Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

Searching molecular biomarkers correlating with BSID-III at 24 months in infants with neonatal hypoxic-ischemic encephalopathy

Tue, 25/06/2024 - 12:00
Eur J Pediatr. 2024 Jun 25. doi: 10.1007/s00431-024-05652-x. Online ahead of print.ABSTRACTAn early prediction of outcomes of neonatal hypoxic-ischemic encephalopathy (NE) is of key importance in reducing neonatal mortality and morbidity. The objectives were (i) to analyze the characteristics of miRNA expression and metabolic patterns of neonates with NE and (ii) to assess their predictive performance for neurodevelopmental outcomes. Plasma samples from moderate/severe NE patients (N = 92) of the HYPOTOP study were collected before, during, and after therapeutic hypothermia (TH) and compared to a control group (healthy term infants). The expression of miRNAs and concentrations of metabolites (hypoxia-related and energy, steroid, and tryptophan metabolisms) were analyzed. Neurodevelopmental outcomes were evaluated at 24 months postnatal age using Bayley Scales of Infant Development, ed. III, BSID-III. Differences in miRNA and metabolic profiles were found between NE vs. control infants, abnormal (i.e., mildly and moderately abnormal and severe) vs. normal, and severe vs. non-severe (i.e., normal and mildly and moderately abnormal) BSID-III. 4-Androstene-3,17-dione, testosterone, betaine, xanthine, and lactate were suitable for BSID-III outcome prediction (receiver operating characteristic areas under the curve (AUCs) ≥ 0.6), as well as 68 miRNAs (AUCs of 0.5-0.9). Significant partial correlations of xanthine and betaine levels and the expression of several miRNAs with BSID-III sub-scales were found. Conclusion: We have identified metabolites/miRNAs that might be useful to support the prediction of middle-term neurodevelopmental outcomes of NE. What is known and what is new: • The early prediction of outcomes of neonatal hypoxic-ischemic encephalopathy (NE) is of key importance in reducing neonatal mortality and morbidity. • Alterations of the metabolome and miRNAs had been observed in NE. • We performed miRNA sequencing and quantified selected metabolites (i.e., lactate, pyruvate, ketone bodies, Krebs cycle intermediates, tryptophan pathway, hypoxia-related metabolites, and steroids) by GC- and LC-MS. • Specific miRNAs and metabolites that allow prediction of middle-term neurodevelopmental outcomes of newborns with NE undergoing hypothermia treatment were identified.PMID:38916739 | DOI:10.1007/s00431-024-05652-x

Mechanisms of gastrointestinal toxicity in neuromyelitis optica spectrum disorder patients treated with mycophenolate mofetil: insights from a mouse model and human study

Tue, 25/06/2024 - 12:00
Microbiol Spectr. 2024 Jun 25:e0430723. doi: 10.1128/spectrum.04307-23. Online ahead of print.ABSTRACTMycophenolate mofetil (MMF) is commonly utilized for the treatment of neuromyelitis optica spectrum disorders (NMOSD). However, a subset of patients experience significant gastrointestinal (GI) adverse effects following MMF administration. The present study aims to elucidate the underlying mechanisms of MMF-induced GI toxicity in NMOSD. Utilizing a vancomycin-treated mouse model, we compiled a comprehensive data set to investigate the microbiome and metabolome in the GI tract to elucidate the mechanisms of MMF GI toxicity. Furthermore, we enrolled 17 female NMOSD patients receiving MMF, who were stratified into non-diarrhea NMOSD and diarrhea NMOSD (DNM) groups, in addition to 12 healthy controls. The gut microbiota of stool samples was analyzed using 16S rRNA gene sequencing. Vancomycin administration prevented weight loss and tissue injury caused by MMF, affecting colon metabolomes and microbiomes. Bacterial β-glucuronidase from Bacteroidetes and Firmicutes was linked to intestinal tissue damage. The DNM group showed higher alpha diversity and increased levels of Firmicutes and Proteobacteria. The β-glucuronidase produced by Firmicutes may be important in causing gastrointestinal side effects from MMF in NMOSD treatment, providing useful information for future research on MMF.IMPORTANCE: Neuromyelitis optica spectrum disorder (NMOSD) patients frequently endure severe consequences like paralysis and blindness. Mycophenolate mofetil (MMF) effectively addresses these issues, but its usage is hindered by gastrointestinal (GI) complications. Through uncovering the intricate interplay among MMF, gut microbiota, and metabolic pathways, this study identifies specific gut bacteria responsible for metabolizing MMF into a potentially harmful form, thus contributing to GI side effects. These findings not only deepen our comprehension of MMF toxicity but also propose potential strategies, such as inhibiting these bacteria, to mitigate these adverse effects. This insight holds broader implications for minimizing complications in NMOSD patients undergoing MMF therapy.PMID:38916339 | DOI:10.1128/spectrum.04307-23

<em>Mycobacterium</em> dormancy and antibiotic tolerance within the retinal pigment epithelium of ocular tuberculosis

