Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

Metabolomic Profiling of Bradyrhizobium diazoefficiens-Induced Root Nodules Reveals Both Host Plant-Specific and Developmental Signatures.

Tue, 31/05/2016 - 14:58
Metabolomic Profiling of Bradyrhizobium diazoefficiens-Induced Root Nodules Reveals Both Host Plant-Specific and Developmental Signatures. Int J Mol Sci. 2016;17(6) Authors: Lardi M, Murset V, Fischer HM, Mesa S, Ahrens CH, Zamboni N, Pessi G Abstract Bradyrhizobium diazoefficiens is a nitrogen-fixing endosymbiont, which can grow inside root-nodule cells of the agriculturally important soybean and other host plants. Our previous studies described B. diazoefficiens host-specific global expression changes occurring during legume infection at the transcript and protein level. In order to further characterize nodule metabolism, we here determine by flow injection-time-of-flight mass spectrometry analysis the metabolome of (i) nodules and roots from four different B. diazoefficiens host plants; (ii) soybean nodules harvested at different time points during nodule development; and (iii) soybean nodules infected by two strains mutated in key genes for nitrogen fixation, respectively. Ribose (soybean), tartaric acid (mungbean), hydroxybutanoyloxybutanoate (siratro) and catechol (cowpea) were among the metabolites found to be specifically elevated in one of the respective host plants. While the level of C4-dicarboxylic acids decreased during soybean nodule development, we observed an accumulation of trehalose-phosphate at 21 days post infection (dpi). Moreover, nodules from non-nitrogen-fixing bacteroids (nifA and nifH mutants) showed specific metabolic alterations; these were also supported by independent transcriptomics data. The alterations included signs of nitrogen limitation in both mutants, and an increased level of a phytoalexin in nodules induced by the nifA mutant, suggesting that the tissue of these nodules exhibits defense and stress reactions. PMID: 27240350 [PubMed - as supplied by publisher]

Metabolic Fingerprinting to Assess the Impact of Salinity on Carotenoid Content in Developing Tomato Fruits.

Tue, 31/05/2016 - 14:58
Metabolic Fingerprinting to Assess the Impact of Salinity on Carotenoid Content in Developing Tomato Fruits. Int J Mol Sci. 2016;17(6) Authors: Van Meulebroek L, Hanssens J, Steppe K, Vanhaecke L Abstract As the presence of health-promoting substances has become a significant aspect of tomato fruit appreciation, this study investigated nutrient solution salinity as a tool to enhance carotenoid accumulation in cherry tomato fruit (Solanum lycopersicum L. cv. Juanita). Hereby, a key objective was to uncover the underlying mechanisms of carotenoid metabolism, moving away from typical black box research strategies. To this end, a greenhouse experiment with five salinity treatments (ranging from 2.0 to 5.0 decisiemens (dS) m(-1)) was carried out and a metabolomic fingerprinting approach was applied to obtain valuable insights on the complicated interactions between salinity treatments, environmental conditions, and the plant's genetic background. Hereby, several hundreds of metabolites were attributed a role in the plant's salinity response (at the fruit level), whereby the overall impact turned out to be highly depending on the developmental stage. In addition, 46 of these metabolites embraced a dual significance as they were ascribed a prominent role in carotenoid metabolism as well. Based on the specific mediating actions of the retained metabolites, it could be determined that altered salinity had only marginal potential to enhance carotenoid accumulation in the concerned tomato fruit cultivar. This study invigorates the usefulness of metabolomics in modern agriculture, for instance in modeling tomato fruit quality. Moreover, the metabolome changes that were caused by the different salinity levels may enclose valuable information towards other salinity-related plant processes as well. PMID: 27240343 [PubMed - as supplied by publisher]

Quantitative analysis of amino acids and acylcarnitines combined with untargeted metabolomics using ultra-high performance liquid chromatography and quadrupole time-of-flight mass spectrometry.

