Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

Metals/bisulfite system involved generation of 24-sulfonic-25-ene ginsenoside Rg1, a potential quality control marker for sulfur-fumigated ginseng

Wed, 03/04/2024 - 12:00
Food Chem. 2024 Mar 30;448:139112. doi: 10.1016/j.foodchem.2024.139112. Online ahead of print.ABSTRACTGinseng is a most popular health-promoting food with ginsenosides as its main bioactive ingredients. Illegal sulfur-fumigation causes ginsenosides convert to toxic sulfur-containing derivatives, and reduced the efficacy/safety of ginseng. 24-sulfo-25-ene ginsenoside Rg1 (25-ene SRg1), one of the sulfur-containing derivatives, is a potential quality control marker of fumigated ginseng, but with low accessibility owing to its unknown generation mechanism. In this study, metals/bisulfite system involved generation mechanism was investigated and verified. The generation of 25-ene SRg1 in sulfur-fumigated ginseng is that SO2, formed during sulfur-fumigation, reacted with water and ionized into HSO3-. On the one hand, under the metals/bisulfite system, HSO3- generates HSO5- and free radicals which converted ginsenoside Rg1 to 24,25-epoxide Rg1; on the other hand, as a nucleophilic group, HSO3- reacted with 24,25-epoxide Rg1 and further dehydrated to 25-ene SRg1. This study provided a technical support for the promotion of 25-ene SRg1 as the characteristic quality control marker of sulfur-fumigated ginseng.PMID:38569404 | DOI:10.1016/j.foodchem.2024.139112

Xianlian Jiedu Decoction alleviates colorectal cancer by regulating metabolic profiles, intestinal microbiota and metabolites

Wed, 03/04/2024 - 12:00
Phytomedicine. 2024 Jan 27;128:155385. doi: 10.1016/j.phymed.2024.155385. Online ahead of print.ABSTRACTBACKGROUND: Xianlian Jiedu Decoction (XLJDD) has been used for the treatment of colorectal cancer (CRC) for several decades because of the prominent efficacy of the prescription. Despite the clear clinical efficacy of XLJDD, the anti-CRC mechanism of action is still unclear.PURPOSE: The inhibitory effect and mechanism of XLJDD on CRC were investigated in the azoxymethane/dextran sulfate sodium (AOM/DSS)-induced mice.METHODS: The AOM/DSS-induced mice model was adopted to evaluate the efficacy after administering the different doses of XLJDD. The therapeutic effects of XLJDD in treating AOM/DSS-induced CRC were investigated through histopathology, immunofluorescence and ELISA analysis methods. In addition, metabolomics profile and 16S rRNA analysis were used to explore the effective mechanisms of XLJDD on CRC.RESULTS: The results stated that the XLJDD reduced the number of tumor growth on the inner wall of the colon and the colorectal weight/length ratio, and suppressed the disease activity index (DAI) score, meanwhile XLJDD also increased body weight, colorectal length, and overall survival rate. The treatment of XLJDD also exhibited the ability to lower the level of inflammatory cytokines in serum and reduce the expression levels of β-catenin, COX-2, and iNOS protein in colorectal tissue. The findings suggested that XLJDD has anti-inflammatory properties and may provide relief for those suffering from inflammation-related conditions. Mechanistically, XLJDD improved gut microbiota dysbiosis and associated metabolic levels of short chain fatty acids (SCFAs), sphingolipid, and glycerophospholipid. This was achieved by reducing the abundance of Turicibacter, Clostridium_sensu_stricto_1, and the levels of sphinganine, LPCs, and PCs. Additionally, XLJDD increased the abundance of Enterorhabdus and Alistipes probiotics, as well as the content of butyric acid and isovaleric acid.CONCLUSION: The data presented in this article demonstrated that XLJDD can effectively inhibit the occurrence of colon inner wall tumors by reducing the level of inflammation and alleviating intestinal microbial flora imbalance and metabolic disorders. It provides a scientific basis for clinical prevention and treatment of CRC.PMID:38569292 | DOI:10.1016/j.phymed.2024.155385

Host-microbiota interactions in collagen-induced arthritis rats treated with human umbilical cord mesenchymal stem cell exosome and ginsenoside Rh2