Tue, 25/06/2024 - 12:00
Microbiol Spectr. 2024 Jun 25:e0078824. doi: 10.1128/spectrum.00788-24. Online ahead of print.ABSTRACTTuberculosis (TB) is a leading cause of death among infectious diseases worldwide due to latent TB infection, which is the critical step for the successful pathogenic cycle. In this stage, Mycobacterium tuberculosis resides inside the host in a dormant and antibiotic-tolerant state. Latent TB infection can also lead to multisystemic diseases because M. tuberculosis invades virtually all organs, including ocular tissues. Ocular tuberculosis (OTB) occurs when the dormant bacilli within the ocular tissues reactivate, originally seeded by hematogenous spread from pulmonary TB. Histological evidence suggests that retinal pigment epithelium (RPE) cells play a central role in immune privilege and in protection from antibiotic effects, making them an anatomical niche for invading M. tuberculosis. RPE cells exhibit high tolerance to environmental redox stresses, allowing phagocytosed M. tuberculosis bacilli to maintain viability in a dormant state. However, the microbiological and metabolic mechanisms determining the interaction between the RPE intracellular environment and phagocytosed M. tuberculosis are largely unknown. Here, liquid chromatography-mass spectrometry metabolomics were used to illuminate the metabolic state within RPE cells reprogrammed to harbor dormant M. tuberculosis bacilli and enhance antibiotic tolerance. Timely and accurate diagnosis as well as efficient chemotherapies are crucial in preventing the poor visual outcomes of OTB patients. Unfortunately, the efficacy of current methods is highly limited. Thus, the results will lead to propose a novel therapeutic option to synthetically kill the dormant M. tuberculosis inside the RPE cells by modulating the phenotypic state of M. tuberculosis and laying the foundation for a new, innovative regimen for treating OTB.IMPORTANCE: Understanding the metabolic environment within the retinal pigment epithelium (RPE) cells altered by infection with Mycobacterium tuberculosis and mycobacterial dormancy is crucial to identify new therapeutic methods to cure ocular tuberculosis. The present study showed that RPE cellular metabolism is altered to foster intracellular M. tuberculosis to enter into the dormant and drug-tolerant state, thereby blunting the efficacy of anti-tuberculosis chemotherapy. RPE cells serve as an anatomical niche as the cells protect invading bacilli from antibiotic treatment. LC-MS metabolomics of RPE cells after co-treatment with H2O2 and M. tuberculosis infection showed that the intracellular environment within RPE cells is enriched with a greater level of oxidative stress. The antibiotic tolerance of intracellular M. tuberculosis within RPE cells can be restored by a metabolic manipulation strategy such as co-treatment of antibiotic with the most downstream glycolysis metabolite, phosphoenolpyruvate.PMID:38916325 | DOI:10.1128/spectrum.00788-24

Metabologenomics reveals strain-level genetic and chemical diversity of <em>Microcystis</em> secondary metabolism

Tue, 25/06/2024 - 12:00
mSystems. 2024 Jun 25:e0033424. doi: 10.1128/msystems.00334-24. Online ahead of print.ABSTRACTMicrocystis spp. are renowned for producing the hepatotoxin microcystin in freshwater cyanobacterial harmful algal blooms around the world, threatening drinking water supplies and public and environmental health. However, Microcystis genomes also harbor numerous biosynthetic gene clusters (BGCs) encoding the biosynthesis of other secondary metabolites, including many with toxic properties. Most of these BGCs are uncharacterized and currently lack links to biosynthesis products. However, recent field studies show that many of these BGCs are abundant and transcriptionally active in natural communities, suggesting potentially important yet unknown roles in bloom ecology and water quality. Here, we analyzed 21 xenic Microcystis cultures isolated from western Lake Erie to investigate the diversity of the biosynthetic potential of this genus. Through metabologenomic and in silico approaches, we show that these Microcystis strains contain variable BGCs, previously observed in natural populations, and encode distinct metabolomes across cultures. Additionally, we find that the majority of metabolites and gene clusters are uncharacterized, highlighting our limited understanding of the chemical repertoire of Microcystis spp. Due to the complex metabolomes observed in culture, which contain a wealth of diverse congeners as well as unknown metabolites, these results underscore the need to deeply explore and identify secondary metabolites produced by Microcystis beyond microcystins to assess their impacts on human and environmental health.IMPORTANCEThe genus Microcystis forms dense cyanobacterial harmful algal blooms (cyanoHABs) and can produce the toxin microcystin, which has been responsible for drinking water crises around the world. While microcystins are of great concern, Microcystis also produces an abundance of other secondary metabolites that may be of interest due to their potential for toxicity, ecological importance, or pharmaceutical applications. In this study, we combine genomic and metabolomic approaches to study the genes responsible for the biosynthesis of secondary metabolites as well as the chemical diversity of produced metabolites in Microcystis strains from the Western Lake Erie Culture Collection. This unique collection comprises Microcystis strains that were directly isolated from western Lake Erie, which experiences substantial cyanoHAB events annually and has had negative impacts on drinking water, tourism, and industry.PMID:38916306 | DOI:10.1128/msystems.00334-24

The <em>Xenorhabdus nematophila</em> LrhA transcriptional regulator modulates production of γ-keto-<em>N</em>-acyl amides with inhibitory activity against mutualistic host nematode egg hatching

