Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

A Lacticaseibacillus rhamnosus secretome induces immunoregulatory transcriptional, functional and immunometabolic signatures in human THP-1 monocytes

Wed, 10/04/2024 - 12:00
Sci Rep. 2024 Apr 10;14(1):8379. doi: 10.1038/s41598-024-56420-8.ABSTRACTMacrophage responses to activation are fluid and dynamic in their ability to respond appropriately to challenges, a role integral to host defence. While bacteria can influence macrophage differentiation and polarization into pro-inflammatory and alternatively activated phenotypes through direct interactions, many questions surround indirect communication mechanisms mediated through secretomes derived from gut bacteria, such as lactobacilli. We examined effects of secretome-mediated conditioning on THP-1 human monocytes, focusing on the ability of the Lacticaseibacillus rhamnosus R0011 secretome (LrS) to drive macrophage differentiation and polarization and prime immune responses to subsequent challenge with lipopolysaccharide (LPS). Genome-wide transcriptional profiling revealed increased M2-associated gene transcription in response to LrS conditioning in THP-1 cells. Cytokine and chemokine profiling confirmed these results, indicating increased M2-associated chemokine and cytokine production (IL-1Ra, IL-10). These cells had increased cell-surface marker expression of CD11b, CD86, and CX3CR1, coupled with reduced expression of the M1 macrophage-associated marker CD64. Mitochondrial substrate utilization assays indicated diminished reliance on glycolytic substrates, coupled with increased utilization of citric acid cycle intermediates, characteristics of functional M2 activity. LPS challenge of LrS-conditioned THP-1s revealed heightened responsiveness, indicative of innate immune priming. Resting stage THP-1 macrophages co-conditioned with LrS and retinoic acid also displayed an immunoregulatory phenotype with expression of CD83, CD11c and CD103 and production of regulatory cytokines. Secretome-mediated conditioning of macrophages into an immunoregulatory phenotype is an uncharacterized and potentially important route through which lactic acid bacteria and the gut microbiota may train and shape innate immunity at the gut-mucosal interface.PMID:38600116 | PMC:PMC11006683 | DOI:10.1038/s41598-024-56420-8

Differential impact of perfluorooctanoic acid and fluorotelomer ethoxylates on placental metabolism in mice

Wed, 10/04/2024 - 12:00
Chemosphere. 2024 Apr 8:141923. doi: 10.1016/j.chemosphere.2024.141923. Online ahead of print.ABSTRACTPoly- and perfluoroalkyl substances (PFAS) are a group of compounds with uses in industry and many consumer products. Concerns about the potential health effects of these compounds resulted in regulation by the Stockholm Convention on the use of three of the most common PFAS, including perfluorooctanoic acid (PFOA). Thousands of PFAS remain in production that are unregulated and for which their toxicity is unknown. Our group recently identified a new class of PFAS, fluorotelomer ethoxylates (FTEOs), in indoor dust and industrial wastewater. In this study, we investigated the effect of PFAS on placental metabolism by exposing healthy, pregnant CD-1 mice to PFOA or FTEOs at one of three concentrations (0 ng/L (controls), 5 ng/L, 100 ng/L) (n = 7-8/group). While PFOA is banned and PFOA concentrations in human blood are decreasing, we hypothesize that FTEOs will cause adverse pregnancy outcomes similar to PFOA, the compounds they were meant to replace. Placental tissue samples were collected at embryonic day 17.5 and 1H solid-state magic angle spinning nuclear magnetic resonance spectroscopy was used to determine the relative concentration of placental metabolites (n = 18-20/group). At the highest concentration, the relative concentrations of glucose and threonine were increased and the relative concentration of creatine was decreased in the PFOA-exposed placentas compared to controls (p < 0.05). In contrast, the relative concentrations of asparagine and lysine were decreased and the relative concentration of creatine was increased in the FTEOs-exposed placentas compared to controls (p < 0.05). Partial least squares - discriminant analysis showed the FTEOs-exposed and control groups were significantly separated (p < 0.005) and pathway analysis found four biochemical pathways were perturbed following PFOA exposure, while one pathway was altered following FTEOs exposure. Maternal exposure to PFOA and FTEOs had a significant impact on the placental metabolome, with the effect depending on the pollutant. This work motivates further studies to determine exposure levels and evaluate associations with adverse outcomes in human pregnancies.PMID:38599328 | DOI:10.1016/j.chemosphere.2024.141923

Identification of pyruvic and maleic acid as potential markers for disease activity and prognosis in chronic urticaria