Wed, 03/04/2024 - 12:00
Biomed Pharmacother. 2024 Apr 2;174:116515. doi: 10.1016/j.biopha.2024.116515. Online ahead of print.ABSTRACTMesenchymal stem cell exosome (MSCs-exo) is a class of products secreted by mesenchymal stem cells (MSCs) that contain various biologically active substances. MSCs-exo is a promising alternative to MSCs due to their lower immunogenicity and lack of ethical constraints. Ginsenoside Rh2 (Rh2) is a hydrolyzed component of the primary active substance of ginsenosides. Rh2 has a variety of pharmacological functions, including anti-inflammatory, anti-tumor, and antioxidant. Studies have demonstrated that gut microbiota and metabolites are critical in developing rheumatoid arthritis (RA). In this study, we constructed a collagen-induced arthritis (CIA) model in rats. We used MSCs-exo combined with Rh2 to treat CIA rats. To observe the effect of MSCs-exo combined with Rh2 on joint inflammation, rat feces were collected for 16 rRNA amplicon sequencing and untargeted metabolomics analysis. The results showed that the arthritis index score and joint swelling of CIA rats treated with MSCs-exo in combination with Rh2 were significantly lower than those of the model and MSCs-exo alone groups. MSCs-exo and Rh2 significantly ameliorated the disturbed gut microbiota in CIA rats. The regulation of Candidatus_Saccharibacteria and Clostridium_XlVb regulation may be the most critical. Rh2 enhanced the therapeutic effect of MSCs-exo compared with the MSCs-exo -alone group. Furthermore, significant changes in gut metabolites were observed in the CIA rat group, and these differentially altered metabolites may act as messengers for host-microbiota interactions. These differential metabolites were enriched into relevant critical metabolic pathways, revealing possible pathways for host-microbiota interactions.PMID:38569276 | DOI:10.1016/j.biopha.2024.116515

Using machine learning to identify proteomic and metabolomic signatures of stroke in atrial fibrillation

Wed, 03/04/2024 - 12:00
Comput Biol Med. 2024 Mar 26;173:108375. doi: 10.1016/j.compbiomed.2024.108375. Online ahead of print.ABSTRACTAtrial fibrillation (AF) is a common cardiac arrhythmia, with stroke being its most detrimental comorbidity. The exact mechanism of AF related stroke (AFS) still needs to be explored. In this study, we integrated proteomics and metabolomics platform to explore disordered plasma proteins and metabolites between AF patients and AFS patients. There were 22 up-regulated and 31 down-regulated differentially expressed proteins (DEPs) in AFS plasma samples. Moreover, 63 up-regulated and 51 down-regulated differentially expressed metabolites (DEMs) were discovered in AFS plasma samples. We integrated proteomics and metabolomics based on the topological interactions of DEPs and DEMs, which yielded revealed several related pathways such as arachidonic acid metabolism, serotonergic synapse, purine metabolism, tyrosine metabolism and steroid hormone biosynthesis. We then performed a machine learning model to identify potential biomarkers of stroke in AF. Finally, we selected 6 proteins and 6 metabolites as candidate biomarkers for predicting stroke in AF by random forest, the area under the curve being 0.976. In conclusion, this study provides new perspectives for understanding the progressive mechanisms of AF related stroke and discovering innovative biomarkers for determining the prognosis of stroke in AF.PMID:38569232 | DOI:10.1016/j.compbiomed.2024.108375

Addition of inflammation-related biomarkers to the CAIDE model for risk prediction of all-cause dementia, Alzheimer's disease and vascular dementia in a prospective study

Wed, 03/04/2024 - 12:00
Immun Ageing. 2024 Apr 3;21(1):23. doi: 10.1186/s12979-024-00427-2.ABSTRACTBACKGROUND: It is of interest whether inflammatory biomarkers can improve dementia prediction models, such as the widely used Cardiovascular Risk Factors, Aging and Dementia (CAIDE) model.METHODS: The Olink Target 96 Inflammation panel was assessed in a nested case-cohort design within a large, population-based German cohort study (n = 9940; age-range: 50-75 years). All study participants who developed dementia over 20 years of follow-up and had complete CAIDE variable data (n = 562, including 173 Alzheimer's disease (AD) and 199 vascular dementia (VD) cases) as well as n = 1,356 controls were selected for measurements. 69 inflammation-related biomarkers were eligible for use. LASSO logistic regression and bootstrapping were utilized to select relevant biomarkers and determine areas under the curve (AUCs).RESULTS: The CAIDE model 2 (including Apolipoprotein E (APOE) ε4 carrier status) predicted all-cause dementia, AD, and VD better than CAIDE model 1 (without APOE ε4) with AUCs of 0.725, 0.752 and 0.707, respectively. Although 20, 7, and 4 inflammation-related biomarkers were selected by LASSO regression to improve CAIDE model 2, the AUCs did not increase markedly. CAIDE models 1 and 2 generally performed better in mid-life (50-64 years) than in late-life (65-75 years) sub-samples of our cohort, but again, inflammation-related biomarkers did not improve their predictive abilities.CONCLUSIONS: Despite a lack of improvement in dementia risk prediction, the selected inflammation-related biomarkers were significantly associated with dementia outcomes and may serve as a starting point to further elucidate the pathogenesis of dementia.PMID:38570813 | DOI:10.1186/s12979-024-00427-2

