Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

Untargeted Metabolomic Analysis of Human Plasma Indicates Differentially Affected Polyamine and L-Arginine Metabolism in Mild Cognitive Impairment Subjects Converting to Alzheimer's Disease.

Wed, 25/03/2015 - 17:12
Untargeted Metabolomic Analysis of Human Plasma Indicates Differentially Affected Polyamine and L-Arginine Metabolism in Mild Cognitive Impairment Subjects Converting to Alzheimer's Disease. PLoS One. 2015;10(3):e0119452 Authors: Graham SF, Chevallier OP, Elliott CT, Hölscher C, Johnston J, McGuinness B, Kehoe PG, Passmore AP, Green BD Abstract This study combined high resolution mass spectrometry (HRMS), advanced chemometrics and pathway enrichment analysis to analyse the blood metabolome of patients attending the memory clinic: cases of mild cognitive impairment (MCI; n = 16), cases of MCI who upon subsequent follow-up developed Alzheimer's disease (MCI_AD; n = 19), and healthy age-matched controls (Ctrl; n = 37). Plasma was extracted in acetonitrile and applied to an Acquity UPLC HILIC (1.7μm x 2.1 x 100 mm) column coupled to a Xevo G2 QTof mass spectrometer using a previously optimised method. Data comprising 6751 spectral features were used to build an OPLS-DA statistical model capable of accurately distinguishing Ctrl, MCI and MCI_AD. The model accurately distinguished (R2 = 99.1%; Q2 = 97%) those MCI patients who later went on to develop AD. S-plots were used to shortlist ions of interest which were responsible for explaining the maximum amount of variation between patient groups. Metabolite database searching and pathway enrichment analysis indicated disturbances in 22 biochemical pathways, and excitingly it discovered two interlinked areas of metabolism (polyamine metabolism and L-Arginine metabolism) were differentially disrupted in this well-defined clinical cohort. The optimised untargeted HRMS methods described herein not only demonstrate that it is possible to distinguish these pathologies in human blood but also that MCI patients 'at risk' from AD could be predicted up to 2 years earlier than conventional clinical diagnosis. Blood-based metabolite profiling of plasma from memory clinic patients is a novel and feasible approach in improving MCI and AD diagnosis and, refining clinical trials through better patient stratification. PMID: 25803028 [PubMed - as supplied by publisher]

Metabolomic Profiling in Perinatal Asphyxia: A Promising New Field.

Wed, 25/03/2015 - 17:12
Metabolomic Profiling in Perinatal Asphyxia: A Promising New Field. Biomed Res Int. 2015;2015:254076 Authors: Denihan NM, Boylan GB, Murray DM Abstract Metabolomics, the latest "omic" technology, is defined as the comprehensive study of all low molecular weight biochemicals, "metabolites" present in an organism. As a systems biology approach, metabolomics has huge potential to progress our understanding of perinatal asphyxia and neonatal hypoxic-ischaemic encephalopathy, by uniquely detecting rapid biochemical pathway alterations in response to the hypoxic environment. The study of metabolomic biomarkers in the immediate neonatal period is not a trivial task and requires a number of specific considerations, unique to this disease and population. Recruiting a clearly defined cohort requires standardised multicentre recruitment with broad inclusion criteria and the participation of a range of multidisciplinary staff. Minimally invasive biospecimen collection is a priority for biomarker discovery. Umbilical cord blood presents an ideal medium as large volumes can be easily extracted and stored and the sample is not confounded by postnatal disease progression. Pristine biobanking and phenotyping are essential to ensure the validity of metabolomic findings. This paper provides an overview of the current state of the art in the field of metabolomics in perinatal asphyxia and neonatal hypoxic-ischaemic encephalopathy. We detail the considerations required to ensure high quality sampling and analysis, to support scientific progression in this important field. PMID: 25802843 [PubMed - as supplied by publisher]

Combined mass spectrometric and chromatographic methods for in-depth analysis of phenolic secondary metabolites in barley leaves.