Tue, 25/06/2024 - 12:00
Appl Environ Microbiol. 2024 Jun 25:e0052824. doi: 10.1128/aem.00528-24. Online ahead of print.ABSTRACTXenorhabdus nematophila is a symbiotic Gammaproteobacterium that produces diverse natural products that facilitate mutualistic and pathogenic interactions in their nematode and insect hosts, respectively. The interplay between X. nematophila secondary metabolism and symbiosis stage is tuned by various global regulators. An example of such a regulator is the LysR-type protein transcription factor LrhA, which regulates amino acid metabolism and is necessary for virulence in insects and normal nematode progeny production. Here, we utilized comparative metabolomics and molecular networking to identify small molecule factors regulated by LrhA and characterized a rare γ-ketoacid (GKA) and two new N-acyl amides, GKA-Arg (1) and GKA-Pro (2) which harbor a γ-keto acyl appendage. A lrhA null mutant produced elevated levels of compound 1 and reduced levels of compound 2 relative to wild type. N-acyl amides 1 and 2 were shown to be selective agonists for the human G-protein-coupled receptors (GPCRs) C3AR1 and CHRM2, respectively. The CHRM2 agonist 2 deleteriously affected the hatch rate and length of Steinernema nematodes. This work further highlights the utility of exploiting regulators of host-bacteria interactions for the identification of the bioactive small molecule signals that they control.IMPORTANCE: Xenorhabdus bacteria are of interest due to their symbiotic relationship with Steinernema nematodes and their ability to produce a variety of natural bioactive compounds. Despite their importance, the regulatory hierarchy connecting specific natural products and their regulators is poorly understood. In this study, comparative metabolomic profiling was utilized to identify the secondary metabolites modulated by the X. nematophila global regulator LrhA. This analysis led to the discovery of three metabolites, including an N-acyl amide that inhibited the egg hatching rate and length of Steinernema carpocapsae nematodes. These findings support the notion that X. nematophila LrhA influences the symbiosis between X. nematophila and S. carpocapsae through N-acyl amide signaling. A deeper understanding of the regulatory hierarchy of these natural products could contribute to a better comprehension of the symbiotic relationship between X. nematophila and S. carpocapsae.PMID:38916293 | DOI:10.1128/aem.00528-24

Food for the Brain: Is Vegan/Vegetarian Diet the Way to Go for Hepatic Encephalopathy?

Tue, 25/06/2024 - 12:00
Clin Transl Gastroenterol. 2024 Jun 1;15(6):e1. doi: 10.14309/ctg.0000000000000716.ABSTRACTHigh-protein diet is the cornerstone of supportive care for patients living with hepatic encephalopathy. Although any protein source is better than protein restriction, there is uncertainty regarding the benefits of specific protein types. Using a randomized trial, Badal et al. evaluate the effect on ammonia levels and metabolomics from 3 protein sources in burgers made from beef, vegan products, and vegetarian products. The vegan and vegetarian burgers did not raise ammonia and may result in favorable metabolomic profiles.PMID:38916234 | DOI:10.14309/ctg.0000000000000716

Integrative physiological, transcriptomic, and metabolomic analysis of Abelmoschus manihot in response to Cd toxicity

Tue, 25/06/2024 - 12:00
Front Plant Sci. 2024 Jun 10;15:1389207. doi: 10.3389/fpls.2024.1389207. eCollection 2024.ABSTRACTRapid industrialization and urbanization have caused severe soil contamination with cadmium (Cd) necessitating effective remediation strategies. Phytoremediation is a widely adopted technology for remediating Cd-contaminated soil. Previous studies have shown that Abelmoschus manihot has a high Cd accumulation capacity and tolerance indicating its potential for Cd soil remediation. However, the mechanisms underlying its response to Cd stress remain unclear. In this study, physiological, transcriptomic, and metabolomic analyses were conducted to explore the response of A. manihot roots to Cd stress at different time points. The results revealed that Cd stress significantly increased malondialdehyde (MDA) levels in A. manihot, which simultaneously activated its antioxidant defense system, enhancing the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) by 19.73%-50%, 22.87%-38.89%, and 32.31%-45.40% at 12 h, 36 h, 72 h, and 7 days, respectively, compared with those in the control (CK). Moreover, transcriptomic and metabolomic analyses revealed 245, 5,708, 9,834, and 2,323 differentially expressed genes (DEGs), along with 66, 62, 156, and 90 differentially expressed metabolites (DEMs) at 12 h, 36 h, 72 h, and 7 days, respectively. Through weighted gene coexpression network analysis (WGCNA) of physiological indicators and transcript expression, eight hub genes involved in phenylpropanoid biosynthesis, signal transduction, and metal transport were identified. In addition, integrative analyses of metabolomic and transcriptomic data highlighted the activation of lipid metabolism and phenylpropanoid biosynthesis pathways under Cd stress suggesting that these pathways play crucial roles in the detoxification process and in enhancing Cd tolerance in A. manihot. This comprehensive study provides detailed insights into the response mechanisms of A. manihot to Cd toxicity.PMID:38916029 | PMC:PMC11194374 | DOI:10.3389/fpls.2024.1389207

Interpretable machine learning identifies metabolites associated with glomerular filtration rate in type 2 diabetes patients

