesis of antioxidant proteins and the repair of DNA. Mutation of MADS3 also affected other aspects of rice anther development such as secondary metabolites associated with cuticle, cell wall, and auxin metabolism. Many of the discovered metabolic changes in mads3-4 anthers were corroborated with changes of expression levels of corresponding metabolic pathway genes. Altogether, this comparative metabolomic analysis indicated that MADS3 gene affects rice anther development far beyond the ROS homeostasis regulation. PMID: 25073727 [PubMed - indexed for MEDLINE]

Seed metabolomic study reveals significant metabolite variations and correlations among different soybean cultivars.

Thu, 21/05/2015 - 12:40
Related Articles Seed metabolomic study reveals significant metabolite variations and correlations among different soybean cultivars. J Integr Plant Biol. 2014 Sep;56(9):826-36 Authors: Lin H, Rao J, Shi J, Hu C, Cheng F, Wilson ZA, Zhang D, Quan S Abstract Soybean [Glycine max (L.) Merr.] is one of the world's major crops, and soybean seeds are a rich and important resource for proteins and oils. While "omics" studies, such as genomics, transcriptomics, and proteomics, have been widely applied in soybean molecular research, fewer metabolomic studies have been conducted for large-scale detection of low molecular weight metabolites, especially in soybean seeds. In this study, we investigated the seed metabolomes of 29 common soybean cultivars through combined gas chromatography-mass spectrometry and ultra-performance liquid chromatography-tandem mass spectrometry. One hundred sixty-nine named metabolites were identified and subsequently used to construct a metabolic network of mature soybean seed. Among the 169 detected metabolites, 104 were found to be significantly variable in their levels across tested cultivars. Metabolite markers that could be used to distinguish genetically related soybean cultivars were also identified, and metabolite-metabolite correlation analysis revealed some significant associations within the same or among different metabolite groups. Findings from this work may potentially provide the basis for further studies on both soybean seed metabolism and metabolic engineering to improve soybean seed quality and yield. PMID: 24942044 [PubMed - indexed for MEDLINE]

metabolomics; +34 new citations

Wed, 20/05/2015 - 12:15
34 new pubmed citations were retrieved for your search. Click on the search hyperlink below to display the complete search results: metabolomics These pubmed results were generated on 2015/05/20PubMed comprises more than 24 million citations for biomedical literature from MEDLINE, life science journals, and online books. Citations may include links to full-text content from PubMed Central and publisher web sites.

Pages