Wed, 25/03/2015 - 17:12
Combined mass spectrometric and chromatographic methods for in-depth analysis of phenolic secondary metabolites in barley leaves. J Mass Spectrom. 2015 Mar;50(3):513-32 Authors: Piasecka A, Sawikowska A, Krajewski P, Kachlicki P Abstract Structural analysis via HPLC-ESI-MSn, UPLC-HESI-MS/MS and NMR reported 152 phenolic secondary metabolites in spring barley seedlings (Hordeum vulgare L.). Flavonoids with various patterns of glycosylation and acylation, as well as hydroxycinnamic acid glycosides, esters and amides, were identified in methanolic extracts from leaves of nine varieties of barley originating from different regions of the world. Hordatines derivatives, flavones acylated directly on the aglycone, and hydroxyferulic acid derivatives deserve special attention. Preparative chromatography enabled characterization of a number of compounds at trace levels with the 6-C-[6″-O-glycosyl]-glycosides and the 6-C-[2″,6″-di-O-glycosides]-glucoside structure of flavones. Derivatives of flavonols, quercetin and isorhamnetin were observed only in Syrian varieties. The ultra performance liquid chromatography profiles of UV-absorbing secondary metabolites were used for chemotaxonomic comparison between nine varieties of barley from different climatic conditions. The hierarchical clustering of bred lines from the Fertile Crescent and European and American varieties indicates a great diversity of chemical phenotypes within barley species. Copyright © 2015 John Wiley & Sons, Ltd. PMID: 25800187 [PubMed - in process]

Analytical methods in untargeted metabolomics: state of the art in 2015.

Tue, 24/03/2015 - 13:21
Analytical methods in untargeted metabolomics: state of the art in 2015. Front Bioeng Biotechnol. 2015;3:23 Authors: Alonso A, Marsal S, Julià A Abstract Metabolomics comprises the methods and techniques that are used to measure the small molecule composition of biofluids and tissues, and is actually one of the most rapidly evolving research fields. The determination of the metabolomic profile - the metabolome - has multiple applications in many biological sciences, including the developing of new diagnostic tools in medicine. Recent technological advances in nuclear magnetic resonance and mass spectrometry are significantly improving our capacity to obtain more data from each biological sample. Consequently, there is a need for fast and accurate statistical and bioinformatic tools that can deal with the complexity and volume of the data generated in metabolomic studies. In this review, we provide an update of the most commonly used analytical methods in metabolomics, starting from raw data processing and ending with pathway analysis and biomarker identification. Finally, the integration of metabolomic profiles with molecular data from other high-throughput biotechnologies is also reviewed. PMID: 25798438 [PubMed]

Metabolic Markers Associated with High Mannose Glycan Levels of Therapeutic Recombinant Monoclonal Antibodies.

Tue, 24/03/2015 - 13:21
Metabolic Markers Associated with High Mannose Glycan Levels of Therapeutic Recombinant Monoclonal Antibodies. J Biotechnol. 2015 Mar 19; Authors: Kang S, Zhang Z, Richardson J, Shah B, Gupta S, Huang CJ, Qiu J, Le N, Lin H, Bondarenko PV Abstract High mannose (HM) glycan levels on secreted monoclonal antibodies can be influenced by external factors, including osmolality and copper deficiency, and by intrinsic factors determined by different cell lines. In order to identify the metabolic markers associated with HM glycan levels, metabolomics analysis was performed to assess the changes in the extracellular metabolites of recombinant cell lines at different time points during fed-batch production process. Ornithine was identified as the common metabolic marker influenced by both external and intrinsic factors when 8 different medium conditions and 8 different cell lines exhibiting different levels of HM were compared. A strong correlation was also observed between HM and mRNA expression levels of arginase 1, an enzyme that catalyzes the conversion of arginine to ornithine. The results from functional validation study showed that the supplementation of ornithine to the culture medium leads to an increased level of HM, while reduced concentration of spermine, a downstream product of ornithine metabolism, leads to a decreased level of HM. Additional metabolic markers correlating with HM glycan levels were identified from 8 cell line comparison analysis. A common feature shared by these identified markers is their previously described roles as contributors of cellular redox regulation. PMID: 25797592 [PubMed - as supplied by publisher]

Metabolomics study of hematopoietic function of angelica sinensis on blood deficiency mice model.

