Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

Adaptive evolution of Pseudomonas aeruginosa in human airways shows phenotypic convergence despite diverse patterns of genomic changes

Sat, 17/02/2024 - 12:00
Mol Biol Evol. 2024 Feb 14:msae022. doi: 10.1093/molbev/msae022. Online ahead of print.ABSTRACTSelective forces in the environment drive bacterial adaptation to novel niches, choosing the fitter variants in the population. However, in dynamic and changing environments, the evolutionary processes controlling bacterial adaptation are difficult to monitor. Here, we follow 9 people with cystic fibrosis chronically infected with Pseudomonas aeruginosa, as a proxy for bacterial adaptation. We identify and describe the bacterial changes and evolution occurring between 15 and 35 years of within host evolution. We combine whole genome sequencing, RNAseq and metabolomics, and compare the evolutionary trajectories directed by the adaptation of four different P. aeruginosa lineages to the lung. Our data suggest divergent evolution at the genomic level for most of the genes, with signs of convergent evolution with respect to acquisition of mutations in regulatory genes, which drive the transcriptional and metabolomic program at late time of evolution. Metabolomics further confirmed convergent adaptive phenotypic evolution as documented by reduction of the quorum sensing molecules acyl-homoserine lactone, phenazines and rhamnolipids (except for quinolones). The modulation of the quorum sensing repertoire suggests that similar selective forces characterize at late times of evolution independent of the patient. Collectively, our data suggest that similar environments and similar P. aeruginosa populations in the patients at prolonged time of infection are associated with an overall reduction of virulence-associated features and phenotypic convergence.PMID:38366124 | DOI:10.1093/molbev/msae022

Life course plasma metabolomic signatures of genetic liability to Alzheimer's disease

Fri, 16/02/2024 - 12:00
Sci Rep. 2024 Feb 16;14(1):3896. doi: 10.1038/s41598-024-54569-w.ABSTRACTMechanisms through which most known Alzheimer's disease (AD) loci operate to increase AD risk remain unclear. Although Apolipoprotein E (APOE) is known to regulate lipid homeostasis, the effects of broader AD genetic liability on non-lipid metabolites remain unknown, and the earliest ages at which metabolic perturbations occur and how these change over time are yet to be elucidated. We examined the effects of AD genetic liability on the plasma metabolome across the life course. Using a reverse Mendelian randomization framework in two population-based cohorts [Avon Longitudinal Study of Parents and Children (ALSPAC, n = 5648) and UK Biobank (n ≤ 118,466)], we estimated the effects of genetic liability to AD on 229 plasma metabolites, at seven different life stages, spanning 8 to 73 years. We also compared the specific effects of APOE ε4 and APOE ε2 carriage on metabolites. In ALSPAC, AD genetic liability demonstrated the strongest positive associations with cholesterol-related traits, with similar magnitudes of association observed across all age groups including in childhood. In UK Biobank, the effect of AD liability on several lipid traits decreased with age. Fatty acid metabolites demonstrated positive associations with AD liability in both cohorts, though with smaller magnitudes than lipid traits. Sensitivity analyses indicated that observed effects are largely driven by the strongest AD instrument, APOE, with many contrasting effects observed on lipids and fatty acids for both ε4 and ε2 carriage. Our findings indicate pronounced effects of the ε4 and ε2 genetic variants on both pro- and anti-atherogenic lipid traits and sphingomyelins, which begin in childhood and either persist into later life or appear to change dynamically.PMID:38365930 | DOI:10.1038/s41598-024-54569-w

Role of Hemigraphis alternata in wound healing: metabolomic profiling and molecular insights into mechanisms