The novel molecular mechanism of pulmonary fibrosis: insight into lipid metabolism from reanalysis of single-cell RNA-seq databases

Wed, 03/04/2024 - 12:00
Lipids Health Dis. 2024 Apr 3;23(1):98. doi: 10.1186/s12944-024-02062-8.ABSTRACTPulmonary fibrosis (PF) is a severe pulmonary disease with limited available therapeutic choices. Recent evidence increasingly points to abnormal lipid metabolism as a critical factor in PF pathogenesis. Our latest research identifies the dysregulation of low-density lipoprotein (LDL) is a new risk factor for PF, contributing to alveolar epithelial and endothelial cell damage, and fibroblast activation. In this study, we first integrative summarize the published literature about lipid metabolite changes found in PF, including phospholipids, glycolipids, steroids, fatty acids, triglycerides, and lipoproteins. We then reanalyze two single-cell RNA-sequencing (scRNA-seq) datasets of PF, and the corresponding lipid metabolomic genes responsible for these lipids' biosynthesis, catabolism, transport, and modification processes are uncovered. Intriguingly, we found that macrophage is the most active cell type in lipid metabolism, with almost all lipid metabolic genes being altered in macrophages of PF. In type 2 alveolar epithelial cells, lipid metabolic differentially expressed genes (DEGs) are primarily associated with the cytidine diphosphate diacylglycerol pathway, cholesterol metabolism, and triglyceride synthesis. Endothelial cells are partly responsible for sphingomyelin, phosphatidylcholine, and phosphatidylethanolamines reprogramming as their metabolic genes are dysregulated in PF. Fibroblasts may contribute to abnormal cholesterol, phosphatidylcholine, and phosphatidylethanolamine metabolism in PF. Therefore, the reprogrammed lipid profiles in PF may be attributed to the aberrant expression of lipid metabolic genes in different cell types. Taken together, these insights underscore the potential of targeting lipid metabolism in developing innovative therapeutic strategies, potentially leading to extended overall survival in individuals affected by PF.PMID:38570797 | DOI:10.1186/s12944-024-02062-8

Enhanced protein-metabolite correlation analysis: To investigate the association between Staphylococcus aureus mastitis and metabolic immune pathways

Wed, 03/04/2024 - 12:00
FASEB J. 2024 Apr 15;38(7):e23587. doi: 10.1096/fj.202302242RR.ABSTRACTMastitis is a disease characterized by congestion, swelling, and inflammation of the mammary gland and usually caused by infection with pathogenic microorganisms. Furthermore, the development of mastitis is closely linked to the exogenous pathway of the gastrointestinal tract. However, the regulatory mechanisms governing the gut-metabolism-mammary axis remain incompletely understood. The present study revealed alterations in the gut microbiota of mastitis rats characterized by an increased abundance of the Proteobacteria phylum. Plasma analysis revealed significantly higher levels of L-isoleucine and cholic acid along with 7-ketodeoxycholic acid. Mammary tissue showed elevated levels of arachidonic acid metabolites and norlithocholic acid. Proteomic analysis showed increased levels of IFIH1, Tnfaip8l2, IRGM, and IRF5 in mastitis rats, which suggests that mastitis triggers an inflammatory response and immune stress. Follistatin (Fst) and progesterone receptor (Pgr) were significantly downregulated, raising the risk of breast cancer. Extracellular matrix (ECM) receptors and focal adhesion signaling pathways were downregulated, while blood-milk barrier integrity was disrupted. Analysis of protein-metabolic network regulation revealed that necroptosis, protein digestion and absorption, and arachidonic acid metabolism were the principal regulatory pathways involved in the development of mastitis. In short, the onset of mastitis leads to changes in the microbiota and alterations in the metabolic profiles of various biological samples, including colonic contents, plasma, and mammary tissue. Key manifestations include disturbances in bile acid metabolism, amino acid metabolism, and arachidonic acid metabolism. At the same time, the integrity of the blood-milk barrier is compromised while inflammation is promoted, thereby reducing cell adhesion in the mammary glands. These findings contribute to a more comprehensive understanding of the metabolic status of mastitis and provide new insights into its impact on the immune system.PMID:38568835 | DOI:10.1096/fj.202302242RR

Adaptive laboratory evolution of Clostridium autoethanogenum to metabolize CO(2) and H(2) enhances growth rates in chemostat and unravels proteome and metabolome alterations