Tue, 24/03/2015 - 13:21
Metabolomics study of hematopoietic function of angelica sinensis on blood deficiency mice model. J Ethnopharmacol. 2015 Mar 19; Authors: Li PL, Sun HG, Hua YL, Ji P, Zhang L, Li JX, Wei Y Abstract ETHNOPHARMACOLOGICAL RELEVANCE: Angelica sinensis (AS) has been used in traditional Chinese medicine for thousands of years to enrich and invigorate blood. In this study, the aim is to investigate the influence of AS on metabolism of blood deficiency mice model and to explore its anti-blood deficiency mechanism. MATERIALS AND METHODS: The blood deficiency mice model was induced by being hypodermically injected with N-acetyl phenylhydrazine (APH) and being intraperitoneally injected with cyclophosphamide (CTX). Gas chromatography-mass spectrometry (GC-MS), principle component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) were used to identify potential biomarkers in plasma and splenic tissue. RESULTS: The levels of white blood cell (WBC), red blood cell (RBC), haemoglobin (HGB) and platelet (PLT) showed a trend to return to control group after administrating with AS, while the dose of 10g/kg showed the best effect. Potential metabolite biomarkers (nine in the plasma and nine in the spleen homogenates) were identified in this study. These biomarkers were mainly related to five metabolic pathways, such as arachidonic acid metabolism, valine, leucine and isoleucine biosynthesis, glycine, serine and threonine metabolism, arginine and proline metabolism and TCA cycle. CONCLUSION: Metabolomics was used to reflect an organism's physiological and metabolic state comprehensively, indicating that metabolomics was a potentially powerful tool to reveal the anti-blood deficiency mechanism of AS. PMID: 25797116 [PubMed - as supplied by publisher]

Combined transcript, proteome, and metabolite analysis of transgenic maize seeds engineered for enhanced carotenoid synthesis reveals pleotropic effects in core metabolism.

Tue, 24/03/2015 - 02:49
Related Articles Combined transcript, proteome, and metabolite analysis of transgenic maize seeds engineered for enhanced carotenoid synthesis reveals pleotropic effects in core metabolism. J Exp Bot. 2015 Mar 20; Authors: Decourcelle M, Perez-Fons L, Baulande S, Steiger S, Couvelard L, Hem S, Zhu C, Capell T, Christou P, Fraser P, Sandmann G Abstract The aim of this study was to assess whether endosperm-specific carotenoid biosynthesis influenced core metabolic processes in maize embryo and endosperm and how global seed metabolism adapted to this expanded biosynthetic capacity. Although enhancement of carotenoid biosynthesis was targeted to the endosperm of maize kernels, a concurrent up-regulation of sterol and fatty acid biosynthesis in the embryo was measured. Targeted terpenoid analysis, and non-targeted metabolomic, proteomic, and transcriptomic profiling revealed changes especially in carbohydrate metabolism in the transgenic line. In-depth analysis of the data, including changes of metabolite pools and increased enzyme and transcript concentrations, gave a first insight into the metabolic variation precipitated by the higher up-stream metabolite demand by the extended biosynthesis capacities for terpenoids and fatty acids. An integrative model is put forward to explain the metabolic regulation for the increased provision of terpenoid and fatty acid precursors, particularly glyceraldehyde 3-phosphate and pyruvate or acetyl-CoA from imported fructose and glucose. The model was supported by higher activities of fructokinase, glucose 6-phosphate isomerase, and fructose 1,6-bisphosphate aldolase indicating a higher flux through the glycolytic pathway. Although pyruvate and acetyl-CoA utilization was higher in the engineered line, pyruvate kinase activity was lower. A sufficient provision of both metabolites may be supported by a by-pass in a reaction sequence involving phosphoenolpyruvate carboxylase, malate dehydrogenase, and malic enzyme. PMID: 25796085 [PubMed - as supplied by publisher]

High resolution metabolomics with acyl-CoA profiling reveals widespread remodeling in response to diet.

Tue, 24/03/2015 - 02:49
Related Articles High resolution metabolomics with acyl-CoA profiling reveals widespread remodeling in response to diet. Mol Cell Proteomics. 2015 Mar 20; Authors: Liu X, Sadhukhan S, Sun S, Wagner GR, Hirschey MD, Qi L, Lin H, Locasale JW Abstract The availability of acyl-Coenzyme A (acyl-CoA) thioester compounds affects numerous cellular functions including autophagy, lipid oxidation and synthesis, and post-translational modifications. Consequently, the acyl-CoA level changes tend to be associated with other metabolic alterations that regulate these critical cellular functions. Despite their biological importance, this class of metabolites remains difficult to detect and quantify using current analytical methods. Here we demonstrate a universal method for metabolomics that allows for the detection of an expansive set of acyl-CoA compounds and hundreds of other cellular metabolites. We apply this method to profile the dynamics of acyl-CoA compounds and corresponding alterations in metabolism across the metabolic network in response to high fat feeding in mice. We identified targeted metabolites (>50) and untargeted features (>1000) with significant changes (FDR < 0.05) in response to diet. A substantial extent of this metabolic remodeling exhibited correlated changes in acyl-CoA metabolism with acyl-carnitine metabolism and other features of the metabolic network that together can lead to the discovery of biomarkers of acyl-CoA metabolism. These findings demonstrate a robust acyl-CoA profiling method and identify coordinated changes of acyl-CoA metabolism in response to nutritional stress. PMID: 25795660 [PubMed - as supplied by publisher]