Wed, 10/04/2024 - 12:00
J Allergy Clin Immunol. 2024 Apr 8:S0091-6749(24)00336-1. doi: 10.1016/j.jaci.2024.01.032. Online ahead of print.ABSTRACTBACKGROUND: Population-based studies have highlighted the link between chronic urticaria (CU) and metabolic syndrome, and metabolic alterations have been revealed in CU. However, to our knowledge, a comprehensive metabolomics study on a large cohort of CU patients has not been reported.OBJECTIVE: To explore the underlying metabolic subtypes and novel metabolite biomarkers for CU diagnosis and therapy.METHODS: Plasma samples from 80 CU patients and 82 healthy controls (HCs) were collected for metabolomics quantification and performed bioinformatics analysis. Another independent cohort consisting of 144 CU patients was studied to validate the findings. Bone marrow-derived mast cells (BMMCs) and IgE-induced passive cutaneous anaphylaxis (PCA) mice were utilized for in vitro and in vivo experiments, respectively.RESULTS: We observed clear metabolomics difference between CU and HC. Meanwhile, differential metabolites N6-acetyl-l-lysine, L-aspartate, maleic acid and pyruvic acid were used to respectively construct random forest classifiers, and achieved AUCs greater than 0.85, suggesting their potential as diagnostic biomarkers of CU. More importantly, by exploring the underlying metabolic subtypes of CU, we found that the low abundance of pyruvic acid and maleic acid was significantly related to the activity of CU, poor efficacy of second-generation H1-antihistamines (sgAHs), and short relapse-free time. The results were validated in the independent cohort. Moreover, supplementation with pyruvate or maleate could significantly attenuate IgE-mediated mast cells activation in vitro and in vivo.CONCLUSIONS: The combination of plasma pyruvic acid and maleic acid may be effective biomarkers for predicting the disease activity, therapeutic efficacy as well as prognosis for CU patients.PMID:38599289 | DOI:10.1016/j.jaci.2024.01.032

Baseline phenotypes with preserved β-cell function and high insulin concentrations have the best improvements in glucose tolerance after weight loss: results from the prospective DEXLIFE and EGIR-RISC studies

Wed, 10/04/2024 - 12:00
Metabolism. 2024 Apr 8:155910. doi: 10.1016/j.metabol.2024.155910. Online ahead of print.ABSTRACTBACKGROUND: Weight loss and lifestyle intervention improve glucose tolerance delaying the onset of type 2 diabetes (T2D), but individual responses are highly variable. Determining the predictive factors linked to the beneficial effects of weight loss on glucose tolerance could provide tools for individualized prevention plans. Thus, the aim was to investigate the relationship between pre-intervention values of insulin sensitivity and secretion and the improvement in glucose metabolism after weight loss.METHODS: In the DEXLIFE cohort (373 individuals at high risk of T2D, assigned 3:1 to a 12-week lifestyle intervention or a control arm, Trial Registration: ISRCTN66987085), K-means clustering and logistic regression analysis were performed based on pre-intervention indices of insulin sensitivity, insulin secretion (AUC-I), and glucose-stimulated insulin response (ratio of incremental areas of insulin and glucose, iAUC I/G). The response to the intervention was evaluated in terms of reduction of OGTT-glucose concentration. Clusters' validation was done in the prospective EGIR-RISC cohort (n = 1538).RESULTS: Four replicable clusters with different glycemic and metabolomic profiles were identified. Individuals had similar weight loss, but improvement in glycemic profile and β-cell function was different among clusters, highly depending on pre-intervention insulin response to OGTT. Pre-intervention high insulin response was associated with the best improvement in AUC-G, while clusters with low AUC-I and iAUC I/G showed no beneficial effect of weight loss on glucose control, as also confirmed by the logistic regression model.CONCLUSIONS: Individuals with preserved β-cell function and high insulin concentrations at baseline have the best improvement in glucose tolerance after weight loss.PMID:38599278 | DOI:10.1016/j.metabol.2024.155910

Metabolomics applications for plant-based foods origin tracing, cultivars identification and processing: Feasibility and future aspects

Wed, 10/04/2024 - 12:00
Food Chem. 2024 Apr 4;449:139227. doi: 10.1016/j.foodchem.2024.139227. Online ahead of print.ABSTRACTMetabolomics, the systematic study of metabolites, is dedicated to a comprehensive analysis of all aspects of plant-based food research and plays a pivotal role in the nutritional composition and quality control of plant-based foods. The diverse chemical compositions of plant-based foods lead to variations in sensory characteristics and nutritional value. This review explores the application of the metabolomics method to plant-based food origin tracing, cultivar identification, and processing methods. It also addresses the challenges encountered and outlines future directions. Typically, when combined with other omics or techniques, synergistic and complementary information is uncovered, enhancing the classification and prediction capabilities of models. Future research should aim to evaluate all factors affecting food quality comprehensively, and this necessitates advanced research into influence mechanisms, metabolic pathways, and gene expression.PMID:38599108 | DOI:10.1016/j.foodchem.2024.139227