Tue, 25/06/2024 - 12:00
Front Endocrinol (Lausanne). 2024 Jun 10;15:1279034. doi: 10.3389/fendo.2024.1279034. eCollection 2024.ABSTRACTOBJECTIVE: The co-occurrence of kidney disease in patients with type 2 diabetes (T2D) is a major public health challenge. Although early detection and intervention can prevent or slow down the progression, the commonly used estimated glomerular filtration rate (eGFR) based on serum creatinine may be influenced by factors unrelated to kidney function. Therefore, there is a need to identify novel biomarkers that can more accurately assess renal function in T2D patients. In this study, we employed an interpretable machine-learning framework to identify plasma metabolomic features associated with GFR in T2D patients.METHODS: We retrieved 1626 patients with type 2 diabetes (T2D) in Liaoning Medical University First Affiliated Hospital (LMUFAH) as a development cohort and 716 T2D patients in Second Affiliated Hospital of Dalian Medical University (SAHDMU) as an external validation cohort. The metabolite features were screened by the orthogonal partial least squares discriminant analysis (OPLS-DA). We compared machine learning prediction methods, including logistic regression (LR), support vector machine (SVM), random forest (RF), and eXtreme Gradient Boosting (XGBoost). The Shapley Additive exPlanations (SHAP) were used to explain the optimal model.RESULTS: For T2D patients, compared with the normal or elevated eGFR group, glutarylcarnitine (C5DC) and decanoylcarnitine (C10) were significantly elevated in GFR mild reduction group, and citrulline and 9 acylcarnitines were also elevated significantly (FDR<0.05, FC > 1.2 and VIP > 1) in moderate or severe reduction group. The XGBoost model with metabolites had the best performance: in the internal validate dataset (AUROC=0.90, AUPRC=0.65, BS=0.064) and external validate cohort (AUROC=0.970, AUPRC=0.857, BS=0.046). Through the SHAP method, we found that C5DC higher than 0.1μmol/L, Cit higher than 26 μmol/L, triglyceride higher than 2 mmol/L, age greater than 65 years old, and duration of T2D more than 10 years were associated with reduced GFR.CONCLUSION: Elevated plasma levels of citrulline and a panel of acylcarnitines were associated with reduced GFR in T2D patients, independent of other conventional risk factors.PMID:38915893 | PMC:PMC11194401 | DOI:10.3389/fendo.2024.1279034

Effects of taurine on metabolomics of bovine mammary epithelial cells under high temperature conditions

Tue, 25/06/2024 - 12:00
Front Vet Sci. 2024 Jun 10;11:1393276. doi: 10.3389/fvets.2024.1393276. eCollection 2024.ABSTRACTHigh temperature induces heat stress, adversely affecting the growth and lactation performance of cows. Research has shown the protective effect of taurine against hepatotoxicity both in vivo and in vitro. This study aimed to investigate the effect of taurine on the metabolomics of mammary epithelial cells of dairy cows under high-temperature conditions. Mammary epithelial cells were exposed to 0 mmol/L (HS, control), 8 mmol/L (HT-8), and 32 mmol/L (HT-32) of taurine, then incubated at 42°C for 6 h. Metabolomics analysis was conducted using Liquid Chromatograph Mass Spectrometer (LC-MS). Compared with the HS group, 2,873 and 3,243 metabolites were detected in the HT-8 group in positive and negative ion modes. Among these, 108 and 97 metabolites were significantly upregulated in positive and negative ion modes, while 60 and 166 metabolites were downregulated. Notably, 15 different metabolites such as palmitic acid, adenine and hypoxanthine were screened out in the HT-8 group. Compared with the HS group, 2,873 and 3,243 metabolites were, respectively, detected in the HT-32 group in the positive and negative ion modes. Among those metabolites, 206 metabolites were significantly up-regulated, while 206 metabolites were significantly downregulated in the positive mode. On the other hand, 497 metabolites were significantly upregulated in the negative mode, while 517 metabolites were reported to be downregulated. Noteworthy, 30 distinct metabolites, such as palmitic acid, phytosphingosine, hypoxanthine, nonanoic acid, and octanoic acid, were screened out in the HT-32 group. KEGG enrichment analysis showed that these metabolites were mainly involved in lipid metabolism, purine metabolism and other biological processes. Overall, our study indicates that taurine supplementation alters the metabolites primarily associated with purine metabolism, lipid metabolism and other pathways to alleviate heat stress in bovine mammary epithelial cells.PMID:38915889 | PMC:PMC11194699 | DOI:10.3389/fvets.2024.1393276

Investigating the Impact of SN-38 on Mouse Brain Metabolism Based on Metabolomics