Metabolomic analysis of acid stress response in Saccharomyces cerevisiae.

Tue, 24/03/2015 - 02:49
Related Articles Metabolomic analysis of acid stress response in Saccharomyces cerevisiae. J Biosci Bioeng. 2015 Mar 17; Authors: Nugroho RH, Yoshikawa K, Shimizu H Abstract Acid stress has been reported to inhibit cell growth and decrease productivity during bio-production processes. In this study, a metabolomics approach was conducted to understand the effect of lactic acid induced stress on metabolite pools in Saccharomyces cerevisiae. Cells were cultured with lactic acid as the acidulant, with or without initial pH control, i.e., at pH 6 or pH 2.5, respectively. Under conditions of low pH, lactic acid led to a decrease in the intracellular pH and specific growth rate; however, these parameters remained unaltered in the cultures with pH control. Capillary electrophoresis-mass spectrometry followed by a statistical principal component analysis was used to identify the metabolites and measure the increased concentrations of ATP, glutathione and proline during severe acid stress. Addition of proline to the acidified cultures improved the specific growth rates. We hypothesized that addition of proline protected the cells from acid stress by combating acid-induced oxidative stress. Lactic acid diffusion into the cell resulted in intracellular acidification, which elicited an oxidative stress response and resulted in increased glutathione levels. PMID: 25795572 [PubMed - as supplied by publisher]

Dimethylglycine Deficiency and the Development of Diabetes mellitus.

Tue, 24/03/2015 - 02:49
Related Articles Dimethylglycine Deficiency and the Development of Diabetes mellitus. Diabetes. 2015 Mar 20; Authors: Magnusson M, Wang TJ, Clish C, Engström G, Nilsson P, Gerszten RE, Melander O Abstract Experimental studies have suggested possible protective effects of dimethylglycine (DMG) on glucose metabolism. DMG is degraded to glycine through a DMG-dehydrogenase (DMGDH)-catalyzed reaction and this is the only known pathway for the breakdown of DMG in mammals. In this study we aimed to identify the strongest genetic determinant of circulating DMG concentration and to investigate its associations with metabolic traits and incident diabetes. In the cohort with full metabolomics data (n=709), low plasma levels of DMG were significantly associated with higher blood glucose levels (p=3.9E-4). In the genome-wide association study (GWAS) of the discovery cohort (n=5,205) the strongest genetic signal of plasma DMG was conferred by rs2431332 at the DMGDH-locus where the major allele was associated with lower DMG levels (p=2.5E-15). The same genetic variant (major allele of rs2431332), was also significantly associated with higher plasma insulin (p=0.019), increased insulin resistance (HOMA-IR) (p=0.019), as well as increased risk of incident diabetes (p=0.001) in the pooled analysis of the discovery cohort together with the two replication cohorts ((n=20,698) and (N=7,995). These data are consistent with a possible causal role of DMG deficiency in diabetes development and encourages for future studies examining if inhibition of DMG-dehydrogenase, or alternatively supplementation of DMG, might prove useful for the treatment/prevention of diabetes. PMID: 25795213 [PubMed - as supplied by publisher]

Identification of novel biomarkers for Parkinson's disease by metabolomic technologies.