Fri, 16/02/2024 - 12:00
Sci Rep. 2024 Feb 16;14(1):3872. doi: 10.1038/s41598-024-54352-x.ABSTRACTHemigraphis alternata (H. alternata), commonly known as Red Flame Ivy, is widely recognized for its wound healing capabilities. However, the pharmacologically active plant components and their mechanisms of action in wound healing are yet to be determined. This study presents the mass spectrometry-based global metabolite profiling of aqueous and ethanolic extract of H. alternata leaves. The analysis identified 2285 metabolites from 24,203 spectra obtained in both positive and negative polarities. The identified metabolites were classified under ketones, carboxylic acids, primary aliphatic amines, steroids and steroid derivatives. We performed network pharmacology analysis to explore metabolite-protein interactions and identified 124 human proteins as targets for H. alternata metabolites. Among these, several of them were implicated in wound healing including prothrombin (F2), alpha-2A adrenergic receptor (ADRA2A) and fibroblast growth factor receptor 1 (FGFR1). Gene ontology analysis of target proteins enriched cellular functions related to glucose metabolic process, platelet activation, membrane organization and response to wounding. Additionally, pathway enrichment analysis revealed potential molecular network involved in wound healing. Moreover, in-silico docking analysis showed strong binding energy between H. alternata metabolites with identified protein targets (F2 and PTPN11). Furthermore, the key metabolites involved in wound healing were further validated by multiple reaction monitoring-based targeted analysis.PMID:38365839 | DOI:10.1038/s41598-024-54352-x

Sodium oligomannate alters gut microbiota, reduces cerebral amyloidosis and reactive microglia in a sex-specific manner

Fri, 16/02/2024 - 12:00
Mol Neurodegener. 2024 Feb 17;19(1):18. doi: 10.1186/s13024-023-00700-w.ABSTRACTIt has recently become well-established that there is a connection between Alzheimer's disease pathology and gut microbiome dysbiosis. We have previously demonstrated that antibiotic-mediated gut microbiota perturbations lead to attenuation of Aβ deposition, phosphorylated tau accumulation, and disease-associated glial cell phenotypes in a sex-dependent manner. In this regard, we were intrigued by the finding that a marine-derived oligosaccharide, GV-971, was reported to alter gut microbiota and reduce Aβ amyloidosis in the 5XFAD mouse model that were treated at a point when Aβ burden was near plateau levels. Utilizing comparable methodologies, but with distinct technical and temporal features, we now report on the impact of GV-971 on gut microbiota, Aβ amyloidosis and microglial phenotypes in the APPPS1-21 model, studies performed at the University of Chicago, and independently in the 5X FAD model, studies performed at Washington University, St. Louis.Methods To comprehensively characterize the effects of GV-971 on the microbiota-microglia-amyloid axis, we conducted two separate investigations at independent institutions. There was no coordination of the experimental design or execution between the two laboratories. Indeed, the two laboratories were not aware of each other's experiments until the studies were completed. Male and female APPPS1-21 mice were treated daily with 40, 80, or 160 mg/kg of GV-971 from 8, when Aβ burden was detectable upto 12 weeks of age when Aβ burden was near maximal levels. In parallel, and to corroborate existing published studies and further investigate sex-related differences, male and female 5XFAD mice were treated daily with 100 mg/kg of GV-971 from 7 to 9 months of age when Aβ burden was near peak levels. Subsequently, the two laboratories independently assessed amyloid-β deposition, metagenomic, and neuroinflammatory profiles. Finally, studies were initiated at the University of Chicago to evaluate the metabolites in cecal tissue from vehicle and GV-971-treated 5XFAD mice.Results These studies showed that independent of the procedural differences (dosage, timing and duration of treatment) between the two laboratories, cerebral amyloidosis was reduced primarily in male mice, independent of strain. We also observed sex-specific microbiota differences following GV-971 treatment. Interestingly, GV-971 significantly altered multiple overlapping bacterial species at both institutions. Moreover, we discovered that GV-971 significantly impacted microbiome metabolism, particularly by elevating amino acid production and influencing the tryptophan pathway. The metagenomics and metabolomics changes correspond with notable reductions in peripheral pro-inflammatory cytokine and chemokine profiles. Furthermore, GV-971 treatment dampened astrocyte and microglia activation, significantly decreasing plaque-associated reactive microglia while concurrently increasing homeostatic microglia only in male mice. Bulk RNAseq analysis unveiled sex-specific changes in cerebral cortex transcriptome profiles, but most importantly, the transcriptome changes in the GV-971-treated male group revealed the involvement of microglia and inflammatory responses.Conclusions In conclusion, these studies demonstrate the connection between the gut microbiome, neuroinflammation, and Alzheimer's disease pathology while highlighting the potential therapeutic effect of GV-971. GV-971 targets the microbiota-microglia-amyloid axis, leading to the lowering of plaque pathology and neuroinflammatory signatures in a sex-dependent manner when given at the onset of Aβ deposition or when given after Aβ deposition is already at higher levels.PMID:38365827 | DOI:10.1186/s13024-023-00700-w