Tue, 25/06/2024 - 12:00
Drug Des Devel Ther. 2024 Jun 20;18:2435-2447. doi: 10.2147/DDDT.S457698. eCollection 2024.ABSTRACTPURPOSE: SN-38 (7-ethyl-10-hydroxycamptothecin), the active metabolite of irinotecan, has been extensively studied in drug delivery systems. However, its impact on neural metabolism remains unclear. This study aims to investigate the toxic effects of SN-38 on mouse brain metabolism.METHODS: Male mice were divided into an SN-38 group and a control group. The SN-38 group received SN-38 (20 mg/kg/day) via intraperitoneal injection, while the control group was given an equal volume of a blank solvent mixture (DMSO and saline, ratio 1:9). Gas chromatography-mass spectrometry (GC-MS) was employed to analyze differential metabolites in the cortical and hippocampal regions of the SN-38-treated mice.RESULTS: SN-38 induced metabolic disturbances in the central nervous system. Eighteen differential metabolites were identified in the hippocampus and twenty-four in the cortex, with six common to both regions. KEGG pathway enrichment analysis revealed statistically significant alterations in six metabolic pathways in the hippocampus and ten in the cortex (P<0.05).CONCLUSION: This study is the first to demonstrate the neurotoxicity of SN-38 in male mice through metabolomics. Differential metabolites in the hippocampal and cortical regions were closely linked to purine metabolism, pyrimidine metabolism, amino acid metabolism, and glyceride metabolism, indicating disruptions in the blood-brain barrier, energy metabolism, and central signaling pathways.PMID:38915864 | PMC:PMC11195675 | DOI:10.2147/DDDT.S457698

The dietary changes during Ramadan and their impact on anthropometry, blood pressure, and metabolic profile

Tue, 25/06/2024 - 12:00
Front Nutr. 2024 Jun 10;11:1394673. doi: 10.3389/fnut.2024.1394673. eCollection 2024.ABSTRACTBACKGROUND: The effect of Ramadan intermittent fasting (RIF) on the metabolic profile, anthropometry and blood pressure has been investigated in multiple studies. However, it is still unknown to what extent changes in nutrient intakes contribute to these changes.METHODS: This observational study was conducted in London (UK) in 2019. The study collected diverse data from a community-based sample in London before and during/after Ramadan. Collected data included a 3-day food diary (before and during Ramadan), as well as blood samples, anthropometric measurements and blood pressure (before and after Ramadan). The food diary was translated into nutritional data using nutrition software "Nutritics." The changes in nutrient intakes were investigated using a mixed-effects regression model. The impact of adjusting for nutrient intake change was investigated on the absolute difference of metabolites (Nightingale platform), systolic/diastolic blood pressure and anthropometric measures.RESULTS: The study collected data on food intake before and during Ramadan from 56 participants; the mean age was 44.7 ± 17.3, and 51.8% (n = 29) were females. We found a change in the intake of 11 nutritional factors, glucose, fructose, betaine, sugars, sugars as monosaccharide equivalents, lutein/zeaxanthin, starch, starch as monosaccharide equivalents, proline, glutamic acid and lycopene. No changes in quantities or proportions of macronutrients, carbohydrates, protein and fat. Mainly, the changes in diet during Ramadan are characterized by more consumption of sugars (62%, p < 0.001) and a lower intake of starch (-21%, p = 0.012). The changes in 14 metabolite levels (two glycolysis-related metabolites, one amino acid, two ketone bodies, two triglyceride, six lipoprotein subclasses, and an inflammation marker) after Ramadan were partially associated with some changes in nutrient intakes during Ramadan, especially betaine, fructose, glucose, starches and sugars. The lutein/zeaxanthin intake change explained inversely 14% of systolic blood pressure changes. Moreover, BMI and weight changes were partially explained by changes in intake of fat (7%; 9%), monounsaturated fat (6%; 7%), starch (8%; 9%), and starch as monosaccharide equivalents (8%; 9%) intakes in a direct relationship.CONCLUSION: Diet changes during Ramadan were associated partially with the observed changes in the metabolic profile, blood pressure and anthropometry. This confirms the changes associated with RIF in the metabolic profile, blood pressure and anthropometry are not an absolute physiological response to the diet transition occurring during Ramadan.PMID:38915859 | PMC:PMC11194389 | DOI:10.3389/fnut.2024.1394673

Transcriptomics and metabolomics analyses provide insights into resistance genes of tree ferns

Tue, 25/06/2024 - 12:00
Front Genet. 2024 Jun 10;15:1398534. doi: 10.3389/fgene.2024.1398534. eCollection 2024.ABSTRACTAs ancient organisms, tree ferns play a crucial role as an evolutionary bridge between lower and higher plant species, providing various utilitarian benefits. However, they face challenges such as overexploitation, climate change, adverse environmental conditions, and insect pests, resulting in conservation concerns. In this study, we provide an overview of metabolic and transcriptomic resources of leaves in two typical tree ferns, A. spinulosa and A. metteniana, and explore the resistance genes for the first time. The landscape of metabolome showed that the compound skimmin may hold medicinal significance. A total of 111 differentially accumulated metabolites (DAMs) were detected, with pathway enrichment analysis highlighting 14 significantly enriched pathways, including 2-oxocarboxylic acid metabolism possibly associated with environmental adaptations. A total of 14,639 differentially expressed genes (DEGs) were found, among which 606 were resistance (R) genes. We identified BAM1 as a significantly differentially expressed R gene, which is one of the core genes within the R gene interaction network. Both the maximum-likelihood phylogenetic tree and the PPI network revealed a close relationship between BAM1, FLS2, and TMK. Moreover, BAM1 showed a significant positive correlation with neochlorogenic acid and kaempferol-7-O-glucoside. These metabolites, known for their antioxidant and anti-inflammatory properties, likely play a crucial role in the defense response of tree ferns. This research provides valuable insights into the metabolic and transcriptomic differences between A. spinulosa and A. metteniana, enhancing our understanding of resistance genes in tree ferns.PMID:38915824 | PMC:PMC11194355 | DOI:10.3389/fgene.2024.1398534