Tue, 24/03/2015 - 02:49
Related Articles Identification of novel biomarkers for Parkinson's disease by metabolomic technologies. J Neurol Neurosurg Psychiatry. 2015 Mar 20; Authors: Hatano T, Saiki S, Okuzumi A, Mohney RP, Hattori N Abstract OBJECTIVE: The pathogenesis of Parkinson's disease (PD) involves complex interactions between environmental and genetic factors. Metabolomics can shed light on alterations in metabolic pathways in many diseases, including neurodegenerative diseases. In the present study, we attempted to elucidate the candidate metabolic pathway(s) associated with PD. METHODS: Serum samples were collected from 35 individuals with idiopathic PD without dementia and 15 healthy age-matched control participants without PD. This analysis used a combination of three independent platforms: ultrahigh-performance liquid chromatography/tandem mass spectrometry (UPLC/MS/MS) optimised for basic species, UPLC/MS/MS optimised for acidic species and gas chromatography/MS (GC/MS). RESULTS: The metabolomic profiles of PD were clearly different from normal controls. PD profiles had significantly lower levels of tryptophan, caffeine and its metabolites, bilirubin and ergothioneine, and significantly higher levels of levodopa metabolites and biliverdin than those of normal controls. Alterations in the bilirubin/biliverdin ratio and ergothioneine can indicate oxidative stress intensity and may suggest elevated oxidative stress and/or insufficient ability for scavenging free radicals, which could contribute to PD pathogenesis. Decreased serum tryptophan level is associated with psychiatric problems in PD. A decrease in serum caffeine levels is consistent with an inverse association of caffeine consumption with development of PD based on past epidemiological studies. CONCLUSIONS: Metabolomic analysis detected biomarkers associated with PD pathogenesis and disease progression. Since critical metabolic biomarkers need to be identified in PD, future studies should include assay validation and replication in independent cohorts. PMID: 25795009 [PubMed - as supplied by publisher]

Metabolomics approach of infant formula for the evaluation of contamination and degradation using hydrophilic interaction liquid chromatography coupled with mass spectrometry.

Tue, 24/03/2015 - 02:49
Related Articles Metabolomics approach of infant formula for the evaluation of contamination and degradation using hydrophilic interaction liquid chromatography coupled with mass spectrometry. Food Chem. 2015 Aug 15;181:318-24 Authors: Inoue K, Tanada C, Sakamoto T, Tsutsui H, Akiba T, Min JZ, Todoroki K, Yamano Y, Toyo'oka T Abstract In this study including the field of metabolomics approach for food, the evaluation of untargeted compounds using HILIC-ESI/TOF/MS and multivariate statistical analysis method is proposed for the assessment of classification, contamination and degradation of infant formula. HILIC mode is used to monitor more detected numbers in infant formulas in the ESI-positive scan mode than the reversed phase. The repeatability of the non-targeted contents from 4 kinds of infant formulas based on PCA was less than the relative standard deviation of 15% in all groups. The PCA pattern showed that significant differences in the classification of types and origins, the contamination of melamine and the degradations for one week were evaluated using HILIC-ESI/TOF/MS. In the S-plot from the degradation test, we could identify two markers by comparison to standards as nicotinic acid and nicotinamide. With this strategy, the differences from the untargeted compounds could be utilized for quality and safety assessment of infant formula. PMID: 25794756 [PubMed - in process]

Potential Biomarkers of Fatigue Identified by Plasma Metabolome Analysis in Rats.

Sat, 21/03/2015 - 18:53
Potential Biomarkers of Fatigue Identified by Plasma Metabolome Analysis in Rats. PLoS One. 2015;10(3):e0120106 Authors: Kume S, Yamato M, Tamura Y, Jin G, Nakano M, Miyashige Y, Eguchi A, Ogata Y, Goda N, Iwai K, Yamano E, Watanabe Y, Soga T, Kataoka Y Abstract In the present study, prior to the establishment of a method for the clinical diagnosis of chronic fatigue in humans, we validated the utility of plasma metabolomic analysis in a rat model of fatigue using capillary electrophoresis-mass spectrometry (CE-MS). In order to obtain a fatigued animal group, rats were placed in a cage filled with water to a height of 2.2 cm for 5 days. A food-restricted group, in which rats were limited to 10 g/d of food (around 50% of the control group), was also assessed. The food-restricted group exhibited weight reduction similar to that of the fatigued group. CE-MS measurements were performed to evaluate the profile of food intake-dependent metabolic changes, as well as the profile in fatigue loading, resulting in the identification of 48 metabolites in plasma. Multivariate analyses using hierarchical clustering and principal component analysis revealed that the plasma metabolome in the fatigued group showed clear differences from those in the control and food-restricted groups. In the fatigued group, we found distinctive changes in metabolites related to branched-chain amino acid metabolism, urea cycle, and proline metabolism. Specifically, the fatigued group exhibited significant increases in valine, leucine, isoleucine, and 2-oxoisopentanoate, and significant decreases in citrulline and hydroxyproline compared with the control and food-restricted groups. Plasma levels of total nitric oxide were increased in the fatigued group, indicating systemic oxidative stress. Further, plasma metabolites involved in the citrate cycle, such as cis-aconitate and isocitrate, were reduced in the fatigued group. The levels of ATP were significantly decreased in the liver and skeletal muscle, indicative of a deterioration in energy metabolism in these organs. Thus, this comprehensive metabolic analysis furthered our understanding of the pathophysiology of fatigue, and identified potential diagnostic biomarkers based on fatigue pathophysiology. PMID: 25793974 [PubMed - as supplied by publisher]