Molecular Mechanism Underlying Pathogenicity Inhibition by Chitosan in <em>Cochliobolus heterostrophus</em>

Fri, 16/02/2024 - 12:00
J Agric Food Chem. 2024 Feb 16. doi: 10.1021/acs.jafc.3c07968. Online ahead of print.ABSTRACTChitosan, as a natural nontoxic biomaterial, has been demonstrated to inhibit fungal growth and enhance plant defense against pathogen infection. However, the antifungal pattern and mechanism of how chitosan application evokes plant defense are poorly elucidated. Herein, we provide evidence that chitosan exposure is fungicidal to C. heterostrophus. Chitosan application impairs conidia germination and appressorium formation of C. heterostrophus and has a pronounced effect on reactive oxygen species production, thereby preventing infection in maize. In addition, the toxicity of chitosan to C. heterostrophus requires Mkk1 and Mps1, two key components in the cell wall integrity pathway. The Δmkk1 and Δmps1 mutants were more tolerant to chitosan than the wild-type. To dissect chitosan-mediated plant defense response to C. heterostrophus, we conducted a metabolomic analysis, and several antifungal compounds were upregulated in maize upon chitosan treatment. Taken together, our findings provide a comprehensive understanding of the mechanism of chitosan-alleviated infection of C. heterostrophus, which would promote the application of chitosan in plant protection in agriculture.PMID:38365616 | DOI:10.1021/acs.jafc.3c07968

Cohort profile for the Tongji Cardiovascular Health Study: a prospective multiomics cohort study

Fri, 16/02/2024 - 12:00
BMJ Open. 2024 Feb 15;14(2):e074768. doi: 10.1136/bmjopen-2023-074768.ABSTRACTPURPOSE: The Tongji Cardiovascular Health Study aimed to further explore the onset and progression mechanisms of cardiovascular disease (CVD) through a combination of traditional cohort studies and multiomics analysis, including genomics, metabolomics and metagenomics.STUDY DESIGN AND PARTICIPANTS: This study included participants aged 20-70 years old from the Geriatric Health Management Centre of Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology. After enrollment, each participant underwent a comprehensive series of traditional and novel cardiovascular risk factor assessments at baseline, including questionnaires, physical examinations, laboratory tests, cardiovascular health assessments and biological sample collection for subsequent multiomics analysis (whole genome sequencing, metabolomics study from blood samples and metagenomics study from stool samples). A biennial follow-up will be performed for 10 years to collect the information above and the outcome data.FINDINGS TO DATE: A total of 2601 participants were recruited in this study (73.4% men), with a mean age of 51.5±11.5 years. The most common risk factor is overweight or obesity (54.8%), followed by hypertension (39.7%), hyperlipidaemia (32.4%), current smoking (23.9%) and diabetes (12.3%). Overall, 13.1% and 48.7% of men and women, respectively, did not have any of the CVD risk factors (hypertension, hyperlipidaemia, diabetes, cigarette smoking and overweight or obesity). Additionally, multiomics analyses of a subsample of the participants (n=938) are currently ongoing.FUTURE PLANS: With the progress of the cohort follow-up work, it is expected to provide unique multidimensional and longitudinal data on cardiovascular health in China.PMID:38365303 | DOI:10.1136/bmjopen-2023-074768

Temporal colonization and metabolic regulation of the gut microbiome in neonatal oxen at single nucleotide resolution

