PubMed
Licorice Extract Supplementation Benefits Growth Performance, Blood Biochemistry and Hormones, Immune Antioxidant Status, Hindgut Fecal Microbial Community, and Metabolism in Beef Cattle
Vet Sci. 2024 Aug 6;11(8):356. doi: 10.3390/vetsci11080356.ABSTRACTThis study aimed to evaluate the effects of licorice extract (LE) on growth performance, nutrient apparent digestibility, serum index (biochemistry, hormones, humoral immunity, and antioxidant function), hindgut fecal microbiota, and metabolism in beef cattle. In total, 12 male yellow cattle aged 12 months were divided into two groups (6 cattle per group): the basal diet (CK group) and the basal diet supplemented with 2 g/kg LE (CHM group). The entire experimental phase lasted for 120 days, including a 30-day pre-feeding period. Compared to the CK group, the average daily gain, crude fiber, calcium, and crude protein nutrient digestibility were greater on d 30 than d 60 (p < 0.05) and the feed meat ratio was lower for LE addition (p < 0.01). In terms of serum indexes, the insulin and nitric oxide contents were enhanced on d 30, the alkaline phosphatase level was improved on d 60, and the levels of albumin, immunoglobulin A, and catalase were increased on d 90 (p < 0.05). In contrast, the cholesterol content was lower on d 60 for LE addition compared with the CK group (p < 0.05). The higher enrichment of [Eubacterium]-oxidoreducens-group, p-2534-18b5-gut-group, and Ileibacterium were observed in the CHM group (p < 0.05), while the relative abundances of Gallibacterium and Breznakia in the CHM group were lower compared with the CK group (p < 0.05). In addition, the differential metabolites related to healthy growth in the CHM group were increased compared with the CK group. And there was a close correlation between hindgut microbiota and metabolic differentials. In general, LE has a promoting effect on the growth performance and health status of beef cattle over a period (30 to 60 days).PMID:39195810 | DOI:10.3390/vetsci11080356
Transcriptomic Signatures of the Foetal Liver and Late Prenatal Development in Vitrified Rabbit Embryos
Vet Sci. 2024 Aug 1;11(8):347. doi: 10.3390/vetsci11080347.ABSTRACTAssisted reproduction technologies (ARTs) are generally considered safe; however, emerging evidence highlights the need to evaluate potential risks in adulthood to improve safety further. ART procedures like rederivation of embryos by vitrification differ from natural conditions, causing significant disparities between in vitro and in vivo embryos, affecting foetal physiology and postnatal life. This study aims to investigate whether hepatic transcriptome and metabolome changes observed postnatally are already present in foetal livers at the end of gestation. This study compared fresh and vitrified rabbit embryos, finding differences between foetuses obtained by the transfer of fresh and vitrified embryos at 24 days of gestation. Rederived embryos had reduced foetal and liver weights and crown-rump length. However, the offspring of vitrified embryos tended to be born with higher weight, showing compensatory growth in the final week of gestation (59.2 vs. 49.8 g). RNA-Seq analysis revealed 43 differentially expressed genes (DEGs) in the foetal liver of vitrified embryos compared to the fresh group. Notably, downregulated genes included BRAT1, CYP4A7, CYP2B4, RPL23, RPL22L1, PPILAL1, A1BG, IFGGC1, LRRC57, DIPP2, UGT2B14, IRGM1, NUTF2, MPST, and PPP1R1B, while upregulated genes included ACOT8, ERICH3, UBXN2A, METTL9, ALDH3A2, DERPC-like, NR5A2-like, AP-1, COG8, INHBE, and PLA2G4C. Overall, a functional annotation of these DEGs indicated an involvement in lipid metabolism and the stress and inflammatory process or immune response. Thus, our results suggest that vitrification and embryo transfer manipulation induce an adaptive response that can be observed in the liver during the last week of gestation.PMID:39195801 | DOI:10.3390/vetsci11080347
Chloroquine Downregulation of Intestinal Autophagy Changed Intestinal Microbial Community Compositions and Metabolite Profiles in Piglets