Proteomic Analysis of Urine Exosomes Reveals Renal Tubule Response to Leptospiral Colonization in Experimentally Infected Rats.

Sat, 21/03/2015 - 18:53
Proteomic Analysis of Urine Exosomes Reveals Renal Tubule Response to Leptospiral Colonization in Experimentally Infected Rats. PLoS Negl Trop Dis. 2015 Mar;9(3):e0003640 Authors: RamachandraRao SP, Matthias MA, Mondrogon CK, Aghania E, Park C, Kong C, Ishaya M, Madrigal A, Horng J, Khoshaba R, Bounkhoun A, Basilico F, De Palma A, Agresta AM, Awdishu L, Naviaux RK, Vinetz JM, Mauri P Abstract BACKGROUND: Infectious Leptospira colonize the kidneys of reservoir (e.g. rats) and accidental hosts such as humans. The renal response to persistent leptospiral colonization, as measured by urinary protein biosignatures, has not been systematically studied. Urinary exosomes--bioactive membrane-bound nanovesicles--contain cell-state specific cargo that additively reflect formation all along the nephron. We hypothesized that Leptospira-infection will alter the content of urine exosomes, and further, that these Leptospira-induced alterations will hold clues to unravel novel pathways related to bacterial-host interactions. METHODOLOGY/PRINCIPAL FINDINGS: Exosome protein content from 24 hour urine samples of Leptospira-infected rats was compared with that of uninfected rats using SDS-PAGE and liquid chromatography/tandem mass spectrometry (LC-MS/MS). Statistical models were used to identify significantly dysregulated proteins in Leptospira-infected and uninfected rat urine exosomes. In all, 842 proteins were identified by LC-MS/MS proteomics of total rat urine and 204 proteins associated specifically with exosomes. Multivariate analysis showed that 25 proteins significantly discriminated between uninfected control and infected rats. Alanyl (membrane) aminopeptidase, also known as CD13 topped this list with the highest score, a finding we validated by Western immunoblotting. Whole urine analysis showed Tamm-Horsfall protein level reduction in the infected rat urine. Total urine and exosome proteins were significantly different in male vs. female infected rats. CONCLUSIONS: We identified exosome-associated renal tubule-specific responses to Leptospira infection in a rat chronic colonization model. Quantitative differences in infected male and female rat urine exosome proteins vs. uninfected controls suggest that urine exosome analysis identifies important differences in kidney function that may be of clinical and pathological significance. PMID: 25793258 [PubMed - as supplied by publisher]

Quorum-sensing linked RNA interference for dynamic metabolic pathway control in Saccharomyces cerevisiae.

Sat, 21/03/2015 - 18:53
Quorum-sensing linked RNA interference for dynamic metabolic pathway control in Saccharomyces cerevisiae. Metab Eng. 2015 Mar 16; Authors: Williams TC, Averesch NJ, Winter G, Plan MR, Vickers CE, Nielsen LK, Krömer JO Abstract Some of the most productive metabolic engineering strategies involve genetic modifications that cause severe metabolic burden on the host cell. Growth-limiting genetic modifications can be more effective if they are 'switched on' after a population growth phase has been completed. To address this problem we have engineered dynamic regulation using a previously developed synthetic quorum sensing circuit in Saccharomyces cerevisiae. The circuit autonomously triggers gene expression at a high population density, and was linked with an RNA interference module to enable target gene silencing. As a demonstration the circuit was used to control flux through the shikimate pathway for the production of para-hydroxybenzoic acid (PHBA). Dynamic RNA repression allowed gene knock-downs which were identified by elementary flux mode analysis as highly productive but with low biomass formation to be implemented after a population growth phase, resulting in the highest published PHBA titer in yeast (1.1mM). PMID: 25792511 [PubMed - as supplied by publisher]

Proteometabolomics of bladder cancer: Current and future prospects.