Wed, 03/04/2024 - 12:00
Microb Biotechnol. 2024 Apr;17(4):e14452. doi: 10.1111/1751-7915.14452.ABSTRACTGas fermentation of CO2 and H2 is an attractive means to sustainably produce fuels and chemicals. Clostridium autoethanogenum is a model organism for industrial CO to ethanol and presents an opportunity for CO2-to-ethanol processes. As we have previously characterized its CO2/H2 chemostat growth, here we use adaptive laboratory evolution (ALE) with the aim of improving growth with CO2/H2. Seven ALE lineages were generated, all with improved specific growth rates. ALE conducted in the presence of 2% CO along with CO2/H2 generated Evolved lineage D, which showed the highest ethanol titres amongst all the ALE lineages during the fermentation of CO2/H2. Chemostat comparison against the parental strain shows no change in acetate or ethanol production, while Evolved D could achieve a higher maximum dilution rate. Multi-omics analyses at steady state revealed that Evolved D has widespread proteome and intracellular metabolome changes. However, the uptake and production rates and titres remain unaltered until investigating their maximum dilution rate. Yet, we provide numerous insights into CO2/H2 metabolism via these multi-omics data and link these results to mutations, suggesting novel targets for metabolic engineering in this bacterium.PMID:38568755 | DOI:10.1111/1751-7915.14452

Impact of the rearing environment on the metabolism of shrimps and tracing the origins and species of shrimps using specific metabolites

Wed, 03/04/2024 - 12:00
Analyst. 2024 Apr 3. doi: 10.1039/d4an00186a. Online ahead of print.ABSTRACTHerein, the link between rearing environmental condition and metabolism was explored. Metabolite fingerprint datasets of black tiger shrimp (Penaeus monodon) from three production sites were collected and studied using matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) and HPLC-MS/MS. Two compounds, benzisothiazolinone and hippuric acid, were identified to be potentially related to pollution in the rearing environment and showed different abundances in the analysed shrimp samples with different origins. Furthermore, metabolomic analysis on three shrimp species, black tiger shrimp, kuruma shrimp (Penaeus japonicus) and sword shrimp (Parapenaeopsis hardwickii), under an identical rearing environment was also conducted. Two compounds, diethanolamine and benzisothiazolinone, potentially linked with pollution in the rearing environment were identified. The present protocol holds promise to be extended to the studies of exploring the relationship between rearing environmental conditions and metabolism. Furthermore, the analysis of single-blind samples was conducted. The results show that specific metabolites can be utilized as markers for tracing the origins of shrimp samples. The present protocol holds potential for application in tracing the origin and species of certain seafoods.PMID:38568716 | DOI:10.1039/d4an00186a

Metabolomic profiling of maternal plasma identifies inverse associations of acetate and urea with anti-SARS-CoV-2 antibody titers following COVID-19 vaccination during pregnancy

Wed, 03/04/2024 - 12:00
J Mol Med (Berl). 2024 Apr 3. doi: 10.1007/s00109-024-02438-4. Online ahead of print.ABSTRACTWe conducted a comprehensive metabolomic analysis of plasma samples obtained from pregnant women who displayed varying post-vaccination antibody titers after receiving mRNA-1273-SARS-CoV-2 vaccines. The study involved 62 pregnant women, all of whom had been vaccinated after reaching 24 weeks of gestation. To quantify post-vaccination plasma antibody titers, we employed binding antibody units (BAU) in accordance with the World Health Organization International Standard. Subsequently, we classified the study participants into three distinct BAU/mL categories: those with high titers (above 2000), medium titers (ranging from 1000 to 2000), and low titers (below 1000). Plasma metabolomic profiling was conducted using 1H nuclear magnetic resonance spectroscopy, and the obtained data were correlated with the categorized antibody titers. Notably, in pregnant women exhibiting elevated anti-SARS-CoV-2 antibody titers, reduced plasma concentrations of acetate and urea were observed. A significant negative correlation between these compounds and antibody titers was also evident. An analysis of metabolomics pathways revealed significant inverse associations between antibody titers and four distinct amino acid metabolic pathways: (1) biosynthesis of phenylalanine, tyrosine, and tryptophan; (2) biosynthesis of valine, leucine, and isoleucine; (3) phenylalanine metabolism; and (4) degradation of valine, leucine, and isoleucine. Additionally, an association between the synthesis and degradation pathways of ketone bodies was evident. In conclusion, we identified different metabolic pathways that underlie the diverse humoral responses triggered by COVID-19 mRNA vaccines during pregnancy. Our data hold significant implications for refining COVID-19 vaccination approaches in expectant mothers. KEY MESSAGES : Anti-SARS-CoV-2 antibody titers decline as the number of days since COVID-19 vaccination increases. Anti-SARS-CoV-2 antibody titers are inversely associated with acetate, a microbial-derived metabolite, and urea. Amino acid metabolism is significantly associated with SARS-CoV-2 antibody titers.PMID:38568327 | DOI:10.1007/s00109-024-02438-4