Vet Sci. 2024 Jul 25;11(8):333. doi: 10.3390/vetsci11080333.ABSTRACTOur previous study demonstrated that moderate inhibition of intestinal autophagy was beneficial to alleviate early weaning stress in piglets, but the detailed mechanism behind this was unclear. Microbiota-mediated enterocyte autophagy helps maintain intestinal homeostasis. This study investigated the effects of inhibition or activation of autophagy in intestinal microbial community compositions and metabolite profiles in piglets. Eighteen 24-day-old weaned piglets were divided into three groups (each treatment of six piglets) and treated daily with rapamycin (RAPA), chloroquine (CQ) or a control volume of normal saline (CON group). Before the formal trial, the piglets were allowed to acclimatize for 3 days, and then the trial period was 14 days. Collected samples from the ileum and colon underwent 16S rRNA gene sequencing and metabolite analysis. Significant differences in microbial composition were observed in both the ileum and colon of the RAPA and CQ groups compared to the CON group (p < 0.05). In addition, the relative levels of abundance of Peptostreptococcus, Fusobacterium, Dialister, Selenomonas and Oceanobacillus in the ileum and Porphyromonas, Bacteroides, unidentified_Lachnospiraceae, Akkermansia, Sharpea, Peptococcus, Pseudoalteromonas, Peptoclostridium and unidentified_Acidobacteria in the colon were improved in piglets fed the RAPA diet, whereas the relative levels of abundance of Turicibacter, Rickettsiella and Sarcina in the ileum and Roseburia and Kroppenstedtia in the colon were enhanced in the CQ group (p < 0.05). Meanwhile, metabolomic analysis showed that there were significant differences in metabolites among all groups (p < 0.05), and KEGG enrichment analysis revealed that differential metabolites were mainly enriched in the ABC transporters and biosynthesis of amino acids pathways. Furthermore, these metabolites were closely related to differential microorganisms (p < 0.05). Overall, autophagy inhibition regulates the composition of intestinal microorganisms and their metabolites, and these differential metabolites are significantly correlated with differential intestinal microorganisms, which may in turn affect the production performance of weaned piglets.PMID:39195787 | DOI:10.3390/vetsci11080333
Toxicity of Moxifloxacin on the Growth, Photosynthesis, Antioxidant System, and Metabolism of <em>Microcystis aeruginosa</em> at Different Phosphorus Levels
Toxics. 2024 Aug 20;12(8):611. doi: 10.3390/toxics12080611.ABSTRACTMoxifloxacin (MOX), a widely used novel antibiotic, may pose ecological risks at its actual environmental concentrations, as has been detected in aquatic systems. However, its ecotoxicity to aquatic organisms and regulatory mechanisms of phosphorus in eutrophic aqueous environments are still limited. This study aimed to analyze its physiological and biochemical parameters, including cellular growth, chlorophyll fluorescence, photosynthetic pigments, oxidative stress biomarkers, and metabolomics to elucidate the toxicity induced by environmental concentrations of MOX in Microcystis aeruginosa at different phosphorus levels. The results revealed that the EC50 values of MOX on M. aeruginosa at different phosphorus concentrations were 8.03, 7.84, and 6.91 μg/L, respectively, indicating MOX toxicity was exacerbated with increasing phosphorus levels. High phosphorus intensified the suppression of chlorophyll fluorescence and photosynthetic pigments, while activating the antioxidant enzyme, indicating severe peroxidation damage. Metabolomic analysis showed MOX induced different discriminating metabolites under different phosphorus levels, and perturbed more biological pathways at higher phosphorus concentrations, such as starch and sucrose metabolism, pyrimidine metabolism, and glycerolipid metabolism. This indicates that phosphorus plays an important role in regulating metabolism in M. aeruginosa exposed to MOX. The findings provide valuable information on the mechanisms involved in cyanobacteria responses to antibiotic stress, and offer a theoretical basis for accurately assessing antibiotic toxicity in eutrophic aqueous environments.PMID:39195713 | DOI:10.3390/toxics12080611
Neuroinflammation and Neurometabolomic Profiling in Fentanyl Overdose Mouse Model Treated with Novel β-Lactam, MC-100093, and Ceftriaxone
Toxics. 2024 Aug 19;12(8):604. doi: 10.3390/toxics12080604.ABSTRACTOpioid-related deaths are attributed to overdoses, and fentanyl overdose has been on the rise in many parts of the world, including the USA. Glutamate transporter 1 (GLT-1) has been identified as a therapeutic target in several preclinical models of substance use disorders, and β-lactams effectively enhance its expression and function. In the current study, we characterized the metabolomic profile of the nucleus accumbens (NAc) in fentanyl-overdose mouse models, and we evaluated the protective effects of the functional enhancement of GLT-1 using β-lactams, ceftriaxone, and MC-100093. BALB/c mice were divided into four groups: control, fentanyl, fentanyl/ceftriaxone, and fentanyl/MC-100093. While the control group was intraperitoneally (i.p.) injected with normal saline simultaneously with other groups, all fentanyl groups were