Sat, 21/03/2015 - 18:53
Proteometabolomics of bladder cancer: Current and future prospects. Cancer Biomark. 2015 Mar 19; Authors: Bansal N, Gupta A, Sankhwar SN Abstract Urinary bladder cancer (BC) is fifth most common cancer worldwide; the diagnostic methods are mostly instrumental approaches including cystoscopy and cytology. Since BC recurrence rate is high, consequently requires long-term follow-up. The molecular assays that can precisely identify BC at an early stage are obligatory. Although several noninvasive urine and blood samples based biomarkers have been proposed in the last decade but only few have been approved by Food and drug administration (FDA) for clinical purpose. Hence the search for more suitable biomarker is still on. In this review, we summarize the urine and blood based metabolic and protein tests not only for determination but also BC patient surveillance. PMID: 25792474 [PubMed - as supplied by publisher]

Consumption of vitamin D2 enhanced mushrooms is associated with improved bone health.

Sat, 21/03/2015 - 18:53
Consumption of vitamin D2 enhanced mushrooms is associated with improved bone health. J Nutr Biochem. 2015 Mar 5; Authors: Chen SY, Yu HT, Kao JP, Yang CC, Chiang SS, Mishchuk DO, Mau JL, Slupsky CM Abstract Mushrooms are the best nonanimal food source of vitamin D2. Pulsed irradiation can enhance vitamin D2 in mushrooms quickly. We investigated the effect of supplementing high vitamin D2Pleurotus ferulae mushrooms in a mouse model of osteoporosis. Thirty-two female C57BL/6JNarl mice were divided into four groups including sham, ovariectomized (OVX), OVX+nonpulsed mushroom (NPM) and OVX+pulsed mushroom (PM). After 23weeks of treatment, serum samples were analyzed for osteoblast and osteoclast indicators, as well as metabolites using NMR spectroscopy. To examine bone density, femurs were analyzed using micro-computed tomography. The NPM and PM treatment mice showed increased bone density in comparison with OVX mice. In addition, the PM mice showed higher osteoblast and lower osteoclast indicators in comparison with OVX mice. Serum metabolomics analysis indicated several metabolites that were different in PM mice, some of which could be correlated with bone health. Taken together, these results suggest that pulsed irradiated mushrooms are able to increase bone density in osteoporotic mice possibly through enhanced bone metabolism. Further studies in humans are needed to show their efficacy in preventing osteoporosis. PMID: 25792284 [PubMed - as supplied by publisher]

Metabolomic analysis reveals distinct profiles in the plasma and urine of rats fed a high-protein diet.

Sat, 21/03/2015 - 18:53
Metabolomic analysis reveals distinct profiles in the plasma and urine of rats fed a high-protein diet. Amino Acids. 2015 Mar 20; Authors: Mu C, Yang Y, Luo Z, Zhu W Abstract A high-protein, low-carbohydrate diet has been regarded as a dietary intervention for weight loss in the obese population. We integrated metabolomics profiles and correlation-based network analysis to reveal the difference in metabolism under diets with different protein:carbohydrate ratios. Rats were fed a control diet (moderate-protein moderate-carbohydrate: MPMC; 20 % protein, 56 % carbohydrate) or HPLC diet (high-protein low-carbohydrate: 45 % protein, 30 % carbohydrate) for 6 weeks. The fat content was equal for both diets. HPLC feeding induced weight loss and reduced adipose weight and plasma triglyceride. Compared to the MPMC diet, HPLC significantly increased plasma α-tocopherol, pyruvate, 2-oxoisocaproate, and β-hydroxybutyrate, and reduced linoleate, palmitate, α-glycerophosphate and pyroglutamic acid. The HPLC-associated urinary metabolite profile was signified with an increase in palmitate and stearate and a reduction of citrate, 2-ketoglutarate, malate, and pantothenate. Pathway analysis implicated a significant alteration of the TCA cycle in urine. Biomarker screening demonstrated that individual metabolites, including plasma urea, pyruvate, and urinary citrate, robustly distinguished the HPLC group from the MPMC group. Correlation-based network analysis enabled to demonstrate that the correlation of plasma metabolite was strengthened after the HPLC diet, while the energy-metabolism relatives 2-ketoglutarate and fumarate correlated positively with phenylalanine, methionine, and serine. The correlation network between plasma-urinary metabolites revealed a negative correlation of plasma valine with urinary β-hydroxybutyrate in MPMC rats. In HPLC rats, plasma 2-oxoisocaproate negatively correlated with urinary pyruvate and glycine. This study using metabolomics analysis revealed the systemic metabolism in response to diet treatment and identified the significantly distinct profiles associated with a HPLC diet. PMID: 25792108 [PubMed - as supplied by publisher]

Isolating the metabolic pathways involved in the hepatoprotective effect of Muntingia calabura against CCl4-induced liver injury using LCMS Q-TOF.