Tue, 31/05/2016 - 14:58
Quantitative analysis of amino acids and acylcarnitines combined with untargeted metabolomics using ultra-high performance liquid chromatography and quadrupole time-of-flight mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2016 May 14;1027:40-49 Authors: Roy C, Tremblay PY, Bienvenu JF, Ayotte P Abstract Metabolomics is an "omic" technique being increasingly used in epidemiological and clinical studies. We developed a method combining untargeted metabolomics with the quantitative determination of eight amino acids (AA) and eight acylcarnitines (AC) in plasma using ultra-high pressure liquid chromatography (UHPLC), electrospray ionization (ESI) and quadrupole time-of-flight mass spectrometry (QTOFMS). Separation of metabolites is performed by ion-pair reverse phase UHPLC using a HSS T3 column (2.1×100mm, 100Å, 1.8μm particle size) and formic acid-ammonium acetate-heptafluorobutyric acid in water and formic acid-ammonium acetate in methanol as mobile phases. Metabolite identification and quantification are achieved using a QTOFMS operating in ESI-positive and full-scan mode along with MS(E) acquisition of fragmentation patterns. Targeted metabolites are quantified using the appropriate labeled standards and include branched-chain AA (leucine, isoleucine, valine), aromatic AA (phenylalanine, tyrosine) as well as acetylcarnitine and propionylcarnitine, which have been identified as biomarkers of future cardiometabolic disease risk. The inter-day precision (relative standard deviation) for the targeted method was <15% for all but one metabolite and accuracy (bias) of amino acids ranged from 0.5% to 13.9% using SRM 1950 as the external standard. Untargeted metabolomics in 30 plasma samples from the general Canadian population revealed 5018 features, of which 48 metabolites were identified using the MZmine 2.19 software including 23 by our in-house library that comprises 671 annotated metabolites. SRM 1950 analysis revealed 11,684 features, among which 154 metabolites were identified. Our method is currently applied in several epidemiological studies to better characterize cardiometabolic diseases and identify new biomarkers for disease prevention. PMID: 27240302 [PubMed - as supplied by publisher]

Early changes in apoplast composition associated with defence and disease in interactions between Phaseolus vulgaris and the halo blight pathogen Pseudomonas syringae pv. phaseolicola.

Tue, 31/05/2016 - 14:58
Early changes in apoplast composition associated with defence and disease in interactions between Phaseolus vulgaris and the halo blight pathogen Pseudomonas syringae pv. phaseolicola. Plant Cell Environ. 2016 May 30; Authors: O'Leary BM, Neale HC, Geilfus CM, Jackson RW, Arnold DL, Preston GM Abstract The apoplast is the arena in which endophytic pathogens such as Pseudomonas syringae grow and interact with plant cells. Using metabolomic and ion analysis techniques, this study shows how the composition of Phaseolus vulgaris leaf apoplastic fluid changes during the first six hours of compatible and incompatible interactions with two strains of Pseudomonas syringae pv. phaseolicola (Pph) that differ in the presence of the genomic island PPHGI-1. Leaf inoculation with the avirulent island-carrying strain Pph 1302A elicited effector-triggered immunity (ETI) and resulted in specific changes in apoplast composition, including increases in conductivity, pH, citrate, γ-aminobutyrate (GABA) and K(+) , that are linked to the onset of plant defence responses. Other apoplastic changes, including increases in Ca(2+) , Fe(2/3+) Mg(2+) , sucrose, β-cyanoalanine and several amino acids, occurred to a relatively similar extent in interactions with both Pph 1302A and the virulent, island-less strain Pph RJ3. Metabolic footprinting experiments established that Pph preferentially metabolizes malate, glucose and glutamate, but excludes certain other abundant apoplastic metabolites, including citrate and GABA, until preferred metabolites are depleted. These results demonstrate that Pph is well-adapted to the leaf apoplast metabolic environment and that loss of PPHGI-1 enables Pph to avoid changes in apoplast composition linked to plant defences. PMID: 27239727 [PubMed - as supplied by publisher]

Metabolic Model-Based Integration of Microbiome Taxonomic and Metabolomic Profiles Elucidates Mechanistic Links between Ecological and Metabolic Variation.

Tue, 31/05/2016 - 14:58
Metabolic Model-Based Integration of Microbiome Taxonomic and Metabolomic Profiles Elucidates Mechanistic Links between Ecological and Metabolic Variation. mSystems. 2016 Jan-Feb;1(1) Authors: Noecker C, Eng A, Srinivasan S, Theriot CM, Young VB, Jansson JK, Fredricks DN, Borenstein E Abstract Multiple molecular assays now enable high-throughput profiling of the ecology, metabolic capacity, and activity of the human microbiome. However, to date, analyses of such multi-omic data typically focus on statistical associations, often ignoring extensive prior knowledge of the mechanisms linking these various facets of the microbiome. Here, we introduce a comprehensive framework to systematically link variation in metabolomic data with community composition by utilizing taxonomic, genomic, and metabolic information. Specifically, we integrate available and inferred genomic data, metabolic network modeling, and a method for predicting community-wide metabolite turnover to estimate the biosynthetic and degradation potential of a given community. Our framework then compares variation in predicted metabolic potential with variation in measured metabolites' abundances to evaluate whether community composition can explain observed shifts in the community metabolome, and to identify key taxa and genes contributing to the shifts. Focusing on two independent vaginal microbiome data sets, each pairing 16S community profiling with large-scale metabolomics, we demonstrate that our framework successfully recapitulates observed variation in 37% of metabolites. Well-predicted metabolite variation tends to result from disease-associated metabolism. We further identify several disease-enriched species that contribute significantly to these predictions. Interestingly, our analysis also detects metabolites for which the predicted variation negatively correlates with the measured variation, suggesting environmental control points of community metabolism. Applying this framework to gut microbiome data sets reveals similar trends, including prediction of bile acid metabolite shifts. This framework is an important first step toward a system-level multi-omic integration and an improved mechanistic understanding of the microbiome activity and dynamics in health and disease. IMPORTANCE: Studies characterizing both the taxonomic composition and metabolic profile of various microbial communities are becoming increasingly common, yet new computational methods are needed to integrate and interpret these data in terms of known biological mechanisms. Here, we introduce an analytical framework to link species composition and metabolite measurements, using a simple model to predict the effects of community ecology on metabolite concentrations and evaluating whether these predictions agree with measured metabolomic profiles. We find that a surprisingly large proportion of metabolite variation in the vaginal microbiome can be predicted based on species composition (including dramatic shifts associated with disease), identify putative mechanisms underlying these predictions, and evaluate the roles of individual bacterial species and genes. Analysis of gut microbiome data using this framework recovers similar community metabolic trends. This framework lays the foundation for model-based multi-omic integrative studies, ultimately improving our understanding of microbial community metabolism. PMID: 27239563 [PubMed - as supplied by publisher]