i.p. injected with 1 mg/kg of fentanyl as an overdose after habituation with four repetitive non-consecutive moderate doses (0.05 mg/kg) of fentanyl for a period of seven days. MC-100093 (50 mg/kg) and ceftriaxone (200 mg/kg) were i.p. injected from days 5 to 9. Gas chromatography-mass spectrometry (GC-MS) was used for metabolomics, and Western blotting was performed to determine the expression of target proteins. Y-maze spontaneous alternation performance and the open field activity monitoring system were used to measure behavioral manifestations. Fentanyl overdose altered the abundance of about 30 metabolites, reduced the expression of GLT-1, and induced the expression of inflammatory mediators IL-6 and TLR-4 in the NAc. MC-100093 and ceftriaxone attenuated the effects of fentanyl-induced downregulation of GLT-1 and upregulation of IL-6; however, only ceftriaxone attenuated fentanyl-induced upregulation of TRL4 expression. Both of the β-lactams attenuated the effects of fentanyl overdose on locomotor activities but did not induce significant changes in the overall metabolomic profile. Our findings revealed that the exposure to a high dose of fentanyl causes alterations in key metabolic pathways in the NAc. Pretreatment with ceftriaxone and MC-100093 normalized fentanyl-induced downregulation of GLT-1 expression with subsequent attenuation of neuroinflammation as well as the hyperactivity, indicating that β-lactams may be promising drugs for treating fentanyl use disorder.PMID:39195706 | DOI:10.3390/toxics12080604
Cross-Omics Analyses Reveal the Effects of Ambient PM<sub>2.5</sub> Exposure on Hepatic Metabolism in Female Mice
Toxics. 2024 Aug 13;12(8):587. doi: 10.3390/toxics12080587.ABSTRACTAmbient particulate matter (PM2.5) is a potential risk factor for metabolic damage to the liver. Epidemiological studies suggest that elevated PM2.5 concentrations cause changes in hepatic metabolism, but there is a lack of laboratory evidence. Here, we aimed to evaluate the effects of PM2.5 exposure on liver metabolism in C57BL/6j female mice (10 months old) and to explore the mechanisms underlying metabolic alterations and differential gene expressions by combining metabolomics and transcriptomics analyses. The metabolomics results showed that PM2.5 exposure notably affected the metabolism of amino acids and organic acids and caused hepatic lipid and bile acid accumulation. The transcriptomic analyses revealed that PM2.5 exposure led to a series of metabolic pathway abnormalities, including steroid biosynthesis, steroid hormone biosynthesis, primary bile acid biosynthesis, etc. Among them, the changes in the bile acid pathway might be one of the causes of liver damage in mice. In conclusion, this study clarified the changes in liver metabolism in mice caused by PM2.5 exposure through combined transcriptomic and metabolomic analyses, revealed that abnormal bile acid metabolism is the key regulatory mechanism leading to metabolic-associated fatty liver disease (MAFLD) in mice, and provided laboratory evidence for further clarifying the effects of PM2.5 on body metabolism.PMID:39195689 | DOI:10.3390/toxics12080587
Toxicity to the Male Reproductive System after Exposure to Polystyrene Nanoplastics: A Macrogenomic and Metabolomic Analysis
Toxics. 2024 Jul 23;12(8):531. doi: 10.3390/toxics12080531.ABSTRACTNanoplastics (NPs) cause serious contamination of drinking water and potential damage to human health. This study aimed to investigate the effects of NPs with different particle sizes and concentrations on the reproductive function of male mice. In this study, free drinking water exposure was used to expose male BALB/C mice to PS-NPs (20 nm, 200 nm, and 1000 nm) at 0.1 mg/L, 1 mg/L, and 5 mg/L for 4 months. The male reproductive function of the mice was assessed after NPs exposure, and fecal and blood samples were collected for macrogenomics and metabolomics. The results showed that PS-NPs resulted in mice with reduced testicular organ coefficients, decreased sperm quality, altered testicular tissue structure, disturbed sex hormone levels, and abnormal levels of inflammatory factors and oxidative stress. Furthermore, this study found that NP exposure affected the alteration of gut communities and metabolic pathways related to male reproduction, such as Clostridium and glutathione metabolism. Importantly, we found an effect of NP particle size on reproductive function. In the future, more attention should be paid to the smaller particle sizes of NPs.PMID:39195633 | DOI:10.3390/toxics12080531
Metabolite Predictors of Breast and Colorectal Cancer Risk in the Women's Health Initiative