Extention and interlaboratory comparison of an LC-MS/MS multi-class method for the determination of 15 different classes of veterinary drug residues in milk and poultry feed

Wed, 10/04/2024 - 12:00
Food Chem. 2024 Feb 21;449:138834. doi: 10.1016/j.foodchem.2024.138834. Online ahead of print.ABSTRACTAn HPLC-MS/MS multi-class method for quantitation of 15 different classes of veterinary drug residues (>140 analytes) in milk and poultry feed was developed and validated. Accuracy criteria for routine laboratories were met for the majority of analytes, > 83 % in milk and between 50 and 60 % in chicken feed, with an apparent recovery of 60-140 %. Extraction efficiency criteria were met for >95 % of the analytes for milk and > 80 % for chicken feed. Intermediate precision meets the SANTE criterion of RSD < 20 % for 80-90 % of the analytes in both matrices. For all analytes with an existing MRL in milk, the LOQ was below the related MRL. Twenty-nine samples of commercial milk and chicken feed were analyzed within the interlaboratory comparison. No residues of veterinary drugs were found in the milk samples. However, the feed samples exhibited high levels of nicarbazin, salinomycin, and decoquinate.PMID:38599102 | DOI:10.1016/j.foodchem.2024.138834

Empowering veterinary clinical diagnosis in industrial poultry production by ambient mass spectrometry and chemiometrics: a new approach for precise poultry farming

Wed, 10/04/2024 - 12:00
Poult Sci. 2024 Apr 1;103(6):103709. doi: 10.1016/j.psj.2024.103709. Online ahead of print.ABSTRACTUntargeted metabolomic profiling, by ambient mass spectrometry and chemometric tools, has made a dramatic impact on human disease detection. In a similar vein, this study attempted the translation of this clinical human disease experience to farmed poultry for precise veterinary diagnosis. As a proof of principle, in this diagnostic/prognostic study, direct analysis in real-time high resolution mass spectrometry (DART-HRMS) was used in an untargeted manner to analyze fresh tissues (abdominal fat, leg skin, liver, and leg muscle) of pigmented and non-pigmented broilers to investigate the causes of lack of pigmentation in an industrial poultry farm. Afterwards, statistical analysis was applied to the DART-HRMS data to retrieve the molecular features that codified for 2 broiler groups, that is, properly pigmented and non-pigmented broilers. Higher abundance of oxidized lipids, high abundance of oxidized bile derivatives, and lower levels of tocopherol isomers (Vitamin E) and retinol (Vitamin A) were captured in nonpigmented than in pigmented broilers. In addition, conventional rapid analyses were used: 1) color parameters of the tissues of pigmented and non-pigmented broilers were measured to rationalize the color differences in abdominal fat, leg skin and leg muscle, and 2) macronutrients were determined in broiler leg muscle, to capture a detailed picture of the pathology and exclude other possible causes. In this study, the DART-HRMS system performed well in retrieving valuable chemical information from broilers that explained the differences between the 2 groups of broilers in absorption of xanthophylls and the subsequent lack of proper broiler pigmentation in affected broilers. The results suggest this technology could be useful in providing near real-time feedback to aid in veterinary decision-making in poultry farming.PMID:38598914 | DOI:10.1016/j.psj.2024.103709

Metabolomics analysis of CEF cells infected with avian leukosis virus subgroup J based on UHPLC-QE-MS

Wed, 10/04/2024 - 12:00
Poult Sci. 2024 Mar 28;103(6):103693. doi: 10.1016/j.psj.2024.103693. Online ahead of print.ABSTRACTAvian leukosis virus subgroup J (ALV-J) is a retrovirus that can cause immunosuppression and tumors in chicken. However, relative pathogenesis is still not clear. At present, metabolomics has shown great potential in the screening of tumor metabolic markers, prognostic evaluation, and drug target design. In this study, we utilize an untargeted metabolomics approach based on ultrahigh-performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (UHPLC-QTOF-MS) to analyze the metabolic changes in chicken embryo fibroblast (CEF) cells infected by ALV-J. We found that ALV-J infection significantly altered a wealth of metabolites compared with control group. Additionally, most of the differentially expressed metabolites belonged to lipid metabolism, purine nucleotide metabolism and amino acid metabolism. Among them, the proportion of lipid metabolites account for the highest proportion (around 31%). Results suggest that these changes may be conductive to the formation of virion, thereby promoting the replication of ALV-J. These data provided metabolic evidence and potential biomarkers for the cellular metabolic changes induced by ALV-J, and provided important insight for further understanding the replication needs and pathogenesis of ALV-J.PMID:38598912 | DOI:10.1016/j.psj.2024.103693