Fri, 16/02/2024 - 12:00
ISME J. 2024 Jan 8;18(1):wrad022. doi: 10.1093/ismejo/wrad022.ABSTRACTThe colonization of microbes in the gut is key to establishing a healthy host-microbiome symbiosis for newborns. We longitudinally profiled the gut microbiome in a model consisting of 36 neonatal oxen from birth up to 2 months postpartum and carried out microbial transplantation to reshape their gut microbiome. Genomic reconstruction of deeply sequenced fecal samples resulted in a total of 3931 metagenomic-assembled genomes from 472 representative species, of which 184 were identified as new species when compared with existing databases of oxen. Single nucleotide level metagenomic profiling shows a rapid influx of microbes after birth, followed by dynamic shifts during the first few weeks of life. Microbial transplantation was found to reshape the genetic makeup of 33 metagenomic-assembled genomes (FDR < 0.05), mainly from Prevotella and Bacteroides species. We further linked over 20 million microbial single nucleotide variations to 736 plasma metabolites, which enabled us to characterize 24 study-wide significant associations (P < 4.4 × 10-9) that identify the potential microbial genetic regulation of host immune and neuro-related metabolites, including glutathione and L-dopa. Our integration analyses further revealed that microbial genetic variations may influence the health status and growth performance by modulating metabolites via structural regulation of their encoded proteins. For instance, we found that the albumin levels and total antioxidant capacity were correlated with L-dopa, which was determined by single nucleotide variations via structural regulations of metabolic enzymes. The current results indicate that temporal colonization and transplantation-driven strain replacement are crucial for newborn gut development, offering insights for enhancing newborn health and growth.PMID:38365257 | DOI:10.1093/ismejo/wrad022

Dynamic nitrogen fixation in an aerobic endophyte of Populus

Fri, 16/02/2024 - 12:00
ISME J. 2024 Jan 8;18(1):wrad012. doi: 10.1093/ismejo/wrad012.ABSTRACTBiological nitrogen fixation by microbial diazotrophs can contribute significantly to nitrogen availability in non-nodulating plant species. In this study of molecular mechanisms and gene expression relating to biological nitrogen fixation, the aerobic nitrogen-fixing endophyte Burkholderia vietnamiensis, strain WPB, isolated from Populus trichocarpa served as a model for endophyte-poplar interactions. Nitrogen-fixing activity was observed to be dynamic on nitrogen-free medium with a subset of colonies growing to form robust, raised globular like structures. Secondary ion mass spectrometry (NanoSIMS) confirmed that N-fixation was uneven within the population. A fluorescent transcriptional reporter (GFP) revealed that the nitrogenase subunit nifH is not uniformly expressed across genetically identical colonies of WPB and that only ~11% of the population was actively expressing the nifH gene. Higher nifH gene expression was observed in clustered cells through monitoring individual bacterial cells using single-molecule fluorescence in situ hybridization. Through 15N2 enrichment, we identified key nitrogenous metabolites and proteins synthesized by WPB and employed targeted metabolomics in active and inactive populations. We cocultivated WPB Pnif-GFP with poplar within a RhizoChip, a synthetic soil habitat, which enabled direct imaging of microbial nifH expression within root epidermal cells. We observed that nifH expression is localized to the root elongation zone where the strain forms a unique physical interaction with the root cells. This work employed comprehensive experimentation to identify novel mechanisms regulating both biological nitrogen fixation and beneficial plant-endophyte interactions.PMID:38365250 | DOI:10.1093/ismejo/wrad012

Specialized digestive mechanism for an insect-bacterium gut symbiosis

Fri, 16/02/2024 - 12:00
ISME J. 2024 Jan 8;18(1):wrad021. doi: 10.1093/ismejo/wrad021.ABSTRACTIn Burkholderia-Riptortus symbiosis, the host bean bug Riptortus pedestris harbors Burkholderia symbionts in its symbiotic organ, M4 midgut, for use as a nutrient source. After occupying M4, excess Burkholderia symbionts are moved to the M4B region, wherein they are effectively digested and absorbed. Previous studies have shown that M4B has strong symbiont-specific antibacterial activity, which is not because of the expression of antimicrobial peptides but rather because of the expression of digestive enzymes, mainly cathepsin L protease. However, in this study, inhibition of cathepsin L activity did not reduce the bactericidal activity of M4B, indicating that there is an unknown digestive mechanism that renders specifically potent bactericidal activity against Burkholderia symbionts. Transmission electron microscopy revealed that the lumen of symbiotic M4B was filled with a fibrillar matter in contrast to the empty lumen of aposymbiotic M4B. Using chromatographic and electrophoretic analyses, we found that the bactericidal substances in M4B existed as high-molecular-weight (HMW) complexes that were resistant to protease degradation. The bactericidal HMW complexes were visualized on non-denaturing gels using protein- and polysaccharide-staining reagents, thereby indicating that the HMW complexes are composed of proteins and polysaccharides. Strongly stained M4B lumen with Periodic acid-Schiff (PAS) reagent in M4B paraffin sections confirmed HMW complexes with polysaccharide components. Furthermore, M4B smears stained with Periodic acid-Schiff revealed the presence of polysaccharide fibers. Therefore, we propose a key digestive mechanism of M4B: bacteriolytic fibers, polysaccharide fibers associated with digestive enzymes such as cathepsin L, specialized for Burkholderia symbionts in Riptortus gut symbiosis.PMID:38365249 | DOI:10.1093/ismejo/wrad021