Microbiota metabolized Bile Acids accelerate Gastroesophageal Adenocarcinoma via FXR inhibition

Tue, 25/06/2024 - 12:00
bioRxiv [Preprint]. 2024 Jun 12:2024.06.11.598405. doi: 10.1101/2024.06.11.598405.ABSTRACTBACKGROUND: The incidence of Barrett esophagus (BE) and Gastroesophageal Adenocarcinoma (GEAC) correlates with obesity and a diet rich in fat. Bile acids (BA) support fat digestion and undergo microbial metabolization in the gut. The farnesoid X receptor (FXR) is an important modulator of the BA homeostasis. The capacity of inhibiting cancer-related processes when activated, make FXR an appealing therapeutic target. In this work, we assess the role of diet on the microbiota-BA axis and evaluate the role of FXR in disease progression.RESULTS: Here we show that high fat diet (HFD) accelerated tumorigenesis in L2-IL1B mice (BE- and GEAC- mouse model) while increasing BA levels and enriching gut microbiota that convert primary to secondary BA. While upregulated in BE, expression of FXR was downregulated in GEAC in mice and humans. In L2-IL1B mice, FXR knockout enhanced the dysplastic phenotype and increased Lgr5 progenitor cell numbers. Treatment of murine organoids and L2-IL1B mice with the FXR agonist obeticholic acid (OCA) deacelerated GEAC progression.CONCLUSION: We provide a novel concept of GEAC carcinogenesis being accelerated via the diet-microbiome-metabolome axis and FXR inhibition on progenitor cells. Further, FXR activation protected with OCA ameliorated the phenotype in vitro and in vivo, suggesting that FXR agonists have potential as differentiation therapy in GEAC prevention.STATEMENT OF SIGNIFICANCE: If its inhibition is linked to disease progression and its activation to cancer prevention, exploring the potential of FXR as a therapeutic target has great clinical relevance in GEAC context.PMID:38915718 | PMC:PMC11195123 | DOI:10.1101/2024.06.11.598405

Unraveling CRP/cAMP-Mediated Metabolic Regulation In <em>Escherichia coli</em> Persister Cells

Tue, 25/06/2024 - 12:00
bioRxiv [Preprint]. 2024 Jun 10:2024.06.10.598332. doi: 10.1101/2024.06.10.598332.ABSTRACTA substantial gap persists in our comprehension of how bacterial metabolism undergoes rewiring during the transition to a persistent state. Also, it remains unclear which metabolic mechanisms become indispensable for persister cell survival. To address these questions, we directed our efforts towards persister cells in Escherichia coli that emerge during the late stationary phase. These cells have been recognized for their exceptional resilience and are commonly believed to be in a dormant state. Our results demonstrate that the global metabolic regulator Crp/cAMP redirects the metabolism of these antibiotic-tolerant cells from anabolism to oxidative phosphorylation. Although our data indicates that persisters exhibit a reduced metabolic rate compared to rapidly growing exponential-phase cells, their survival still relies on energy metabolism. Extensive genomic-level analyses of metabolomics, proteomics, and single-gene deletions consistently emphasize the critical role of energy metabolism, specifically the tricarboxylic acid (TCA) cycle, electron transport chain (ETC), and ATP synthase, in sustaining the viability of persisters. Altogether, this study provides much-needed clarification regarding the role of energy metabolism in antibiotic tolerance and highlights the importance of using a multipronged approach at the genomic level to obtain a broader picture of the metabolic state of persister cells.PMID:38915711 | PMC:PMC11195080 | DOI:10.1101/2024.06.10.598332

Renalase inhibition regulates β cell metabolism to defend against acute and chronic stress

Tue, 25/06/2024 - 12:00
bioRxiv [Preprint]. 2024 Jun 13:2024.06.11.598322. doi: 10.1101/2024.06.11.598322.ABSTRACTRenalase (Rnls), annotated as an oxidase enzyme, is a GWAS gene associated with Type 1 Diabetes (T1D) risk. We previously discovered that Rnls inhibition delays diabetes onset in mouse models of T1D in vivo , and protects pancreatic β cells against autoimmune killing, ER and oxidative stress in vitro . The molecular biochemistry and functions of Rnls are entirely uncharted. Here we find that Rnls inhibition defends against loss of β cell mass and islet dysfunction in chronically stressed Akita mice in vivo . We used RNA sequencing, untargeted and targeted metabolomics and metabolic function experiments in mouse and human β cells and discovered a robust and conserved metabolic shift towards glycolysis, amino acid abundance and GSH synthesis to counter protein misfolding stress, in vitro . Our work illustrates a function for Rnls in mammalian cells, and suggests an axis by which manipulating intrinsic properties of β cells can rewire metabolism to protect against diabetogenic stress.PMID:38915698 | PMC:PMC11195134 | DOI:10.1101/2024.06.11.598322

alpha-Synuclein Overexpression and the Microbiome Shape the Gut and Brain Metabolome in Mice