Metabolites. 2024 Aug 20;14(8):463. doi: 10.3390/metabo14080463.ABSTRACTMetabolomics has been used extensively to capture the exposome. We investigated whether prospectively measured metabolites provided predictive power beyond well-established risk factors among 758 women with adjudicated cancers [n = 577 breast (BC) and n = 181 colorectal (CRC)] and n = 758 controls with available specimens (collected mean 7.2 years prior to diagnosis) in the Women's Health Initiative Bone Mineral Density subcohort. Fasting samples were analyzed by LC-MS/MS and lipidomics in serum, plus GC-MS and NMR in 24 h urine. For feature selection, we applied LASSO regression and Super Learner algorithms. Prediction models were subsequently derived using logistic regression and Super Learner procedures, with performance assessed using cross-validation (CV). For BC, metabolites did not increase predictive performance over established risk factors (CV-AUCs~0.57). For CRC, prediction increased with the addition of metabolites (median CV-AUC across platforms increased from ~0.54 to ~0.60). Metabolites related to energy metabolism: adenosine, 2-hydroxyglutarate, N-acetyl-glycine, taurine, threonine, LPC (FA20:3), acetate, and glycerate; protein metabolism: histidine, leucic acid, isoleucine, N-acetyl-glutamate, allantoin, N-acetyl-neuraminate, hydroxyproline, and uracil; and dietary/microbial metabolites: myo-inositol, trimethylamine-N-oxide, and 7-methylguanine, consistently contributed to CRC prediction. Energy metabolism may play a key role in the development of CRC and may be evident prior to disease development.PMID:39195559 | DOI:10.3390/metabo14080463
Analysis of Serum Exosome Metabolites Identifies Potential Biomarkers for Human Hepatocellular Carcinoma
Metabolites. 2024 Aug 20;14(8):462. doi: 10.3390/metabo14080462.ABSTRACTCurrently, the clinical cure rate for primary liver cancer remains low. Effective screening and early diagnosis of hepatocellular carcinoma (HCC) remain clinical challenges. Exosomes are intimately associated with tumor development and their contents have the potential to serve as highly sensitive tumor-specific markers. A comprehensive untargeted metabolomics study was conducted using exosome samples extracted from the serum of 48 subjects (36 HCC patients and 12 healthy controls) via a commercial kit. An ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) strategy was used to identify the metabolic compounds. A total of 18 differential metabolites were identified using the non-targeted metabolomics approach of UPLC-QTOF-MS/MS. Pathway analysis revealed significant alterations in the arachidonic acid metabolism, linoleic acid metabolism, and unsaturated fatty acid metabolism pathways. ROC analysis indicated that three metabolites with AUC values exceeding 0.900 were selected as potential biomarkers: caprylic acid and linoleic acid were upregulated in the HCC group, whereas pentadecanoic acid was downregulated. Linoleic acid, caprylic acid, and pentadecanoic acid are potential biomarkers for diagnosing HCC. The significant alterations in these three metabolic pathways offer new insights into the mechanisms underlying HCC formation and progression.PMID:39195558 | DOI:10.3390/metabo14080462
Alterations in Choline Metabolism in Non-Obese Individuals with Insulin Resistance and Type 2 Diabetes Mellitus
Metabolites. 2024 Aug 18;14(8):457. doi: 10.3390/metabo14080457.ABSTRACTThe prevalence of non-obese individuals with insulin resistance (IR) and type 2 diabetes (T2D) is increasing worldwide. This study investigates the metabolic signature of phospholipid-associated metabolites in non-obese individuals with IR and T2D, aiming to identify potential biomarkers for these metabolic disorders. The study cohort included non-obese individuals from the Qatar Biobank categorized into three groups: insulin sensitive, insulin resistant, and patients with T2D. Each group comprised 236 participants, totaling 708 individuals. Metabolomic profiling was conducted using high-resolution mass spectrometry, and statistical analyses were performed to identify metabolites associated with the progression from IS to IR and T2D. The study observed significant alterations in specific phospholipid metabolites across the IS, IR, and T2D groups. Choline phosphate, glycerophosphoethanolamine, choline, glycerophosphorylcholine (GPC), and trimethylamine N-oxide showed significant changes correlated with disease progression. A distinct metabolic signature in non-obese individuals with IR and T2D was characterized by shifts in choline metabolism, including decreased levels of choline and trimethylamine N-oxide and increased levels of phosphatidylcholines, phosphatidylethanolamines, and their degradation products. These findings suggest that alterations in choline metabolism may play a critical role in the development of glucose intolerance and insulin resistance. Targeting choline metabolism could offer potential therapeutic strategies for treating T2D. Further research is needed to validate these biomarkers and understand their functional significance in the pathogenesis of IR and T2D in non-obese populations.PMID:39195553 | DOI:10.3390/metabo14080457