Comprehensive Metabolomic Analysis of Human Heart Tissue Enabled by Parallel Metabolite Extraction and High-Resolution Mass Spectrometry

Wed, 03/04/2024 - 12:00
Anal Chem. 2024 Apr 3. doi: 10.1021/acs.analchem.3c04353. Online ahead of print.ABSTRACTThe heart contracts incessantly and requires a constant supply of energy, utilizing numerous metabolic substrates, such as fatty acids, carbohydrates, lipids, and amino acids, to supply its high energy demands. Therefore, a comprehensive analysis of various metabolites is urgently needed for understanding cardiac metabolism; however, complete metabolome analyses remain challenging due to the broad range of metabolite polarities, which makes extraction and detection difficult. Herein, we implemented parallel metabolite extractions and high-resolution mass spectrometry (MS)-based methods to obtain a comprehensive analysis of the human heart metabolome. To capture the diverse range of metabolite polarities, we first performed six parallel liquid-liquid extractions (three monophasic, two biphasic, and one triphasic) of healthy human donor heart tissue. Next, we utilized two complementary MS platforms for metabolite detection: direct-infusion ultrahigh-resolution Fourier-transform ion cyclotron resonance (DI-FTICR) and high-resolution liquid chromatography quadrupole time-of-flight tandem MS (LC-Q-TOF-MS/MS). Using DI-FTICR MS, 9644 metabolic features were detected where 7156 were assigned a molecular formula and 1107 were annotated by accurate mass assignment. Using LC-Q-TOF-MS/MS, 21,428 metabolic features were detected where 285 metabolites were identified based on fragmentation matching against publicly available libraries. Collectively, 1340 heart metabolites were identified in this study, which span a wide range of polarities including polar (benzenoids, carbohydrates, and nucleosides) as well as nonpolar (phosphatidylcholines, acylcarnitines, and fatty acids) compounds. The results from this study will provide critical knowledge regarding the selection of appropriate extraction and MS detection methods for the analysis of the diverse classes of human heart metabolites.PMID:38568106 | DOI:10.1021/acs.analchem.3c04353

Theabrownin as a Potential Prebiotic Compound Regulates Lipid Metabolism via the Gut Microbiota, Microbiota-Derived Metabolites, and Hepatic FoxO/PPAR Signaling Pathways

Wed, 03/04/2024 - 12:00
J Agric Food Chem. 2024 Apr 3. doi: 10.1021/acs.jafc.3c08541. Online ahead of print.ABSTRACTThe dysregulation of lipid metabolism poses a significant health threat, necessitating immediate dietary intervention. Our previous research unveiled the prebiotic-like properties of theabrownin. This study aimed to further investigate the theabrownin-gut microbiota interactions and their downstream effects on lipid metabolism using integrated physiological, genomic, metabolomic, and transcriptomic approaches. The results demonstrated that theabrownin significantly ameliorated dyslipidemia, hepatic steatosis, and systemic inflammation induced by a high-fat/high-cholesterol diet (HFD). Moreover, theabrownin significantly improved HFD-induced gut microbiota dysbiosis and induced significant alterations in microbiota-derived metabolites. Additionally, the detailed interplay between theabrownin and gut microbiota was revealed. Analysis of hepatic transcriptome indicated that FoxO and PPAR signaling pathways played pivotal roles in response to theabrownin-gut microbiota interactions, primarily through upregulating hepatic Foxo1, Prkaa1, Pck1, Cdkn1a, Bcl6, Klf2, Ppara, and Pparg, while downregulating Ccnb1, Ccnb2, Fabp3, and Plin1. These findings underscored the critical role of gut-liver axis in theabrownin-mediated improvements in lipid metabolism disorders and supported the potential of theabrownin as an effective prebiotic compound for targeted regulation of metabolic diseases.PMID:38567990 | DOI:10.1021/acs.jafc.3c08541