Distinct microbial hydrogen and reductant disposal pathways explain interbreed variations in ruminant methane yield

Fri, 16/02/2024 - 12:00
ISME J. 2024 Jan 8;18(1):wrad016. doi: 10.1093/ismejo/wrad016.ABSTRACTRuminants are essential for global food security, but these are major sources of the greenhouse gas methane. Methane yield is controlled by the cycling of molecular hydrogen (H2), which is produced during carbohydrate fermentation and is consumed by methanogenic, acetogenic, and respiratory microorganisms. However, we lack a holistic understanding of the mediators and pathways of H2 metabolism and how this varies between ruminants with different methane-emitting phenotypes. Here, we used metagenomic, metatranscriptomic, metabolomics, and biochemical approaches to compare H2 cycling and reductant disposal pathways between low-methane-emitting Holstein and high-methane-emitting Jersey dairy cattle. The Holstein rumen microbiota had a greater capacity for reductant disposal via electron transfer for amino acid synthesis and propionate production, catalyzed by enzymes such as glutamate synthase and lactate dehydrogenase, and expressed uptake [NiFe]-hydrogenases to use H2 to support sulfate and nitrate respiration, leading to enhanced coupling of H2 cycling with less expelled methane. The Jersey rumen microbiome had a greater proportion of reductant disposal via H2 production catalyzed by fermentative hydrogenases encoded by Clostridia, with H2 mainly taken up through methanogenesis via methanogenic [NiFe]-hydrogenases and acetogenesis via [FeFe]-hydrogenases, resulting in enhanced methane and acetate production. Such enhancement of electron incorporation for metabolite synthesis with reduced methanogenesis was further supported by two in vitro measurements of microbiome activities, metabolites, and public global microbiome data of low- and high-methane-emitting beef cattle and sheep. Overall, this study highlights the importance of promoting alternative H2 consumption and reductant disposal pathways for synthesizing host-beneficial metabolites and reducing methane production in ruminants.PMID:38365243 | DOI:10.1093/ismejo/wrad016

Nitrate-driven anaerobic oxidation of ethane and butane by bacteria

Fri, 16/02/2024 - 12:00
ISME J. 2024 Jan 8;18(1):wrad011. doi: 10.1093/ismejo/wrad011.ABSTRACTThe short-chain gaseous alkanes (ethane, propane, and butane; SCGAs) are important components of natural gas, yet their fate in environmental systems is poorly understood. Microbially mediated anaerobic oxidation of SCGAs coupled to nitrate reduction has been demonstrated for propane, but is yet to be shown for ethane or butane-despite being energetically feasible. Here we report two independent bacterial enrichments performing anaerobic ethane and butane oxidation, respectively, coupled to nitrate reduction to dinitrogen gas and ammonium. Isotopic 13C- and 15N-labelling experiments, mass and electron balance tests, and metabolite and meta-omics analyses collectively reveal that the recently described propane-oxidizing "Candidatus Alkanivorans nitratireducens" was also responsible for nitrate-dependent anaerobic oxidation of the SCGAs in both these enrichments. The complete genome of this species encodes alkylsuccinate synthase genes for the activation of ethane/butane via fumarate addition. Further substrate range tests confirm that "Ca. A. nitratireducens" is metabolically versatile, being able to degrade ethane, propane, and butane under anoxic conditions. Moreover, our study proves nitrate as an additional electron sink for ethane and butane in anaerobic environments, and for the first time demonstrates the use of the fumarate addition pathway in anaerobic ethane oxidation. These findings contribute to our understanding of microbial metabolism of SCGAs in anaerobic environments.PMID:38365228 | DOI:10.1093/ismejo/wrad011