Metabolomic Prediction of Cadmium Nephrotoxicity in the Snail Helix aspersa maxima
Metabolites. 2024 Aug 17;14(8):455. doi: 10.3390/metabo14080455.ABSTRACTThe decontamination of polluted soils is a major socioeconomic issue in many industrialized countries. In situ remediation approaches are nowadays preferred to ex situ techniques, but they require among others the use of bioindicators, which are sensitive to the progressive depollution on health effects. Animal species have been mainly used so far to monitor aquatic and air pollution. Current research focuses on the development of living indicators of soil pollution. In this study, the garden snail Helix aspersa maxima was acutely exposed to cadmium, one major soil contaminant causing severe health effects, including nephrotoxicity. Kidney and hemolymph were sampled and analyzed by a 1H-NMR-based metabonomic approach. Shortly after Cd exposure, numerous metabolic changes occurred in the hemolymph and kidney extracts. Altogether, they were indicative of a switch in energy sources from the Krebs cycle towards b-oxidation and the utilization of stored galactogen polysaccharides. Then, the activation of antioxidant defenses in the renal cells was suggested by the alteration in some precursors of glutathione synthesis, such as glutamate, and by the release of the antioxidant anserin. Cell membrane damage was evidenced by the increased levels of some osmolytes, betaine and putrescine, as well as by a membrane repair mechanism involving choline. Finally, the development of metabolic acidosis was suggested by the elevation in 3-HMG in the hemolymph, and the more pronounced lysine levels were consistent with acute excretion troubles. Cd-induced renal damage was objectified by the increased level of riboflavin, a recognized biomarker of nephrotoxicity.PMID:39195551 | DOI:10.3390/metabo14080455
Validation of the Chemical and Biological Steps Required Implementing an Advanced Multi-Omics Approach for Assessing the Fate and Impact of Contaminants in Lagoon Sediments
Metabolites. 2024 Aug 17;14(8):454. doi: 10.3390/metabo14080454.ABSTRACTThe increasing use of chemicals requires a better understanding of their presence and dynamics in the environment, as well as their impact on ecosystems. The aim of this study was to validate the first steps of an innovative multi-omics approach based on metabolomics and 16S metabarcoding data for analyses of the fate and impact of contaminants in Mediterranean lagoons. Semi-targeted analytical procedures for water and sediment matrices were implemented to assess chemical contamination of the lagoon: forty-six compounds were detected, 28 of which could be quantified in water (between 0.09 and 47.4 ng/L) and sediment (between 0.008 and 26.3 ng/g) samples using the UHPLC-MS/MS instrument. In addition, a non-targeted approach (UHPLC-HRMS) using four different sample preparation protocols based on solid/liquid extractions or an automated pressurized fluid extraction system (EDGE®) was carried out to determine the protocol with the best metabolome coverage, efficiency and reproducibility. Solid/liquid extraction using the solvent mixture acetonitrile/methanol (50/50) was evaluated as the best protocol. Microbial diversity in lagoon sediment was also measured after DNA extraction using five commercial extraction kits. Our study showed that the DNeasy PowerSoil Pro Qiagen kit (Promega, USA) was the most suitable for assessing microbial diversity in fresh sediment.PMID:39195550 | DOI:10.3390/metabo14080454
Comparison of Growth and Metabolomic Profiles of Two Afforestation Cypress Species Cupressus chengiana and Platycladus orientalis Grown at Minjiang Valley in Southwest China