Method Development for Omics Analyses using Schirmer Strips

Wed, 03/04/2024 - 12:00
Curr Eye Res. 2024 Apr 3:1-9. doi: 10.1080/02713683.2024.2335271. Online ahead of print.ABSTRACTPURPOSE: The aim of this article was to investigate whether Schirmer strips gathered during clinical dry eye examinations can be prepared for omics analyses in a standardized way, to adjust for variations in tear volume and enable two separate omics analyses from the same sample. In addition, the intention was to investigate whether fluorescein dye instillation in the eyes gave bias effects on metabolomic analysis.METHODS: Twelve samples from six individuals, with normal or reduced tear production, were collected. Half of the samples were harvested after instillation of fluorescein in the eye. Each strip was divided in half along the length and prepared with a new method for extracting tear content from the Schirmer strip. The new method was established to compensate for different dilutions of metabolites in varying Schirmer strip wetting levels when using identical extraction volume for all samples. Metabolomic data were compared in samples with and without fluorescein dye and Schirmer strips ranging from 1 to 35 mm wetting levels using a global LC-MS method.RESULTS: All samples were successfully analyzed with an average of ∼350 relevant features detected per sample after using both positive and negative electrospray ionization mode, despite low tear volumes in some samples and that only one half of the Schirmer strips were used. Principal component analysis plots and heatmaps revealed no bias effects of fluorescein dye presence or different Schirmer strip values when using the proposed method.CONCLUSION: A high number of relevant metabolomic features can be extracted from longitudinally cut halves of Schirmer strips, which may enable analyses with more than one omics modality from the same sample. With the pre-analytical method described, Schirmer strips can be used for metabolomic analyses even in cases of very low or high tear volume with or without fluorescence.PMID:38567868 | DOI:10.1080/02713683.2024.2335271

The recipient metabolome explains the asymmetric ovarian impact on fetal sex development after embryo transfer in cattle

Wed, 03/04/2024 - 12:00
J Anim Sci. 2024 Apr 3:skae081. doi: 10.1093/jas/skae081. Online ahead of print.ABSTRACTIn cattle, lateral asymmetry affects ovarian function and embryonic sex, but the underlying molecular mechanisms remain unknown. The plasma metabolome of recipients serves to predict pregnancy after embryo transfer (ET). Thus, the aim of this study was to investigate whether the plasma metabolome exhibits distinct lateral patterns according to the sex of the fetus carried by the recipient and the active ovary side (AOS), i.e., the right ovary (RO) or the left ovary (LO). We analyzed the plasma of synchronized recipients by 1H+NMR on Day-0 (estrus, n = 366) and Day-7 (hours prior to ET; n = 367). Thereafter, a subset of samples from recipients that calved female (n = 50) or male (n = 69) was used to test the effects of embryonic sex and laterality on pregnancy establishment. Within the RO, the sex ratio of pregnancies carried was biased toward males. Significant differences (P < 0.05) in metabolite levels were evaluated based on the day of blood sample collection (Day-0, Day-7 and Day-7/Day-0 ratio) using mixed generalized models for metabolite concentration. The most striking differences in metabolite concentrations were associated to the RO, both obtained by multivariate (OPLS-DA) and univariate (mixed generalized) analyses, mainly with metabolites measured on Day-0. The metabolites consistently identified through the OPLS-DA with a higher VIP score, which allowed for discrimination between male fetus- and female fetus-carrying recipients, were hippuric acid, L-phenylalanine and propionic acid. The concentrations of hydroxyisobutyric acid, propionic acid, L-lysine, methylhistidine and hippuric acid were lowest when male fetuses were carried, in particular when the RO acted as AOS. No pathways were significantly regulated according to the AOS. In contrast, 6 pathways were found enriched for calf sex in the Day-0 dataset, 3 for Day-7 and 9 for Day-7/Day-0 ratio. However, when the AOS was the right, 20 pathways were regulated on Day-0, 8 on Day-7, and 13 within the Day-7/Day-0 ratio, most of which were related to amino acid metabolism, with Phenylalanine, tyrosine and tryptophan biosynthesis and Phenylalanine metabolism pathways being identified throughout. Our study shows that certain metabolites in the recipient plasma are influenced by the AOS and can predict the likelihood of carrying male or female embryos to term, suggesting that maternal metabolism prior to or at the time of ET could favor the implantation and/or development of either male or female embryos.PMID:38567815 | DOI:10.1093/jas/skae081

Physiological and molecular responses in phosphorus-hyperaccumulating Polygonum species to high phosphorus exposure

Wed, 03/04/2024 - 12:00
Plant Cell Environ. 2024 Apr 3. doi: 10.1111/pce.14895. Online ahead of print.ABSTRACTPhosphorus (P)-hyperaccumulators for phytoextraction from P-polluted areas generally show rapid growth and accumulate large amounts of P without any toxicity symptom, which depends on a range of physiological processes and gene expression patterns that have never been explored. We investigated growth, leaf element concentrations, P fractions, photosynthetic traits, and leaf metabolome and transcriptome response in amphibious P-hyperaccumulators, Polygonum hydropiper and P. lapathifolium, to high-P exposure (5 mmol L-1), with 0.05 mmol L-1 as the control. Under high-P exposure, both species demonstrated good growth, allocating more P to metabolite P and inorganic P (Pi) accompanied by high potassium and calcium. The expression of a cluster of unigenes associated with photosynthesis was maintained or increased in P. lapathifolium, explaining the increase in net photosynthetic rate and the rapid growth under high-P exposure. Metabolites of trehalose metabolism, including trehalose 6-phosphate and trehalose, were sharply increased in both species by the high-P exposure, in line with the enhanced expression of associated unigenes, indicating that trehalose metabolic pathway was closely related to high-P tolerance. These findings elucidated the physiological and molecular responses involved in the photosynthesis and trehalose metabolism in P-hyperaccumulators to high-P exposure, and provides potential regulatory pathways to improve the P-phytoextraction capability.PMID:38567814 | DOI:10.1111/pce.14895