Duck compound probiotics fermented diet alters the growth performance by shaping the gut morphology, microbiota and metabolism

Wed, 10/04/2024 - 12:00
Poult Sci. 2024 Mar 29;103(6):103647. doi: 10.1016/j.psj.2024.103647. Online ahead of print.ABSTRACTDietary absorption and digestion are influenced by the microbiota, morphology, and digestive enzymes of intestines, and fermentation is a popular and effective technique to enhance animal rearing growth performance. This study aims to explore the pivotal role of Muscovy duck probiotics fermented feedstuff (FF) in altering the growth performance by reshaping gut morphology, microorganisms and metabolism. The findings showed that FF considerably raised the levels of fatty acids (FA) and small peptides (7-19AA) in the diet. Further feeding trial data reveals that FF greatly increased the Muscovy duck average daily gain (ADG) but had no effect on their daily feed intake (DFI), and the FCR significantly dropped (P < 0.05). Additionally, it was evident that FF improved the integrity of the intestinal mucosa in Muscovy duck by increasing villus height, villus height-to-crypt depth ratio, and lowering crypt depth. Then, in comparison to the control group (NC), there was a significant increase in the gene expression of the mucosal tight junction proteins Occludin, Claudin-1, and Zo-1 in the intestine of Muscovy duck. Additionally, there was higher expression of the mucosal transport channels SGLT-1, PepT1, AQP2, AQP3, and AQP10 in the similarly colon site, jejunum, and duodenum. Furthermore, in AB-PAS/PAS-stained duodenum, jejunum, ileum, and similarly colon site, FF markedly increased relative mucus output and goblet cells while decreasing epithelial cell apoptosis. Following 16S sequencing data indicated that the intestinal microbiota was altered and the diversity and richness of gut microbes was greatly enhanced by FF. Particularly, the boost of core probiotics, such as Rothia of duodenum, Limosilactobacillus and Lentilactobacillus of jejunum, Lactococcus and Rothia of ileum, Ligilactobacillus and Entocuccus of similarly colon site, Gallibacterium of caecum. And reduced potentially pathogenic bacteria (Campylobacter, Prevotellaceae, Clostridia-vadinBB60, and Oscillospira). Nontargeted metabolomics assay for intestinal content confirmed an increased organic acids (oxidanesulfonic acid, cholic acid, gallic acid, coumaric acid, pipecollc acid, 13s-hydroxyoctadecadienoic acid) and glycosides metabolites (5-hydroxydantrolene, 3-hydroxyguanfacine glucuronide, acetylleucine, astragalin, xanthosine, taxiphylin, sinapine, denudatine, penylalanyl-tyrosine and phenylalanyl-valine). These findings demonstrated that FF, a viable option to improve Muscovy duck growth performance through reconstructed intestinal morphology, microorganisms, and metabolism, subsequently promoted the gut health and increased diet digestion and absorption. The study that is being presented offers scientific proof that FF might be a useful strategy for improving Muscovy duck growth performance.PMID:38598908 | DOI:10.1016/j.psj.2024.103647

The discovery of regional neurotoxicity-associated metabolic alterations induced by carbon quantum dots in brain of mice using a spatial metabolomics analysis

Wed, 10/04/2024 - 12:00
Part Fibre Toxicol. 2024 Apr 10;21(1):19. doi: 10.1186/s12989-024-00580-y.ABSTRACTBACKGROUND: Recently, carbon quantum dots (CQDs) have been widely used in various fields, especially in the diagnosis and therapy of neurological disorders, due to their excellent prospects. However, the associated inevitable exposure of CQDs to the environment and the public could have serious severe consequences limiting their safe application and sustainable development.RESULTS: In this study, we found that intranasal treatment of 5 mg/kg BW (20 µL/nose of 0.5 mg/mL) CQDs affected the distribution of multiple metabolites and associated pathways in the brain of mice through the airflow-assisted desorption electrospray ionization mass spectrometry imaging (AFADESI-MSI) technique, which proved effective in discovery has proven to be significantly alerted and research into tissue-specific toxic biomarkers and molecular toxicity analysis. The neurotoxic biomarkers of CQDs identified by MSI analysis mainly contained aminos, lipids and lipid-like molecules which are involved in arginine and proline metabolism, biosynthesis of unsaturated fatty acids, and glutamine and glutamate metabolism, etc. as well as related metabolic enzymes. The levels or expressions of these metabolites and enzymes changed by CQDs in different brain regions would induce neuroinflammation, organelle damage, oxidative stress and multiple programmed cell deaths (PCDs), leading to neurodegeneration, such as Parkinson's disease-like symptoms. This study enlightened risk assessments and interventions of QD-type or carbon-based nanoparticles on the nervous system based on toxic biomarkers regarding region-specific profiling of altered metabolic signatures.CONCLUSION: These findings provide information to advance knowledge of neurotoxic effects of CQDs and guide their further safety evaluation.PMID:38600504 | DOI:10.1186/s12989-024-00580-y