Metabolites. 2024 Aug 17;14(8):453. doi: 10.3390/metabo14080453.ABSTRACTIn recent years, afforestation has been conducted in China's hot and dry valleys. However, there is still a paucity of knowledge regarding the performance of tree species in these semi-arid regions, particularly with regard to interspecies differences. The present study compares the growth and metabolome characteristics of two widely used cypress species, namely Cupressus chengiana and Platycladus orientalis, grown at two sites with distinct climate conditions in the hot and dry Minjiang Valley in southwestern China. The findings indicate that C. chengiana trees exhibit superior growth rates compared to P. orientalis trees at both study sites. In comparison to P. orientalis trees, C. chengiana trees demonstrated a greater tendency to close their stomata in order to prevent water loss at the hotter and drier site, Llianghekou (LHK). Additionally, C. chengiana trees exhibited significantly lower hydrogen peroxide levels than P. orientalis trees, either due to lower production and/or higher scavenging of reactive oxygen species. C. chengiana trees accumulated soluble sugars as well as sugar derivatives, particularly those involved in sucrose and galactose metabolisms under stressful conditions. The species-specific differences were also reflected in metabolites involved in the tricarboxylic acid cycle, nitrogen, and secondary metabolisms. The metabolome profiles of the two species appeared to be influenced by the prevailing climatic conditions. It appeared that the trees at the drier and hotter site, LHK, were capable of efficient nitrogen uptake from the soil despite the low soil nitrogen concentration. This study is the first to compare the growth performance and metabolic profiles of two widely used tree species with high resistance to adverse conditions. In addition to the species-specific differences and adaptations to different sites, the present study also provides insights into potential management strategies to alleviate abiotic stress, particularly with regard to nitrogen nutrients, in the context of climate change.PMID:39195549 | DOI:10.3390/metabo14080453
Bile Acid Metabolism Analysis Provides Insights into Vascular Endothelial Injury in Salt-Sensitive Hypertensive Rats
Metabolites. 2024 Aug 16;14(8):452. doi: 10.3390/metabo14080452.ABSTRACTAs an unhealthy dietary habit, a high-salt diet can affect the body's endocrine system and metabolic processes. As one of the most important metabolites, bile acids can prevent atherosclerosis and reduce the risk of developing cardiovascular diseases. Therefore, in the present study, we aimed to reveal the bile acid metabolism changes in salt-sensitive hypertension-induced vascular endothelial injury. The model was established using a high-salt diet, and the success of this procedure was confirmed by detecting the levels of the blood pressure, vascular regulatory factors, and inflammatory factors. An evaluation of the histological sections of arterial blood vessels and kidneys confirmed the pathological processes in these tissues of experimental rats. Bile acid metabolism analysis was performed to identify differential bile acids between the low-salt diet group and the high-salt diet group. The results indicated that the high-salt diet led to a significant increase in blood pressure and the levels of endothelin-1 (ET-1) and tumor necrosis factor-α (TNF-α). The high-salt diet causes disorders in bile acid metabolism. The levels of four differential bile acids (glycocholic acid, taurolithocholic acid, tauroursodeoxycholic acid, and glycolithocholic acid) significantly increased in the high-salt group. Further correlation analysis indicated that the levels of ET-1 and TNF-α were positively correlated with these differential bile acid levels. This study provides new evidence for salt-sensitive cardiovascular diseases and metabolic changes caused by a high-salt diet in rats.PMID:39195548 | DOI:10.3390/metabo14080452
Alterations in Vagal Tone Are Associated with Changes in the Gut Microbiota of Adults with Anxiety and Depression Symptoms: Analysis of Fecal Metabolite Profiles
Metabolites. 2024 Aug 15;14(8):450. doi: 10.3390/metabo14080450.ABSTRACTAccumulating evidence suggests that interactions between the brain and gut microbiota significantly impact brain function and mental health. In the present study, we aimed to investigate whether young, healthy adults without psychiatric diagnoses exhibit differences in metabolic stool and microbiota profiles based on depression/anxiety scores and heart rate variability (HRV) parameters. Untargeted nuclear magnetic resonance-based metabolomics was used to identify fecal metabolic profiles. Results were subjected to multivariate analysis through principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA), and the metabolites were identified through VIP score. Metabolites separating asymptomatic and symptomatic groups were acetate, valine, and glutamate, followed by sugar regions, glutamine, acetone, valerate, and acetoacetate. The main metabolites identified in high vagal tone (HVT) and low vagal tone (LVT) groups were acetate, valerate, and glutamate, followed by