Antibiotic-Induced Alterations of the Gut Microbiota Alter Secondary Bile Acid Production and Allow for Clostridium difficile Spore Germination and Outgrowth in the Large Intestine.

Tue, 31/05/2016 - 14:58
Antibiotic-Induced Alterations of the Gut Microbiota Alter Secondary Bile Acid Production and Allow for Clostridium difficile Spore Germination and Outgrowth in the Large Intestine. mSphere. 2016 Jan-Feb;1(1) Authors: Theriot CM, Bowman AA, Young VB Abstract It is hypothesized that the depletion of microbial members responsible for converting primary bile acids into secondary bile acids reduces resistance to Clostridium difficile colonization. To date, inhibition of C. difficile growth by secondary bile acids has only been shown in vitro. Using targeted bile acid metabolomics, we sought to define the physiologically relevant concentrations of primary and secondary bile acids present in the murine small and large intestinal tracts and how these impact C. difficile dynamics. We treated mice with a variety of antibiotics to create distinct microbial and metabolic (bile acid) environments and directly tested their ability to support or inhibit C. difficile spore germination and outgrowth ex vivo. Susceptibility to C. difficile in the large intestine was observed only after specific broad-spectrum antibiotic treatment (cefoperazone, clindamycin, and vancomycin) and was accompanied by a significant loss of secondary bile acids (deoxycholate, lithocholate, ursodeoxycholate, hyodeoxycholate, and ω-muricholate). These changes were correlated to the loss of specific microbiota community members, the Lachnospiraceae and Ruminococcaceae families. Additionally, physiological concentrations of secondary bile acids present during C. difficile resistance were able to inhibit spore germination and outgrowth in vitro. Interestingly, we observed that C. difficile spore germination and outgrowth were supported constantly in murine small intestinal content regardless of antibiotic perturbation, suggesting that targeting growth of C. difficile will prove most important for future therapeutics and that antibiotic-related changes are organ specific. Understanding how the gut microbiota regulates bile acids throughout the intestine will aid the development of future therapies for C. difficile infection and other metabolically relevant disorders such as obesity and diabetes. IMPORTANCE Antibiotics alter the gastrointestinal microbiota, allowing for Clostridium difficile infection, which is a significant public health problem. Changes in the structure of the gut microbiota alter the metabolome, specifically the production of secondary bile acids. Specific bile acids are able to initiate C. difficile spore germination and also inhibit C. difficile growth in vitro, although no study to date has defined physiologically relevant bile acids in the gastrointestinal tract. In this study, we define the bile acids C. difficile spores encounter in the small and large intestines before and after various antibiotic treatments. Antibiotics that alter the gut microbiota and deplete secondary bile acid production allow C. difficile colonization, representing a mechanism of colonization resistance. Multiple secondary bile acids in the large intestine were able to inhibit C. difficile spore germination and growth at physiological concentrations and represent new targets to combat C. difficile in the large intestine. PMID: 27239562 [PubMed]

Expression of protocadherin gamma in skeletal muscle tissue is associated with age and muscle weakness.