Cold-stress induced metabolomic and transcriptomic changes in leaves of three mango varieties with different cold tolerance

Wed, 10/04/2024 - 12:00
BMC Plant Biol. 2024 Apr 10;24(1):266. doi: 10.1186/s12870-024-04983-z.ABSTRACTBACKGROUND: Mango (Mangifera indica L.) is grown in Hainan, Guangdong, Yunnan, Sichuan, and Fujian provinces and Guanxi autonomous region of China. However, trees growing in these areas suffer severe cold stress during winter, which affects the yield. To this regard, data on global metabolome and transcriptome profiles of leaves are limited. Here, we used combined metabolome and transcriptome analyses of leaves of three mango cultivars with different cold stress tolerance, i.e. Jinhuang (J)-tolerant, Tainung (T) and Guiremang No. 82 (G)-susceptible, after 24 (LF), 48 (MF) and 72 (HF) hours of cold.RESULTS: A total of 1,323 metabolites belonging to 12 compound classes were detected. Of these, amino acids and derivatives, nucleotides and derivatives, and lipids accumulated in higher quantities after cold stress exposure in the three cultivars. Notably, Jinhuang leaves showed increasing accumulation trends of flavonoids, terpenoids, lignans and coumarins, and alkaloids with exposure time. Among the phytohormones, jasmonic acid and abscisic acid levels decreased, while N6-isopentenyladenine increased with cold stress time. Transcriptome analysis led to the identification of 22,526 differentially expressed genes. Many genes enriched in photosynthesis, antenna proteins, flavonoid, terpenoid (di- and sesquiterpenoids) and alkaloid biosynthesis pathways were upregulated in Jihuang leaves. Moreover, expression changes related to phytohormones, MAPK (including calcium and H2O2), and the ICE-CBF-COR signalling cascade indicate involvement of these pathways in cold stress responses.CONCLUSION: Cold stress tolerance in mango leaves is associated with regulation of primary and secondary metabolite biosynthesis pathways. Jasmonic acid, abscisic acid, and cytokinins are potential regulators of cold stress responses in mango leaves.PMID:38600447 | DOI:10.1186/s12870-024-04983-z

Plasma metabolites and physical function in patients undergoing hemodialysis

Wed, 10/04/2024 - 12:00
Sci Rep. 2024 Apr 10;14(1):8427. doi: 10.1038/s41598-024-58522-9.ABSTRACTImpaired physical function contributes to falls, fractures, and mortality among patients undergoing dialysis. Using a metabolomic approach, we identified metabolite alterations and effect size-based composite scores for constructs of impaired gait speed and grip strength. 108 participants incident to dialysis had targeted plasma metabolomics via liquid chromatography-mass spectrometry and physical function assessed (i.e., 4 m walk, handgrip strength). Physical function measures were categorized as above/ below median, with grip utilizing sex-based medians. To develop composite scores, metabolites were identified via Wilcoxon uncorrected p < 0.05 and effect size > 0.40. Receiver operating characteristic analyses tested whether scores differentiated between above/below function groups. Participants were 54% male, 77% Black and 53 ± 14 y with dialysis vintage of 101 ± 50 days. Median (IQR) grip strength was 35.5 (11.1) kg (males) and 20 (8.4) kg (females); median gait speed was 0.82 (0.34) m/s. Of 246 measured metabolites, composite scores were composed of 22 and 12 metabolites for grip strength and gait speed, respectively. Area under the curve for metabolite composite was 0.88 (gait) and 0.911 (grip). Composite scores of physical function performed better than clinical parameters alone in patients on dialysis. These results provide potential pathways for interventions and needed validation in an independent cohort.PMID:38600145 | DOI:10.1038/s41598-024-58522-9

The antioxidant activity and metabolomic analysis of the supernatant of Streptococcus alactolyticus strain FGM