propionate and butyrate. In addition to the metabolites identified by the PLS-DA test, significant differences in aspartate, sarcosine, malate, and methionine were observed between the groups. Levels of acetoacetate were higher in both symptomatic and LVT groups. Valerate levels were significantly increased in the symptomatic group, while isovalerate, propionate, glutamate, and acetone levels were significantly increased in the LVT group. Furthermore, distinct abundance between groups was only confirmed for the Firmicutes phylum. Differences between participants with high and low vagal tone suggest that certain metabolites are involved in communication between the vagus nerve and the brain.PMID:39195546 | DOI:10.3390/metabo14080450
Hyperpolarized Magnetic Resonance Imaging, Nuclear Magnetic Resonance Metabolomics, and Artificial Intelligence to Interrogate the Metabolic Evolution of Glioblastoma
Metabolites. 2024 Aug 14;14(8):448. doi: 10.3390/metabo14080448.ABSTRACTGlioblastoma (GBM) is a malignant Grade VI cancer type with a median survival duration of only 8-16 months. Earlier detection of GBM could enable more effective treatment. Hyperpolarized magnetic resonance spectroscopy (HPMRS) could detect GBM earlier than conventional anatomical MRI in glioblastoma murine models. We further investigated whether artificial intelligence (A.I.) could detect GBM earlier than HPMRS. We developed a deep learning model that combines multiple modalities of cancer data to predict tumor progression, assess treatment effects, and to reconstruct in vivo metabolomic information from ex vivo data. Our model can detect GBM progression two weeks earlier than conventional MRIs and a week earlier than HPMRS alone. Our model accurately predicted in vivo biomarkers from HPMRS, and the results inferred biological relevance. Additionally, the model showed potential for examining treatment effects. Our model successfully detected tumor progression two weeks earlier than conventional MRIs and accurately predicted in vivo biomarkers using ex vivo information such as conventional MRIs, HPMRS, and tumor size data. The accuracy of these predictions is consistent with biological relevance.PMID:39195544 | DOI:10.3390/metabo14080448
Fufang Muji Granules Ameliorate Liver Fibrosis by Reducing Oxidative Stress and Inflammation, Inhibiting Apoptosis, and Modulating Overall Metabolism
Metabolites. 2024 Aug 11;14(8):446. doi: 10.3390/metabo14080446.ABSTRACTFufang Muji granules (FMGs) are a prominent modern prescription Chinese patent formulation derived from the Muji decoction. Utilized in clinical practice for nearly four decades, FMGs have demonstrated efficacy in treating liver diseases. However, the precise mechanism of action remains unclear. This study investigates the hepatoprotective effects of FMGs against liver fibrosis in rats based on untargeted metabolomics and elucidates their underlying mechanisms. A comprehensive model of liver fibrosis was established with 30% CCl4 (2 mL/kg) injected intraperitoneally, and a fat and sugar diet combined with high temperatures and humidity. Rats were orally administered FMGs (3.12 g/kg/d) once daily for six weeks. FMG administration resulted in improved liver fibrosis and attenuated hepatic oxidative stress and apoptosis. Furthermore, FMGs inhibited hepatic stellate cell activation and modulated transforming growth factor β1/Smad signaling. Additionally, FMG treatment influenced the expression levels of interleukin-6, interleukin-1β, and tumour necrosis factor alpha in the injured liver. Metabolic pathways involving taurine and hypotaurine metabolism, as well as primary bile acid biosynthesis, were identified as mechanisms of action for FMGs. Immunohistochemistry, quantitative reverse transcription polymerase chain reaction (RT-qPCR), and quantitative analysis also revealed that FMGs regulated taurine and hypotaurine metabolism and bile acid metabolism. These findings provide a valuable understanding of the role of FMGs in liver fibrosis management.PMID:39195542 | DOI:10.3390/metabo14080446
The Application of Metabolomics in Hyperlipidemia: Insights into Biomarker Discovery and Treatment Efficacy Assessment