LC-MS/DIA-based strategy for comprehensive flavonoid profiling: an <em>Ocotea</em> spp. applicability case

Wed, 03/04/2024 - 12:00
RSC Adv. 2024 Apr 2;14(15):10481-10498. doi: 10.1039/d4ra01384k. eCollection 2024 Mar 26.ABSTRACTWe introduce a liquid chromatography - mass spectrometry with data-independent acquisition (LC-MS/DIA)-based strategy, specifically tailored to achieve comprehensive and reliable glycosylated flavonoid profiling. This approach facilitates in-depth and simultaneous exploration of all detected precursors and fragments during data processing, employing the widely-used open-source MZmine 3 software. It was applied to a dataset of six Ocotea plant species. This framework suggested 49 flavonoids potentially newly described for these plant species, alongside 45 known features within the genus. Flavonols kaempferol and quercetin, both exhibiting O-glycosylation patterns, were particularly prevalent. Gas-phase fragmentation reactions further supported these findings. For the first time, the apigenin flavone backbone was also annotated in most of the examined Ocotea species. Apigenin derivatives were found mainly in the C-glycoside form, with O. porosa displaying the highest flavone : flavonol ratio. The approach also allowed an unprecedented detection of kaempferol and quercetin in O. porosa species, and it has underscored the untapped potential of LC-MS/DIA data for broad and reliable flavonoid profiling. Our study annotated more than 50 flavonoid backbones in each species, surpassing the current literature.PMID:38567345 | PMC:PMC10985591 | DOI:10.1039/d4ra01384k

Association between amino acids and recent osteoporotic fracture: a matched incident case-control study

Wed, 03/04/2024 - 12:00
Front Nutr. 2024 Mar 19;11:1360959. doi: 10.3389/fnut.2024.1360959. eCollection 2024.ABSTRACTCONTEXT: Osteoporotic fracture is a major public health issue globally. Human research on the association between amino acids (AAs) and fracture is still lacking.OBJECTIVE: To examine the association between AAs and recent osteoporotic fractures.METHODS: This age and sex matched incident case-control study identified 44 recent x-ray confirmed fracture cases in the Second Hospital of Jilin University and 88 community-based healthy controls aged 50+ years. Plasma AAs were measured by high performance liquid chromatography coupled with mass spectrometry. After adjusting for covariates (i.e., body mass index, milk intake >1 time/week, falls and physical activity), we conducted conditional logistical regression models to test the association between AAs and fracture.RESULTS: Among cases there were 23 (52.3%) hip fractures and 21 (47.7%) non-hip fractures. Total, essential, and non-essential AAs were significantly lower in cases than in controls. In the multivariable conditional logistic regression models, after adjusting for covariates, each standard deviation increase in the total (odds ratio [OR]: 0.304; 95% confidence interval [CI]: 0.117-0.794), essential (OR: 0.408; 95% CI: 0.181-0.923) and non-essential AAs (OR: 0.290; 95%CI: 0.107-0.782) was negatively associated with recent fracture. These inverse associations were mainly found for hip fracture, rather than non-hip fractures. Among these AAs, lysine, alanine, arginine, glutamine, histidine and piperamide showed the significantly negative associations with fracture.CONCLUSION: There was a negative relationship between AAs and recent osteoporotic fracture; such relationship appeared to be more obvious for hip fracture.PMID:38567247 | PMC:PMC10985241 | DOI:10.3389/fnut.2024.1360959