Sat, 21/03/2015 - 18:53
Isolating the metabolic pathways involved in the hepatoprotective effect of Muntingia calabura against CCl4-induced liver injury using LCMS Q-TOF. J Ethnopharmacol. 2015 Mar 16; Authors: Rofiee MS, Yusof MI, Abdul Hisam EE, Bannur Z, Zakaria ZA, Somchit MN, Teh LK, Salleh MZ Abstract ETHNOPHARMACOLOGICAL RELEVANCE: Muntingia calabura L. have been used in Southeast Asia and tropical America as antipyretic, antiseptic, analgesic, antispasmodic and liver tonic. This study aims to determine the acute toxicity and the metabolic pathways involved in the hepatoprotective mechanism of M. calabura. MATERIALS AND METHODS: CCl4-induced hepatotoxic rat model was developed and a dose dependent effect of M. calabura was conducted. Body weight, food and water consumption were measured every day and rats were sacrificed to collect the serum samples at the end of the 10-days treatment. Liquid chromatography-mass spectrometry quadrapole time of flight (LC/MS-QTOF) combined with principal component analysis (PCA) were used to determine differentially expressed metabolites due to treatment with CCl4 and M. calabura extracts. Metabolomics Pathway Analysis (MetPA) was used for analysis and visualization of pathways involved. RESULTS: Body weight, food and water consumption were significantly decreased and histopathological study revealed steatosis in CCl4-induced rats. PCA score plots show distinct separation in the metabolite profiles of the normal group, CCl4-treated group and extract of M. calabura (MCME) pre-treated groups. Biomarkers network reconstruction using MetPA had identified 2 major pathways which were involved in the protective mechanism of MCME. These include the (i) biosynthesis of the primary bile acid, (ii) metabolism of arachidonic acid. CONCLUSION: This study has successfully isolated 2 major pathways involved in the hepatoprotecive effect of MCME against CCl4-induced liver injury using LCMS Q-TOF metabolomics approach. The involvement of archidonic acid and purine metabolism in hepatoprotection has not been reported previously and may provide new therapeutic targets and/or options for the treatment of liver injury. PMID: 25792013 [PubMed - as supplied by publisher]

Phenotypic and molecular diversity of Meyerozyma guilliermondii strains isolated from food and other environmental niches, hints for an incipient speciation.

Sat, 21/03/2015 - 18:53
Phenotypic and molecular diversity of Meyerozyma guilliermondii strains isolated from food and other environmental niches, hints for an incipient speciation. Food Microbiol. 2015 Jun;48:206-15 Authors: Corte L, di Cagno R, Groenewald M, Roscini L, Colabella C, Gobbetti M, Cardinali G Abstract Meyerozyma guilliermondii is a yeast species widely isolated from several natural environments and from fruit; in medical microbiology it is known as the teleomorph of the opportunistic pathogen Candida guilliermondii, which causes about 2% of the human blood infections. This yeast is also promising in a variety of biotechnological applications as vitamins production and post-harvest control. The question if isolates from different sources are physiologically and genetically similar, or if the various environments induced significant differences, is crucial for the understanding of this species structure and to select strains appropriate for each application. This question was addressed using LSU and ITS sequencing for taxonomic assignment, i-SSR (GACA4) for the molecular characterization and FTIR for the metabolomic fingerprint. All data showed that fruit and environmental isolates cluster separately with a general good agreement between metabolomics and molecular analysis. An additional RAPD analysis was able to discriminate strains according to the isolation position within the pineapple fruit. Although all strains are members of the M. guilliermondii species according to the current standards, the distribution of large variability detected suggests that some specialization occurred in the niches inhabited by this yeast and that food related strains can be differentiated from the medical isolates. PMID: 25791010 [PubMed - in process]

Pages