Biodegradation of microplastics derived from controlled release fertilizer coating: Selective microbial colonization and metabolism in plastisphere

Fri, 16/02/2024 - 12:00
Sci Total Environ. 2024 Feb 14:170978. doi: 10.1016/j.scitotenv.2024.170978. Online ahead of print.ABSTRACTCoated controlled-release fertilizers (CRFs) are widely used in agriculture, and the persistent presence of residual polymer coating has raised environmental concerns. This study investigates the underlying degradation dynamics of microplastics (MPs) derived from three typical materials used in CRFs, including polyethylene (PE), epoxy (EP), and polyurethane (PU), through a soil degradation test. The formation of surface biofilm, the succession process, and metabolic characteristics of microbial community are revealed by laser scanning confocal microscope, 16S rRNA sequencing, and non-targeted metabolomics analysis. The weight loss rates of PE, EP, and PU after 807 days of degradation were 16.70 %, 2.79 %, and 4.86 %, respectively. Significant secondary MPs were produced with tears and holes appeared in the coating cross sections and pyrolysis products such as ethers, acids, and esters for PE; alkanes, olefins and their branched-chain derivatives for EP; and short-chain fatty acids and benzene molecules for PU. The coating surface selectively recruited the bacteria of Chujaibacter and Ralstonia and fungus of Fusarium and Penicillium, forming biofilm composed of lipids, proteins, and living cells. The metabolism of amino acids and polymers was enhanced to protect against MP-induced stress. The metabolites or intermediates of organic acids and derivatives, oxygen-contained organic compounds, and benzenoids on CRF surface increased significantly compared with soil, but there were no significant differences among different coating types. This study provides insights to the underlying mechanisms of biodegradation and microenvironmental changes of MPs in soil.PMID:38365031 | DOI:10.1016/j.scitotenv.2024.170978

COMMON AND DISTINCT METABOLOMIC MARKERS RELATED TO IMMUNE AGING IN WESTERN EUROPEAN AND EAST AFRICAN POPULATIONS

Fri, 16/02/2024 - 12:00
Mech Ageing Dev. 2024 Feb 14:111916. doi: 10.1016/j.mad.2024.111916. Online ahead of print.ABSTRACTIn old age, impaired immunity causes high susceptibility to infections and cancer, higher morbidity and mortality, and poorer vaccination efficiency. Many factors, such as genetics, diet, and lifestyle, impact aging. This study aimed to investigate how immune responses change with age in healthy Dutch and Tanzanian individuals and identify common metabolites associated with an aged immune profile. We performed untargeted metabolomics from plasma to identify age-associated metabolites, and we correlated their concentrations with ex-vivo cytokine production by immune cells, DNA methylation-based epigenetic aging, and telomere length. Innate immune responses were impacted differently by age in Dutch and Tanzanian cohorts. Age-related decline in steroid hormone precursors common in both populations was associated with higher systemic inflammation and lower cytokine responses. Hippurate and 2-phenylacetamide, commonly more abundant in older individuals, were negatively correlated with cytokine responses and telomere length and positively correlated with epigenetic aging. Lastly, we identified several metabolites that might contribute to the stronger decline in innate immunity with age in Tanzanians. The shared metabolomic signatures of the two cohorts suggest common mechanisms of immune aging, revealing metabolites with potential contributions. These findings also reflect genetic or environmental effects on circulating metabolites that modulate immune responses.PMID:38364983 | DOI:10.1016/j.mad.2024.111916

Mechanic study based on untargeted metabolomics of Pi-pa-run-fei-tang on pepper combined with ammonia induced chronic cough model mice