Tue, 31/05/2016 - 14:58
Expression of protocadherin gamma in skeletal muscle tissue is associated with age and muscle weakness. J Cachexia Sarcopenia Muscle. 2016 Feb 2; Authors: Hangelbroek RW, Fazelzadeh P, Tieland M, Boekschoten MV, Hooiveld GJ, van Duynhoven JP, Timmons JA, Verdijk LB, de Groot LC, van Loon LJ, Müller M Abstract BACKGROUND: The skeletal muscle system plays an important role in the independence of older adults. In this study we examine differences in the skeletal muscle transcriptome between healthy young and older subjects and (pre-)frail older adults. Additionally, we examine the effect of resistance-type exercise training on the muscle transcriptome in healthy older subjects and (pre-)frail older adults. METHODS: Baseline transcriptome profiles were measured in muscle biopsies collected from 53 young, 73 healthy older subjects, and 61 frail older subjects. Follow-up samples from these frail older subjects (31 samples) and healthy older subjects (41 samples) were collected after 6 months of progressive resistance-type exercise training. Frail older subjects trained twice per week and the healthy older subjects trained three times per week. RESULTS: At baseline genes related to mitochondrial function and energy metabolism were differentially expressed between older and young subjects, as well as between healthy and frail older subjects. Three hundred seven genes were differentially expressed after training in both groups. Training affected expression levels of genes related to extracellular matrix, glucose metabolism ,and vascularization. Expression of genes that were modulated by exercise training was indicative of muscle strength at baseline. Genes that strongly correlated with strength belonged to the protocadherin gamma gene cluster (r = -0.73). CONCLUSION: Our data suggest significant remaining plasticity of ageing skeletal muscle to adapt to resistance-type exercise training. Some age-related changes in skeletal muscle gene expression appear to be partially reversed by prolonged resistance-type exercise training. The protocadherin gamma gene cluster may be related to muscle denervation and re-innervation in ageing muscle. PMID: 27239416 [PubMed - as supplied by publisher]

Influence of the Melissa officinalis Leaf Extract on Long-Term Memory in Scopolamine Animal Model with Assessment of Mechanism of Action.

Tue, 31/05/2016 - 14:58
Influence of the Melissa officinalis Leaf Extract on Long-Term Memory in Scopolamine Animal Model with Assessment of Mechanism of Action. Evid Based Complement Alternat Med. 2016;2016:9729818 Authors: Ozarowski M, Mikolajczak PL, Piasecka A, Kachlicki P, Kujawski R, Bogacz A, Bartkowiak-Wieczorek J, Szulc M, Kaminska E, Kujawska M, Jodynis-Liebert J, Gryszczynska A, Opala B, Lowicki Z, Seremak-Mrozikiewicz A, Czerny B Abstract Melissa officinalis (MO, English: lemon balm, Lamiaceae), one of the oldest and still most popular aromatic medicinal plants, is used in phytomedicine for the prevention and treatment of nervous disturbances. The aim of our study was to assess the effect of subchronic (28-fold) administration of a 50% ethanol extract of MO leaves (200 mg/kg, p.o.) compared with rosmarinic acid (RA, 10 mg/kg, p.o.) and huperzine A (HU, 0.5 mg/kg, p.o.) on behavioral and cognitive responses in scopolamine-induced rats. The results were linked with acetylcholinesterase (AChE), butyrylcholinesterase (BuChE), and beta-secretase (BACE-1) mRNA levels and AChE and BuChE activities in the hippocampus and frontal cortex of rats. In our study, MO and HU, but not RA, showed an improvement in long-term memory. The results were in line with mRNA levels, since MO produced a decrease of AChE mRNA level by 52% in the cortex and caused a strong significant inhibition of BACE1 mRNA transcription (64% in the frontal cortex; 50% in the hippocampus). However, the extract produced only an insignificant inhibition of AChE activity in the frontal cortex. The mechanisms of MO action are probably more complicated, since its role as a modulator of beta-secretase activity should be taken into consideration. PMID: 27239217 [PubMed]

An improved pseudotargeted metabolomics approach using multiple ion monitoring with time-staggered ion lists based on ultra-high performance liquid chromatography/quadrupole time-of-flight mass spectrometry.

Tue, 31/05/2016 - 14:58
An improved pseudotargeted metabolomics approach using multiple ion monitoring with time-staggered ion lists based on ultra-high performance liquid chromatography/quadrupole time-of-flight mass spectrometry. Anal Chim Acta. 2016 Jul 13;927:82-8 Authors: Wang Y, Liu F, Li P, He C, Wang R, Su H, Wan JB Abstract Pseudotargeted metabolomics is a novel strategy integrating the advantages of both untargeted and targeted methods. The conventional pseudotargeted metabolomics required two MS instruments, i.e., ultra-high performance liquid chromatography/quadrupole-time- of-flight mass spectrometry (UHPLC/Q-TOF MS) and UHPLC/triple quadrupole mass spectrometry (UHPLC/QQQ-MS), which makes method transformation inevitable. Furthermore, the picking of ion pairs from thousands of candidates and the swapping of the data between two instruments are the most labor-intensive steps, which greatly limit its application in metabolomic analysis. In the present study, we proposed an improved pseudotargeted metabolomics method that could be achieved on an UHPLC/Q-TOF/MS instrument operated in the multiple ion monitoring (MIM) mode with time-staggered ion lists (tsMIM). Full scan-based untargeted analysis was applied to extract the target ions. After peak alignment and ion fusion, a stepwise ion picking procedure was used to generate the ion lists for subsequent single MIM and tsMIM. The UHPLC/Q-TOF tsMIM MS-based pseudotargeted approach exhibited better repeatability and a wider linear range than the UHPLC/Q-TOF MS-based untargeted metabolomics method. Compared to the single MIM mode, the tsMIM significantly increased the coverage of the metabolites detected. The newly developed method was successfully applied to discover plasma biomarkers for alcohol-induced liver injury in mice, which indicated its practicability and great potential in future metabolomics studies. PMID: 27237840 [PubMed - in process]