Wed, 10/04/2024 - 12:00
Sci Rep. 2024 Apr 10;14(1):8413. doi: 10.1038/s41598-024-58933-8.ABSTRACTStrain-specific probiotics can present antioxidant activity and reduce damage caused by oxidation. Streptococcus alactolyticus strain FGM (S. alactolyticus strain FGM) isolated from the chicken cecum shows potential probiotic properties which have been previously demonstrated. However, the antioxidant properties of S. alactolyticus strain FGM remain unknown. In this view, cell-free supernatant (CFS), intact cells (IC) and intracellular extracts (CFE) of strain FGM and 3 strains of Lactobacillus (LAB) were prepared, and their scavenging capacities against DPPH, hydroxyl radicals and linoleic acid peroxidation inhibitory were compared in this study. The effects of strain FGM cell-free supernatant (FCFS) on NO production, activity of SOD and GSH-Px in RAW264.7 cells and LPS-induced RAW264.7 cells were analyzed. The metabolites in the supernatant were quantitated by N300 Quantitative Metabolome. It was shown that the physicochemical characteristics of CFS to scavenge DPPH, hydroxyl radicals, and linoleic acid peroxidation inhibitory were significantly stronger than that of IC and CFE in the strain FGM (P < 0.05), respectively 87.12% ± 1.62, 45.03% ± 1.27, 15.63% ± 1.34. FCFS had a promotional effect on RAW264.7 cells, and significantly elevated SOD and GSH-Px activities in RAW264.7 cells. 25 μL FCFS significantly promoted the proliferation of RAW264.7 cells induced by LPS, increased the activities of SOD and GSH-PX, and decreased the release of NO. Furthermore, among the differential metabolites of FCFS quantified by N300, 12 metabolites were significantly up-regulated, including lactic acid, indole lactic acid, linoleic acid, pyruvic acid etc., many of which are known with antioxidant properties. In conclusion, FCFS had good antioxidant properties and activity, which can be attributed to metabolites produced from strain FGM fermentation. It was further confirmed that S. alactolyticus strain FGM and its postbiotic have potential probiotic properties and bright application prospects in livestock and poultry breeding.PMID:38600137 | DOI:10.1038/s41598-024-58933-8

Early-life exercise induces immunometabolic epigenetic modification enhancing anti-inflammatory immunity in middle-aged male mice

Wed, 10/04/2024 - 12:00
Nat Commun. 2024 Apr 10;15(1):3103. doi: 10.1038/s41467-024-47458-3.ABSTRACTExercise is usually regarded to have short-term beneficial effects on immune health. Here we show that early-life regular exercise exerts long-term beneficial effects on inflammatory immunity. Swimming training for 3 months in male mice starting from 1-month-old curbs cytokine response and mitigates sepsis when exposed to lipopolysaccharide challenge, even after an 11-month interval of detraining. Metabolomics analysis of serum and liver identifies pipecolic acid, a non-encoded amino acid, as a pivotal metabolite responding to early-life regular exercise. Importantly, pipecolic acid reduces inflammatory cytokines in bone marrow-derived macrophages and alleviates sepsis via inhibiting mTOR complex 1 signaling. Moreover, early-life exercise increases histone 3 lysine 4 trimethylation at the promoter of Crym in the liver, an enzyme responsible for catalyzing pipecolic acid production. Liver-specific knockdown of Crym in adult mice abolishes this early exercise-induced protective effects. Our findings demonstrate that early-life regular exercise enhances anti-inflammatory immunity during middle-aged phase in male mice via epigenetic immunometabolic modulation, in which hepatic pipecolic acid production has a pivotal function.PMID:38600123 | DOI:10.1038/s41467-024-47458-3

Impaired retinal oxygen metabolism and perfusion are accompanied by plasma protein and lipid alterations in recovered COVID-19 patients

Wed, 10/04/2024 - 12:00
Sci Rep. 2024 Apr 10;14(1):8395. doi: 10.1038/s41598-024-56834-4.ABSTRACTThe aim of the present study was to investigate retinal microcirculatory and functional metabolic changes in patients after they had recovered from a moderate to severe acute COVID-19 infection. Retinal perfusion was quantified using laser speckle flowgraphy. Oxygen saturation and retinal calibers were assessed with a dynamic vessel analyzer. Arterio-venous ratio (AVR) was calculated based on retinal vessel diameter data. Blood plasma samples underwent mass spectrometry-based multi-omics profiling, including proteomics, metabolomics and eicosadomics. A total of 40 subjects were included in the present study, of which 29 had recovered from moderate to severe COVID-19 within 2 to 23 weeks before inclusion and 11 had never had COVID-19, as confirmed by antibody testing. Perfusion in retinal vessels was significantly lower in patients (60.6 ± 16.0 a.u.) than in control subjects (76.2 ± 12.1 a.u., p = 0.006). Arterio-venous (AV) difference in oxygen saturation and AVR was significantly lower in patients compared to healthy controls (p = 0.021 for AVR and p = 0.023 for AV difference in oxygen saturation). Molecular profiles demonstrated down-regulation of cell adhesion molecules, NOTCH3 and fatty acids, and suggested a bisphasic dysregulation of nitric oxide synthesis after COVID-19 infection. The results of this study imply that retinal perfusion and oxygen metabolism is still significantly altered in patients well beyond the acute phase of COVID-19. This is also reflected in the molecular profiling analysis of blood plasma, indicating a down-regulation of nitric oxide-related endothelial and immunological cell functions.Trial Registration: ClinicalTrials.gov ( https://clinicaltrials.gov ) NCT05650905.PMID:38600099 | DOI:10.1038/s41598-024-56834-4