Molecular aspects of cervical cancer: a pathogenesis update

Wed, 03/04/2024 - 12:00
Front Oncol. 2024 Mar 19;14:1356581. doi: 10.3389/fonc.2024.1356581. eCollection 2024.ABSTRACTCervical cancer (CC) is a significant health problem, especially in low-income countries. Functional studies on the human papillomavirus have generated essential advances in the knowledge of CC. However, many unanswered questions remain. This mini-review discusses the latest results on CC pathogenesis, HPV oncogenesis, and molecular changes identified through next-generation technologies. Interestingly, the percentage of samples with HPV genome integrations correlates with the degree of the cervical lesions, suggesting a role in the development of CC. Also, new functions have been described for the viral oncoproteins E5, E6, and E7, resulting in the acquisition and maintenance of cancer hallmarks, including proliferation, immune response evasion, apoptosis, and genomic instability. Remarkably, E5 oncoprotein affects signaling pathways involved in the expression of interferon-induced genes and EGFR-induced proliferation, while E6 and E7 oncoproteins regulate the DNA damage repair and cell cycle continuity pathways. Furthermore, next-generation technologies provide vast amounts of information, increasing our knowledge of changes in the genome, transcriptome, proteome, metabolome, and epigenome in CC. These studies have identified novel molecular traits associated with disease susceptibility, degree of progression, treatment response, and survival as potential biomarkers and therapeutic targets.PMID:38567159 | PMC:PMC10985348 | DOI:10.3389/fonc.2024.1356581

Plasma metabolomics reveals risk factors for lung adenocarcinoma

Wed, 03/04/2024 - 12:00
Front Oncol. 2024 Mar 19;14:1277206. doi: 10.3389/fonc.2024.1277206. eCollection 2024.ABSTRACTBACKGROUND: Metabolic reprogramming plays a significant role in the advancement of lung adenocarcinoma (LUAD), yet the precise metabolic changes remain incompletely understood. This study aims to uncover metabolic indicators associated with the progression of LUAD.METHODS: A total of 1083 subjects were recruited, including 670 LUAD, 135 benign lung nodules (BLN) and 278 healthy controls (HC). Gas chromatography-mass spectrometry (GC/MS) was used to identify and quantify plasma metabolites. Odds ratios (ORs) were calculated to determine LUAD risk factors, and machine learning algorithms were utilized to differentiate LUAD from BLN.RESULTS: High levels of oxalate, glycolate, glycine, glyceric acid, aminomalonic acid, and creatinine were identified as risk factors for LUAD (adjusted ORs>1.2, P<0.03). Remarkably, oxalate emerged as a distinctive metabolic risk factor exhibiting a strong correlation with the progression of LUAD (adjusted OR=5.107, P<0.001; advanced-stage vs. early-stage). The Random Forest (RF) model demonstrated a high degree of efficacy in distinguishing between LUAD and BLN (accuracy = 1.00 and 0.73, F1-score= 1.00 and 0.79, and AUC = 1.00 and 0.76 in the training and validation sets, respectively). TCGA and GTEx gene expression data have shown that lactate dehydrogenase A (LDHA), a crucial enzyme involved in oxalate metabolism, is increasingly expressed in the progression of LUAD. High LDHA expression levels in LUAD patients are also linked to poor prognoses (HR=1.66, 95% CI=1.34-2.07, P<0.001).CONCLUSIONS: This study reveals risk factors associated with LUAD.PMID:38567154 | PMC:PMC10985191 | DOI:10.3389/fonc.2024.1277206

Carboxylic acid accumulation and secretion contribute to the alkali-stress tolerance of halophyte <em>Leymus chinensis</em>

Wed, 03/04/2024 - 12:00
Front Plant Sci. 2024 Mar 19;15:1366108. doi: 10.3389/fpls.2024.1366108. eCollection 2024.ABSTRACTLeymus chinensis is a dominant halophytic grass in alkalized grasslands of Northeast China. To explore the alkali-tolerance mechanism of L. chinensis, we applied a widely targeted metabolomic approach to analyze metabolic responses of its root exudates, root tissues and leaves under alkali-stress conditions. L. chinensis extensively secreted organic acids, phenolic acids, free fatty acids and other substances having -COOH or phosphate groups when grown under alkali-stress conditions. The buffering capacity of these secreted substances promoted pH regulation in the rhizosphere during responses to alkali stress. L. chinensis leaves exhibited enhanced accumulations of free fatty acids, lipids, amino acids, organic acids, phenolic acids and alkaloids, which play important roles in maintaining cell membrane stability, regulating osmotic pressure and providing substrates for the alkali-stress responses of roots. The accumulations of numerous flavonoids, saccharides and alcohols were extensively enhanced in the roots of L. chinensis, but rarely enhanced in the leaves, under alkali-stress conditions. Enhanced accumulations of flavonoids, saccharides and alcohols increased the removal of reactive oxygen species and alleviated oxygen damage caused by alkali stress. In this study, we revealed the metabolic response mechanisms of L. chinensis under alkali-stress conditions, emphasizing important roles for the accumulation and secretion of organic acids, amino acids, fatty acids and other substances in alkali tolerance.PMID:38567134 | PMC:PMC10985159 | DOI:10.3389/fpls.2024.1366108

Pages