Omics Meets Metabolic Pathway Engineering.

Tue, 31/05/2016 - 14:58
Omics Meets Metabolic Pathway Engineering. Cell Syst. 2016 May 26; Authors: Chen GQ Abstract A principled approach to integrating metabolomics, proteomics, and genome-scale metabolic modeling facilitaties rational pathway engineering of E. coli. PMID: 27237740 [PubMed - as supplied by publisher]

Comparison and Optimization of Methods for the Simultaneous Extraction of DNA, RNA, Proteins, and Metabolites.

Tue, 31/05/2016 - 14:58
Comparison and Optimization of Methods for the Simultaneous Extraction of DNA, RNA, Proteins, and Metabolites. Anal Biochem. 2016 May 26; Authors: Vorreiter F, Richter S, Peter M, Baumann S, von Bergen M, Tomm JM Abstract The challenge of performing a time-resolved comprehensive analysis of molecular systems has led to the quest to optimize extraction methods. When the size of a biological sample is limited, there is demand for the simultaneous extraction of molecules representing the four areas of 'omics,' genomics, transcriptomics, proteomics, and metabolomics. Here,we optimized a protocol for the simultaneous extraction of RNA, proteins, and metabolites and a compared it to tow existing protocols.second for the concurrent recovery of DNA, RNA, and proteins and compared it to two existing protconducted a previouslty described method. Our optimisation comprised the addition of a methanol/chloroform metabolite purification before the separation of DNA/RNA and proteins. Extracted DNA, RNA, proteins, and metabolites were quantitatively and/or qualitatively analyzed. Of the three methods, only the newly developed protocol yielded all biomolecule classes of adequate quantity and quality. PMID: 27237373 [PubMed - as supplied by publisher]

Metabolic variations in different citrus rootstock cultivars associated with different responses to Huanglongbing.

Mon, 30/05/2016 - 13:52
Metabolic variations in different citrus rootstock cultivars associated with different responses to Huanglongbing. Plant Physiol Biochem. 2016 May 20;107:33-44 Authors: Albrecht U, Fiehn O, Bowman KD Abstract Huanglongbing (HLB) is one of the most destructive bacterial diseases of citrus. No resistant cultivars have been identified, although tolerance has been observed in the genus Poncirus and some of its hybrids with Citrus that are commonly used as rootstocks. In this study we exploited this tolerance by comparing five different tolerant hybrids with a cultivar that shows pronounced HLB sensitivity to discern potential contributing metabolic factors. Whole leaves of infected and non-infected greenhouse-grown seedlings were extracted and subjected to untargeted GC-TOF MS based metabolomics. After BinBase data filtering, 342 (experiment 1) and 650 (experiment 2) unique metabolites were quantified, of which 122 and 195, respectively, were assigned by chemical structures. The number of metabolites found to be differently regulated in the infected state compared with the non-infected state varied between the cultivars and was largest (166) in the susceptible cultivar Cleopatra mandarin (Citrus reticulata) and lowest (3) in the tolerant cultivars US-897 (C. reticulata 'Cleopatra' × Poncirus trifoliata) and US-942 (C. reticulata 'Sunki' × P. trifoliata) from experiment 2. Tolerance to HLB did not appear to be associated with accumulation of higher amounts of protective metabolites in response to infection. Many metabolites were found in higher concentrations in the tolerant cultivars compared with susceptible Cleopatra mandarin and may play important roles in conferring tolerance to HLB. Lower availability of specific sugars necessary for survival of the pathogen may also be a contributing factor in the decreased disease severity observed for these cultivars. PMID: 27236226 [PubMed - as supplied by publisher]

Discrimination and quantification of true biological signals in LC-MS-based metabolomics analysis.

Sun, 29/05/2016 - 13:11
Discrimination and quantification of true biological signals in LC-MS-based metabolomics analysis. Mol Plant. 2016 May 25; Authors: Duan L, Molnár I, Snyder JH, Shen GA, Qi X PMID: 27235546 [PubMed - as supplied by publisher]

Broadening Our Portfolio in the Genetic Improvement of Maize Chemical Composition.