Integrated proteomics reveals autophagy landscape and an autophagy receptor controlling PKA-RI complex homeostasis in neurons

Wed, 10/04/2024 - 12:00
Nat Commun. 2024 Apr 10;15(1):3113. doi: 10.1038/s41467-024-47440-z.ABSTRACTAutophagy is a conserved, catabolic process essential for maintaining cellular homeostasis. Malfunctional autophagy contributes to neurodevelopmental and neurodegenerative diseases. However, the exact role and targets of autophagy in human neurons remain elusive. Here we report a systematic investigation of neuronal autophagy targets through integrated proteomics. Deep proteomic profiling of multiple autophagy-deficient lines of human induced neurons, mouse brains, and brain LC3-interactome reveals roles of neuronal autophagy in targeting proteins of multiple cellular organelles/pathways, including endoplasmic reticulum (ER), mitochondria, endosome, Golgi apparatus, synaptic vesicle (SV) for degradation. By combining phosphoproteomics and functional analysis in human and mouse neurons, we uncovered a function of neuronal autophagy in controlling cAMP-PKA and c-FOS-mediated neuronal activity through selective degradation of the protein kinase A - cAMP-binding regulatory (R)-subunit I (PKA-RI) complex. Lack of AKAP11 causes accumulation of the PKA-RI complex in the soma and neurites, demonstrating a constant clearance of PKA-RI complex through AKAP11-mediated degradation in neurons. Our study thus reveals the landscape of autophagy degradation in human neurons and identifies a physiological function of autophagy in controlling homeostasis of PKA-RI complex and specific PKA activity in neurons.PMID:38600097 | DOI:10.1038/s41467-024-47440-z

Metabolomic profiling of embryo culture media in patients with repeated implantation failure during assisted reproductive technology cycles

Wed, 10/04/2024 - 12:00
Clin Exp Reprod Med. 2024 Apr 11. doi: 10.5653/cerm.2023.06429. Online ahead of print.ABSTRACTOBJECTIVE: This study investigated the metabolic status of the spent culture media from embryos of patients with repeated implantation failure (RIF) undergoing in vitro fertilization-intracytoplasmic sperm injection cycles in comparison with the embryos from healthy fertile women.METHODS: Metabolite levels in spent culture media were assessed and compared between embryos from RIF patients (n=35) and oocyte donors as controls (n=15). Protein levels of insulin-like growth factor 1 (IGF-1) were determined using Western blotting. Concentrations of glucose, pyruvate, and lactate were measured using spectrophotometry. Ionic colorimetric assay kits were utilized to analyze the concentrations of sodium, chloride, calcium, and magnesium ions. High-performance liquid chromatography was employed to measure the concentrations of glutamic acid, aspartic acid, methionine, phenylalanine, and histidine.RESULTS: Glucose consumption and lactate secretion were higher in the control group than in the RIF group. The magnesium concentration was significantly higher in the control group than in the RIF group, but glutamic acid and aspartic acid concentrations were lower in the control group than in the RIF patients (p<0.05). The levels of IGF-1, sodium, calcium, chloride, methionine, histidine, and phenylalanine did not show statistically significant differences between the two groups.CONCLUSION: The metabolic profile of the culture medium of the embryos in the RIF group differed from that of the control group. These findings suggest potential factors that may affect implantation capacity in RIF patients and provide a new perspective on embryo selection.PMID:38599889 | DOI:10.5653/cerm.2023.06429

Involvement of gut microbiota recovery and autophagy induction in Youhua Kuijie Formula's protection against experimental ulcerative colitis