Metabolites. 2024 Aug 6;14(8):438. doi: 10.3390/metabo14080438.ABSTRACTHyperlipidemia is a lipid metabolism disorder that refers to increased levels of total triglycerides (TGs), cholesterol (TC), and low-density lipoprotein-cholesterol (LDL-C) and decreased levels of high-density lipoprotein-cholesterol (HDL-C). It is a major public health issue with increased prevalence and incidence worldwide. The ability to identify individuals at risk of this disorder before symptoms manifest will facilitate timely intervention and management to avert potential complications. This can be achieved by employing metabolomics as an early detection method for the diagnostic biomarkers of hyperlipidemia. Metabolomics is an analytical approach used to detect and quantify metabolites. This provides the ability to explain the metabolic processes involved in the development and progression of certain diseases. In recent years, interest in the use of metabolomics to identify disease biomarkers has increased, and several biomarkers have been discovered, such as docosahexaenoic acid, glycocholic acid, citric acid, betaine, and carnitine. This review discusses the primary metabolic alterations in the context of hyperlipidemia. Furthermore, we provide an overview of recent studies on the application of metabolomics to the assessment of the efficacy of traditional herbal products and common lipid-lowering medications.PMID:39195534 | DOI:10.3390/metabo14080438
Investigating the Link between Intermediate Metabolism, Sexual Dimorphism, and Cardiac Autonomic Dysfunction in Patients with Type 1 Diabetes
Metabolites. 2024 Aug 6;14(8):436. doi: 10.3390/metabo14080436.ABSTRACTSexual dimorphism influences cardiovascular outcomes in type 1 diabetes (T1D), with women facing a higher relative risk of macrovascular events compared to men, especially after menopause. This study hypothesizes that abnormalities in intermediate metabolism may be associated with cardiac autonomic neuropathy (CAN) in T1D. We aim to assess low molecular weight metabolites (LMWM) as markers of CAN in T1D, considering the effects of sexual dimorphism and age. In this cross-sectional study, we included 323 subjects with T1D (147 women and 176 men), with a mean age of 41 ± 13 years. A total of 44 women and 41 men were over 50 years old. CAN was assessed using Ewing's tests, and serum metabolites were analyzed by proton nuclear magnetic resonance spectroscopy (1H-NMR). Patients with CAN had lower levels of valine, isoleucine, and threonine, and higher levels of lactate, compared to those without CAN. These differences persisted after adjusting for BMI and estimated glucose disposal rate (eGDR). In a logistic regression model (R² = 0.178, p < 0.001), the main determinants of CAN included isoleucine [Exp(β) = 0.972 (95% CI 0.952; 0.003)], age [Exp(β) = 1.031 (95% CI 1.010; 1.053)], A1c [Exp(β) = 1.361 (95% CI 1.058; 1.752)], and microangiopathy [Exp(β) = 2.560 (95% CI 1.372; 4.778)]. Sex influenced LMWM profiles, with over half of the metabolites differing between men and women. However, no interactions were found between CAN and sex, or between sex, age, and CAN, on metabolomics profiles. Our findings suggest an association between CAN and LMWM levels in T1D. The sexual dimorphism observed in amino acid metabolites was unaffected by the presence of CAN.PMID:39195532 | DOI:10.3390/metabo14080436
Effects of E-Cigarettes on the Lung and Systemic Metabolome in People with HIV
Metabolites. 2024 Aug 6;14(8):434. doi: 10.3390/metabo14080434.ABSTRACTThe popularity of e-cigarettes (vaping) has soared, creating a public health crisis among teens and young adults. Chronic vaping can induce gut inflammation and reduce intestinal barrier function through the production of the proinflammatory molecule hydrogen sulfide (H2S). This is particularly concerning for people with HIV (PWH) as they already face impaired immune function and are at a higher risk for metabolic dysregulation, diabetes, and chronic liver disease. Furthermore, PWH experience unhealthy behaviors, making it crucial to understand the systemic metabolic dysregulation and pathophysiological mechanisms associated with vaping in this population. Here, we employed liquid chromatography-mass spectrometry (LC-MS)-based metabolomics to investigate the upper respiratory, circulation, and gut metabolic profiles of PWH who vape (n = 7) and smoke combustible tobacco/marijuana (n = 6) compared to control participants who did not vape or smoke (n = 10). This hypothesis-generating exploratory study revealed systemic alterations in purine, neurotransmitter, and vitamin B metabolisms and tissue-specific changes in inflammatory pathways and cryptic sulfur cycling associated with vaping and combustible tobacco/marijuana smoking in PWH. In addition, this study provides the first link between microbial-derived metabolite 2,3-dihydroxypropane-1-sulfonate (DHPS) and vaping/smoking (tobacco and marijuana)-induced metabolic dyshomeostasis in the gut. These findings highlight the importance of identifying the full biological and clinical significance of the physiological changes and risks associated with vaping.PMID:39195530 | DOI:10.3390/metabo14080434