Sun, 29/05/2016 - 13:11
Broadening Our Portfolio in the Genetic Improvement of Maize Chemical Composition. Trends Genet. 2016 May 24; Authors: Wen W, Brotman Y, Willmitzer L, Yan J, Fernie AR Abstract The adoption of recombinant inbred line and introgression line populations, as well as the study of association mapping panels, has greatly accelerated our ability to identify the genes underlying plant phenotypic variance. In tandem, the development of metabolomics approaches has greatly enhanced our ability to comprehensively define cellular chemical composition. As a consequence, breeding for chemical composition is being extended beyond our traditional targets of oil and protein to include components such as essential amino acids, vitamins, and antioxidant secondary metabolites with considerable purported consequences for human health. Here, we review the above-mentioned developments paying particular attention to the genetic architecture of metabolic traits as well as updating the perspective for utilizing metabolomics in maize improvement. PMID: 27235112 [PubMed - as supplied by publisher]

Characterisation of the metabolome of ocular tissues and post-mortem changes in the rat retina.

Sun, 29/05/2016 - 13:11
Characterisation of the metabolome of ocular tissues and post-mortem changes in the rat retina. Exp Eye Res. 2016 May 24; Authors: Tan SZ, Mullard G, Hollywood KA, Dunn WB, Bishop PN Abstract Time-dependent post-mortem biochemical changes have been demonstrated in donor cornea and vitreous, but there have been no published studies to date that objectively measure post-mortem changes in the retinal metabolome over time. The aim of the study was firstly, to investigate post-mortem, time-dependent changes in the rat retinal metabolome and secondly, to compare the metabolite composition of healthy rat ocular tissues. To study post-mortem changes in the rat retinal metabolome, globes were enucleated and stored at 4 °C and sampled at 0, 2, 4, 8, 24 and 48 h post-mortem. To study the metabolite composition of rat ocular tissues, eyes were dissected immediately after culling to isolate the cornea, lens, vitreous and retina, prior to storing at -80 °C. Tissue extracts were subjected to Gas Chromatograph Mass Spectrometry (GC-MS) and Ultra High Performance Liquid Chromatography Mass Spectrometry (UHPLC-MS). Generally, the metabolic composition of the retina was stable for 8 h post-mortem when eyes were stored at 4 °C, but showed increasing changes thereafter. However, some more rapid changes were observed such as increases in TCA cycle metabolites after 2 h post-mortem, whereas some metabolites such as fatty acids only showed decreases in concentration from 24 h. A total of 42 metabolites were identified across the ocular tissues by GC-MS (MSI level 1) and 2782 metabolites were annotated by UHPLC-MS (MSI level 2) according to MSI reporting standards. Many of the metabolites detected were common to all of the tissues but some metabolites showed partitioning between different ocular structures with 655, 297, 93 and 13 metabolites being uniquely detected in the retina, lens, cornea and vitreous respectively. Only a small percentage (1.6%) of metabolites found in the vitreous were exclusively found in the retina and not other tissues. In conclusion, mass spectrometry-based techniques have been used for the first time to compare the metabolic composition of different ocular tissues. The metabolite composition of the retina of eyes kept at 4 °C post-mortem is mostly stable for at least 8 h. PMID: 27233448 [PubMed - as supplied by publisher]

Intermittent energy restriction induces changes in breast gene expression and systemic metabolism.

Sun, 29/05/2016 - 13:11
Intermittent energy restriction induces changes in breast gene expression and systemic metabolism. Breast Cancer Res. 2016;18(1):57 Authors: Harvie MN, Sims AH, Pegington M, Spence K, Mitchell A, Vaughan AA, Allwood JW, Xu Y, Rattray NJ, Goodacre R, Evans DG, Mitchell E, McMullen D, Clarke RB, Howell A Abstract BACKGROUND: Observational studies suggest weight loss and energy restriction reduce breast cancer risk. Intermittent energy restriction (IER) reduces weight to the same extent as, or more than equivalent continuous energy restriction (CER) but the effects of IER on normal breast tissue and systemic metabolism as indicators of breast cancer risk are unknown. METHODS: We assessed the effect of IER (two days of 65 % energy restriction per week) for one menstrual cycle on breast tissue gene expression using Affymetrix GeneChips, adipocyte size by morphometry, and systemic metabolism (insulin resistance, lipids, serum and urine metabolites, lymphocyte gene expression) in 23 overweight premenopausal women at high risk of breast cancer. Unsupervised and supervised analyses of matched pre and post IER biopsies in 20 subjects were performed, whilst liquid and gas chromatography mass spectrometry assessed corresponding changes in serum and urine metabolites in all subjects after the two restricted and five unrestricted days of the IER. RESULTS: Women lost 4.8 % (±2.0 %) of body weight and 8.0 % (±5.0 %) of total body fat. Insulin resistance (homeostatic model assessment (HOMA)) reduced by 29.8 % (±17.8 %) on the restricted days and by 11 % (±34 %) on the unrestricted days of the IER. Five hundred and twenty-seven metabolites significantly increased or decreased during the two restricted days of IER. Ninety-one percent of these returned to baseline after 5 days of normal eating. Eleven subjects (55 %) displayed reductions in energy restriction-associated metabolic gene pathways including lipid synthesis, gluconeogenesis and glycogen synthesis. Some of these women also had increases in genes associated with breast epithelial cell differentiation (secretoglobulins, milk proteins and mucins) and decreased collagen synthesis (TNMD, PCOLCE2, TIMP4). There was no appreciable effect of IER on breast gene expression in the other nine subjects. These groups did not differ in the degree of changes in weight, total body fat, fat cell size or serum or urine metabolomic markers. Corresponding gene changes were not seen in peripheral blood lymphocytes. CONCLUSION: The transcriptional response to IER is variable in breast tissue, which was not reflected in the systemic response, which occurred in all subjects. The mechanisms of breast responsiveness/non-responsiveness require further investigation. TRIAL REGISTRATION: ISRCTN77916487 31/07/2012. PMID: 27233359 [PubMed - as supplied by publisher]