Wed, 10/04/2024 - 12:00
Exp Anim. 2024 Apr 9. doi: 10.1538/expanim.23-0166. Online ahead of print.ABSTRACTUlcerative colitis (UC) is characterized by overactive inflammatory response, impaired intestinal mucosal barrier and disrupted gut microbiota. Youhua Kuijie formula is a classic empirical prescription based on the pathogenesis of UC. The present study was designed to verify the protective effect of Youhua Kuijie Formula on DSS-induced UC in mice and uncover the related mechanism. Youhua Kuijie Formula were orally administrated to UC mice induced by DSS dissolved in drinking water for ten days. The protective effect of Youhua Kuijie Formula was evidenced by reduced pathological symptoms accompanied by palliative inflammatory response and relatively intact intestinal barrier. The data from 16S rRNA gene sequencing and GC-MS untargeted metabolomics indicated that the supplement of Youhua Kuijie Formula restructured gut microbiota community structure, and thereby modulated the metabolic profiles in UC mice. The analysis of pathway enrichment analysis suggested the major alterations in metabolic pathway were related to protein digestion and absorption. Besides, the results of the following experiments suggested that Youhua Kuijie Formula treatment increased adenosine monophosphate-activated protein kinase (AMPK) activation, decreased mechanistic target of rapamycin (mTOR) phosphorylation, and thereby reversing autophagy deficiency in the intestinal tract of UC mice. Collectively, our results demonstrated that the regulation of AMPK/mTOR was involved in Youhua Kuijie Formula administration mediated protective effect on UC.PMID:38599877 | DOI:10.1538/expanim.23-0166

Microbial and metabolomic profiles of type 1 diabetes with depression: A case-control study

Wed, 10/04/2024 - 12:00
J Diabetes. 2024 Apr;16(4):e13542. doi: 10.1111/1753-0407.13542.ABSTRACTBACKGROUND: Depression is the most common psychological disorder in patients with type 1 diabetes (T1D). However, the characteristics of microbiota and metabolites in these patients remain unclear. This study aimed to investigate microbial and metabolomic profiles and identify novel biomarkers for T1D with depression.METHODS: A case-control study was conducted in a total of 37 T1D patients with depression (TD+), 35 T1D patients without depression (TD-), and 29 healthy controls (HCs). 16S rRNA gene sequencing and liquid chromatography-mass spectrometry (LC-MS) metabolomics analysis were conducted to investigate the characteristics of microbiota and metabolites. The association between altered microbiota and metabolites was explored by Spearman's rank correlation and visualized by a heatmap. The microbial signatures to discriminate TD+ from TD- were identified by a random forest (RF) classifying model.RESULTS: In microbiota, 15 genera enriched in TD- and 2 genera enriched in TD+, and in metabolites, 14 differential metabolites (11 upregulated and 3 downregulated) in TD+ versus TD- were identified. Additionally, 5 genera (including Phascolarctobacterium, Butyricimonas, and Alistipes from altered microbiota) demonstrated good diagnostic power (area under the curve [AUC] = 0.73; 95% CI, 0.58-0.87). In the correlation analysis, Butyricimonas was negatively correlated with glutaric acid (r = -0.28, p = 0.015) and malondialdehyde (r = -0.30, p = 0.012). Both Phascolarctobacterium (r = 0.27, p = 0.022) and Alistipes (r = 0.31, p = 0.009) were positively correlated with allopregnanolone.CONCLUSIONS: T1D patients with depression were characterized by unique profiles of gut microbiota and serum metabolites. Phascolarctobacterium, Butyricimonas, and Alistipes could predict the risk of T1D with depression. These findings provide further evidence that the microbiota-gut-brain axis is involved in T1D with depression.PMID:38599848 | DOI:10.1111/1753-0407.13542

Revealing the 1H NMR Profiling of Six Edible Mushrooms Consumed in the Northeastern Highlands of Puebla, Mexico

Wed, 10/04/2024 - 12:00
Chem Biodivers. 2024 Apr 10:e202301851. doi: 10.1002/cbdv.202301851. Online ahead of print.ABSTRACTThe 1H NMR metabolomics profiling of six edible mushrooms consumed in the northeastern highlands of Puebla, Mexico is presented. These fungi were morpho- and molecularly identified as Infundibulicybe squamulosa, Amanita jacksonii, Lepista nuda, Russula delica, Russula brevipes, and Lactarius indigo. The chemical profiling confirmed the presence of eight essential amino acids and their derivatives, six organic acids, six nucleosides, low amounts of reducing sugars, and valuable nutraceuticals such as betaine, carnitine, glycero-3-phosphocholine and O-acetylcarnitine which were differentially determined and quantified in the six mushrooms by qNMR. Principal component analysis (PCA) and orthogonal projections to latent structures discriminant analysis (OPLS-DA) generated four different groups. Two of these groups were constituted by fungal species with phylogenic relationships whereas non-phylogenetic related species were separated from each other. The potential use of 1H NMR metabolomics and chemometrics to group macromycetes and determine the nutritional and nutraceutical potential of these local foods is demonstrated.PMID:38598722 | DOI:10.1002/cbdv.202301851

Pages