Tue, 25/06/2024 - 12:00
bioRxiv [Preprint]. 2024 Jun 10:2024.06.07.597975. doi: 10.1101/2024.06.07.597975.ABSTRACTPathological forms of the protein α-synuclein contribute to a family of disorders termed synucleinopathies, which includes Parkinson's disease (PD). Most cases of PD are believed to arise from gene-environment interactions. Microbiome composition is altered in PD, and gut bacteria are causal to symptoms and pathology in animal models. To explore how the microbiome may impact PD-associated genetic risks, we quantitatively profiled nearly 630 metabolites from 26 biochemical classes in the gut, plasma, and brain of α-synuclein-overexpressing (ASO) mice with or without microbiota. We observe tissue-specific changes driven by genotype, microbiome, and their interaction. Many differentially expressed metabolites in ASO mice are also dysregulated in human PD patients, including amine oxides, bile acids and indoles. Notably, levels of the microbial metabolite trimethylamine N-oxide (TMAO) strongly correlate from the gut to the plasma to the brain, identifying a product of gene-environment interactions that may influence PD-like outcomes in mice. TMAO is elevated in the blood and cerebral spinal fluid of PD patients. These findings uncover broad metabolomic changes that are influenced by the intersection of host genetics and the microbiome in a mouse model of PD.PMID:38915679 | PMC:PMC11195096 | DOI:10.1101/2024.06.07.597975

The MICOS Complex Regulates Mitochondrial Structure and Oxidative Stress During Age-Dependent Structural Deficits in the Kidney

Tue, 25/06/2024 - 12:00
bioRxiv [Preprint]. 2024 Jun 12:2024.06.09.598108. doi: 10.1101/2024.06.09.598108.ABSTRACTThe kidney filters nutrient waste and bodily fluids from the bloodstream, in addition to secondary functions of metabolism and hormone secretion, requiring an astonishing amount of energy to maintain its functions. In kidney cells, mitochondria produce adenosine triphosphate (ATP) and help maintain kidney function. Due to aging, the efficiency of kidney functions begins to decrease. Dysfunction in mitochondria and cristae, the inner folds of mitochondria, is a hallmark of aging. Therefore, age-related kidney function decline could be due to changes in mitochondrial ultrastructure, increased reactive oxygen species (ROS), and subsequent alterations in metabolism and lipid composition. We sought to understand if there is altered mitochondrial ultrastructure, as marked by 3D morphological changes, across time in tubular kidney cells. Serial block facing-scanning electron microscope (SBF-SEM) and manual segmentation using the Amira software were used to visualize murine kidney samples during the aging process at 3 months (young) and 2 years (old). We found that 2-year mitochondria are more fragmented, compared to the 3-month, with many uniquely shaped mitochondria observed across aging, concomitant with shifts in ROS, metabolomics, and lipid homeostasis. Furthermore, we show that the mitochondrial contact site and cristae organizing system (MICOS) complex is impaired in the kidney due to aging. Disruption of the MICOS complex shows altered mitochondrial calcium uptake and calcium retention capacity, as well as generation of oxidative stress. We found significant, detrimental structural changes to aged kidney tubule mitochondria suggesting a potential mechanism underlying why kidney diseases occur more readily with age. We hypothesize that disruption in the MICOS complex further exacerbates mitochondrial dysfunction, creating a vicious cycle of mitochondrial degradation and oxidative stress, thus impacting kidney health.TRANSLATIONAL STATEMENT: Due to aging, the efficiency of kidney functions begins to decrease and the risk of kidney diseases may increase, but specific regulators of mitochondrial age-related changes are poorly explained. This study demonstrates the MICOS complex may be a target for mitigating age-related changes in mitochondria. The MICOS complex can be associated with oxidative stress and calcium dysregulation, which also arise in many kidney pathologies.PMID:38915644 | PMC:PMC11195114 | DOI:10.1101/2024.06.09.598108

Metabolomic Profiling and Characterization of a Novel 3D Culture System for Studying Chondrocyte Mechanotransduction

Tue, 25/06/2024 - 12:00
bioRxiv [Preprint]. 2024 Jun 12:2024.06.10.598340. doi: 10.1101/2024.06.10.598340.ABSTRACTArticular chondrocytes synthesize and maintain the avascular and aneural articular cartilage. In vivo these cells are surrounded by a 3D pericellular matrix (PCM) containing predominantly collagen VI. The PCM protects chondrocytes and facilitates mechanotransduction, and PCM stiffness is critical in transmitting biomechanical signals to chondrocytes. Various culture systems with different hydrogels have been used to encapsulate chondrocytes for 3D culture, but many lack either the PCM or the in vivo stiffness of the cartilage matrix. Here, we demonstrate that primary chondrocytes cultured in alginate will form a pericellular matrix and display a phenotype similar to in vivo conditions. We found that primary human and bovine chondrocytes, when cultured in alginate beads with addition of sodium L-ascorbate for 7 days, had a pronounced PCM, retained their phenotype, and synthesized both collagens VI and II. This novel culture system enables alginate-encapsulated chondrocytes to develop a robust PCM thereby creating a model system to study mechanotransduction. We also observed distinct compression-induced changes in metabolomic profiles between the monolayer-agarose and alginate-released agarose-embedded chondrocytes indicating physiological changes in cell metabolism. Our data suggest that 3D preculture of chondrocytes in alginate before encapsulation in physiologically-stiff agarose leads to a pronounced development of pericellular matrix that is sustained in the presence of ascorbate. This novel model can be useful in studying the mechanism by which chondrocytes respond to cyclical compression and other types of loading simulating in vivo physiological conditions.PMID:38915493 | PMC:PMC11195103 | DOI:10.1101/2024.06.10.598340