Feasibility Study of NMR Based Serum Metabolomic Profiling to Animal Health Monitoring: A Case Study on Iron Storage Disease in Captive Sumatran Rhinoceros (Dicerorhinus sumatrensis).

Sat, 28/05/2016 - 12:46
Feasibility Study of NMR Based Serum Metabolomic Profiling to Animal Health Monitoring: A Case Study on Iron Storage Disease in Captive Sumatran Rhinoceros (Dicerorhinus sumatrensis). PLoS One. 2016;11(5):e0156318 Authors: Watanabe M, Roth TL, Bauer SJ, Lane A, Romick-Rosendale LE Abstract A variety of wildlife species maintained in captivity are susceptible to iron storage disease (ISD), or hemochromatosis, a disease resulting from the deposition of excess iron into insoluble iron clusters in soft tissue. Sumatran rhinoceros (Dicerorhinus sumatrensis) is one of the rhinoceros species that has evolutionarily adapted to a low-iron diet and is susceptible to iron overload. Hemosiderosis is reported at necropsy in many African black and Sumatran rhinoceroses but only a small number of animals reportedly die from hemochromatosis. The underlying cause and reasons for differences in susceptibility to hemochromatosis within the taxon remains unclear. Although serum ferritin concentrations have been useful in monitoring the progression of ISD in many species, there is some question regarding their value in diagnosing hemochromatosis in the Sumatran rhino. To investigate the metabolic changes during the development of hemochromatosis and possibly increase our understanding of its progression and individual susceptibility differences, the serum metabolome from a Sumatran rhinoceros was investigated by nuclear magnetic resonance (NMR)-based metabolomics. The study involved samples from female rhinoceros at the Cincinnati Zoo (n = 3), including two animals that died from liver failure caused by ISD, and the Sungai Dusun Rhinoceros Conservation Centre in Peninsular Malaysia (n = 4). Principal component analysis was performed to visually and statistically compare the metabolic profiles of the healthy animals. The results indicated that significant differences were present between the animals at the zoo and the animals in the conservation center. A comparison of the 43 serum metabolomes of three zoo rhinoceros showed two distinct groupings, healthy (n = 30) and unhealthy (n = 13). A total of eighteen altered metabolites were identified in healthy versus unhealthy samples. Results strongly suggest that NMR-based metabolomics is a valuable tool for animal health monitoring and may provide insight into the progression of this and other insidious diseases. PMID: 27232336 [PubMed - as supplied by publisher]

Applications of Fourier Transform Ion Cyclotron Resonance (FT-ICR) and Orbitrap Based High Resolution Mass Spectrometry in Metabolomics and Lipidomics.

Sat, 28/05/2016 - 12:46
Applications of Fourier Transform Ion Cyclotron Resonance (FT-ICR) and Orbitrap Based High Resolution Mass Spectrometry in Metabolomics and Lipidomics. Int J Mol Sci. 2016;17(6) Authors: Ghaste M, Mistrik R, Shulaev V Abstract Metabolomics, along with other "omics" approaches, is rapidly becoming one of the major approaches aimed at understanding the organization and dynamics of metabolic networks. Mass spectrometry is often a technique of choice for metabolomics studies due to its high sensitivity, reproducibility and wide dynamic range. High resolution mass spectrometry (HRMS) is a widely practiced technique in analytical and bioanalytical sciences. It offers exceptionally high resolution and the highest degree of structural confirmation. Many metabolomics studies have been conducted using HRMS over the past decade. In this review, we will explore the latest developments in Fourier transform mass spectrometry (FTMS) and Orbitrap based metabolomics technology, its advantages and drawbacks for using in metabolomics and lipidomics studies, and development of novel approaches for processing HRMS data. PMID: 27231903 [PubMed - as supplied by publisher]

Metabolic Phenotypes of Carotid Atherosclerotic Plaques Relate to Stroke Risk: An Exploratory Study.