Longitudinal changes in DNA methylation during the onset of islet autoimmunity differentiate between reversion versus progression of islet autoimmunity

Tue, 25/06/2024 - 12:00
Front Immunol. 2024 Jun 10;15:1345494. doi: 10.3389/fimmu.2024.1345494. eCollection 2024.ABSTRACTBACKGROUND: Type 1 diabetes (T1D) is preceded by a heterogenous pre-clinical phase, islet autoimmunity (IA). We aimed to identify pre vs. post-IA seroconversion (SV) changes in DNAm that differed across three IA progression phenotypes, those who lose autoantibodies (reverters), progress to clinical T1D (progressors), or maintain autoantibody levels (maintainers).METHODS: This epigenome-wide association study (EWAS) included longitudinal DNAm measurements in blood (Illumina 450K and EPIC) from participants in Diabetes Autoimmunity Study in the Young (DAISY) who developed IA, one or more islet autoantibodies on at least two consecutive visits. We compared reverters - individuals who sero-reverted, negative for all autoantibodies on at least two consecutive visits and did not develop T1D (n=41); maintainers - continued to test positive for autoantibodies but did not develop T1D (n=60); progressors - developed clinical T1D (n=42). DNAm data were measured before (pre-SV visit) and after IA (post-SV visit). Linear mixed models were used to test for differences in pre- vs post-SV changes in DNAm across the three groups. Linear mixed models were also used to test for group differences in average DNAm. Cell proportions, age, and sex were adjusted for in all models. Median follow-up across all participants was 15.5 yrs. (interquartile range (IQR): 10.8-18.7).RESULTS: The median age at the pre-SV visit was 2.2 yrs. (IQR: 0.8-5.3) in progressors, compared to 6.0 yrs. (IQR: 1.3-8.4) in reverters, and 5.7 yrs. (IQR: 1.4-9.7) in maintainers. Median time between the visits was similar in reverters 1.4 yrs. (IQR: 1-1.9), maintainers 1.3 yrs. (IQR: 1.0-2.0), and progressors 1.8 yrs. (IQR: 1.0-2.0). Changes in DNAm, pre- vs post-SV, differed across the groups at one site (cg16066195) and 11 regions. Average DNAm (mean of pre- and post-SV) differed across 22 regions.CONCLUSION: Differentially changing DNAm regions were located in genomic areas related to beta cell function, immune cell differentiation, and immune cell function.PMID:38915393 | PMC:PMC11194352 | DOI:10.3389/fimmu.2024.1345494

SGLT2 inhibition leads to a restoration of hepatic and circulating metabolites involved in the folate cycle and pyrimidine biosynthesis

Tue, 25/06/2024 - 12:00
Am J Physiol Gastrointest Liver Physiol. 2024 Jun 25. doi: 10.1152/ajpgi.00029.2024. Online ahead of print.ABSTRACTInhibition of sodium-glucose co-transporter 2 (SGLT2) by Empagliflozin (EMPA) and other 'flozins can improve glycemic control under conditions of diabetes and kidney disease. Though they act on the kidney, they also offer cardiovascular and liver protection. Previously, we found that EMPA decreased circulating triglycerides and hepatic lipid and cholesterol esters in male TallyHo mice fed a high milk fat diet (HMFD). The goal of this study was to determine if the liver protection is associated with a change in metabolic function by characterizing the hepatic and circulating metabolic and lipidomic profiles using targeted LC-MS. In both male and female mice, HMFD feeding significantly altered the circulating and hepatic metabolome compared to low-fat diet (LFD). Addition of EMPA resulted in the restoration of circulating orotate (intermediate in pyrimidine biosynthesis) and hepatic dihydrofolate (intermediate in the folate and methionine cycles) levels in males and acylcarnitines in females. These changes were partially explained by altered expression of rate-limiting enzymes in these pathways. This metabolic signature was not detected when EMPA was incorporated into an LFD suggesting that the restoration requires the metabolic shift that accompanies the HMFD. Notably, the HMFD increased expression of 18/20 circulating amino acids in males and 11/20 in females, and this pattern was reversed by EMPA. Finally, we confirmed that SGLT2 inhibition upregulates ketone bodies including b-hydroxybutyrate. Collectively, this study highlights the metabolic changes that occur with EMPA treatment, and sheds light on the possible mechanisms by which this drug offers liver and systemic protection.PMID:38915277 | DOI:10.1152/ajpgi.00029.2024

Pages