Sat, 28/05/2016 - 12:46
Metabolic Phenotypes of Carotid Atherosclerotic Plaques Relate to Stroke Risk: An Exploratory Study. Eur J Vasc Endovasc Surg. 2016 May 23; Authors: Vorkas PA, Shalhoub J, Lewis MR, Spagou K, Want EJ, Nicholson JK, Davies AH, Holmes E Abstract OBJECTIVE: Stroke is a major cause of death and disability. That three-quarters of stroke patients will never have previously manifested cerebrovascular symptoms demonstrates the unmet clinical need for new biomarkers able to stratify patient risk and elucidation of the biological dysregulations. In this study, the utility of comprehensive metabolic phenotyping is assessed to provide candidate biomarkers that relate to stroke risk in stenosing carotid plaque tissue samples. METHOD: Carotid plaque tissue samples were obtained from patients with cerebrovascular symptoms of carotid origin (n = 5), and from asymptomatic patients (n = 5). Two adjacent biological replicates were obtained from each tissue. Organic and aqueous metabolite extracts were obtained separately and analysed using two ultra performance liquid chromatography coupled to mass spectrometry metabolic profiling methods. Multivariate and univariate tools were used for statistical analysis. RESULTS: The two study groups demonstrated distinct plaque phenotypes using multivariate data analysis. Univariate statistics also revealed metabolites that differentiated the two groups with a strong statistical significance (p = 10(-4)-10(-5)). Specifically, metabolites related to the eicosanoid pathway (arachidonic acid and arachidonic acid precursors), and three acylcarnitine species (butyrylcarnitine, hexanoylcarnitine, and palmitoylcarnitine), intermediates of the β-oxidation, were detected in higher intensities in symptomatic patients. However, metabolites implicated in the process of cell death, a process known to be upregulated in the formation of the vulnerable plaque, were unaffected. CONCLUSIONS: Discrimination between symptomatic and asymptomatic carotid plaque tissue is demonstrated for the first time using metabolic profiling technologies. Two biological pathways (eicosanoid and β-oxidation) were implicated in differentiating symptomatic from asymptomatic patients and will be further investigated. These results indicate that metabolic phenotyping should be further explored to investigate the chemistry of the unstable plaque, in the pursuit of candidate biomarkers for risk-stratification and targets for pharmacotherapeutic intervention. PMID: 27231199 [PubMed - as supplied by publisher]

Microfluidics meets metabolomics to reveal the impact of Campylobacter jejuni infection on biochemical pathways.

Sat, 28/05/2016 - 12:46
Microfluidics meets metabolomics to reveal the impact of Campylobacter jejuni infection on biochemical pathways. Biomed Microdevices. 2016 Jun;18(3):51 Authors: Mortensen NP, Mercier KA, McRitchie S, Cavallo TB, Pathmasiri W, Stewart D, Sumner SJ Abstract Microfluidic devices that are currently being used in pharmaceutical research also have a significant potential for utilization in investigating exposure to infectious agents. We have established a microfluidic device cultured with Caco-2 cells, and utilized metabolomics to investigate the biochemical responses to the bacterial pathogen Campylobacter jejuni. In the microfluidic devices, Caco-2 cells polarize at day 5, are uniform, have defined brush borders and tight junctions, and form a mucus layer. Metabolomics analysis of cell culture media collected from both Caco-2 cell culture systems demonstrated a more metabolic homogenous biochemical profile in the media collected from microfluidic devices, compared with media collected from transwells. GeneGo pathway mapping indicated that aminoacyl-tRNA biosynthesis was perturbed by fluid flow, suggesting that fluid dynamics and shear stress impacts the cells translational quality control. Both microfluidic device and transwell culturing systems were used to investigate the impact of Campylobacter jejuni infection on biochemical processes. Caco-2 cells cultured in either system were infected at day 5 with C. jejuni 81-176 for 48 h. Metabolomics analysis clearly differentiated C. jejuni 81-176 infected and non-infected medias collected from the microfluidic devices, and demonstrated that C. jejuni 81-176 infection in microfluidic devices impacts branched-chain amino acid metabolism, glycolysis, and gluconeogenesis. In contrast, no distinction was seen in the biochemical profiles of infected versus non-infected media collected from cells cultured in transwells. Microfluidic culturing conditions demonstrated a more metabolically homogenous cell population, and present the opportunity for studying host-pathogen interactions for extended periods of time. PMID: 27231016 [PubMed - in process]

Pages