Fri, 16/02/2024 - 12:00
J Ethnopharmacol. 2024 Feb 14:117905. doi: 10.1016/j.jep.2024.117905. Online ahead of print.ABSTRACTETHNOPHARMACOLOGICAL RELEVANCE: Pi-pa-run-fei-tang (PPRFT), a traditional Chinese medicine formula with long-standing history, demonstrated beneficial effect on chronic cough. However, the mechanism underlying efficacy unclear. In current research, we explored the impact and molecular mechanism of chronic cough mouse stimulating with capsaicin combined with ammonia.AIM OF THE STUDY: To investigate the metabolic modulating effects, and potential mechanisms underlying the therapeutic effect of PPRFT in chronic cough.MATERIALS AND METHODS: Chronic cough mouse models were created by stimulating mice by capsaicin combined with ammonia. Number of coughs and cough latency within 2 min were recorded. With lung tissue and serum samples collected for histopathology, metabolomics, RT-qPCR, immunohistochemistry, and WB analysis. Lymphocytes were isolated and flow cytometric assays were conducted to evaluate the differentiation between Th17 and Treg cell among CD4+ cells.RESULTS: Results indicated that PPRFT obviously reduced the number of coughs, prolonged cough latency, reduced inflammatory cell infiltration and lung tissues damage, and decreased the serum level of IL-6, IL-1β, TNF-α, and IL-17 while increasing IL-10 levels. Notably, PPRFT suppressed Th17 cell divergence and promoted Treg cell divergence. Furthermore, serum metabolomic assays showed that 46 metabolites differed significantly between group, with 35 pathways involved. Moreover, mRNA levels of IL-6, NF-κB, IL-17, RORγT, JAK2, STAT3, PI3K and AKT in lung tissues remarkably reduced and mRNA levels of IL-10 and FOXP3 were elevated after PPRFT pretreatment. Additionally, PPRFT treatments decreased the protein levels of IL-6, NF-κB, IL-17, RORγT, p-JAK2, p-STAT3, p-PI3K, and p-AKT and increased the protein levels of IL-10 and FOXP3, but no significantly effects to the levels on JAK2, STAT3, PI3K, and AKT in the lungs.CONCLUSION: Conclusively, our result suggested the effect with PPRFT on chronic cough may be mediated through IL-6/JAK2/STAT3 and PI3K/AKT/NF-κB pathway, which regulate the differentiation between Th17 and Treg cell. This beneficial effect of PPRFT in capsaicin and ammonia-stimulated chronic cough mice indicates its potential application in treating chronic cough.PMID:38364934 | DOI:10.1016/j.jep.2024.117905

Untargeted metabolomics of buffalo urine reveals hydracyrlic acid, 3-bromo-1-propanol and benzyl serine as potential estrus biomarkers

Fri, 16/02/2024 - 12:00
J Proteomics. 2024 Feb 14:105124. doi: 10.1016/j.jprot.2024.105124. Online ahead of print.ABSTRACTBuffalo is a silent heat animal and doesn't show prominent signs of estrous like cattle so it becomes difficult for farmers to determine the receptivity of the animal based purely on the animal behaviour. India, having a huge population size, needs to produce more milk for the population. Successful artificial insemination greatly depends on the receptivity of the animal. Hence the present study aimed to identify the changes in the metabolome of the buffalo. GC-MS based mass spectrometric analysis was deployed for the determination of estrous by differential expression of metabolites. It was found that hydracrylic acid, 3-bromo-1-propanol and benzyl serine were significantly upregulated in the estrous phase of buffalo (p.value ≤0.05, FC ≥ 2). The pathway enrichment analysis also supported the same as pathways related to amino acid metabolism and fatty acid metabolism were up regulated along with the Warburg effect which is linked to the rapid cell proliferation which might help prepare animals to meet the energy requirement during the estrous. Further analysis of the metabolic biomarkers using ROC analysis also supported these three metabolites as probable biomarkers as they were identified with AUC values of 0.7 or greater. SIGNIFICANCE: The present study focuses on the untargeted metabolomics studies of buffalo urine with special reference to the estrous phase of reproductive cycle. The estrous signals are more prominent in cattle, where animals show clear estrous signals such as mounting and discharge along with vocal signals. Buffalo is a silent heat animal and it becomes difficult for farmers to detect the estrous based on the physical and behavioral signals. Hence the present study focuses on GC-MS based untargeted metabolomics to identify differentially expressed urine metabolites. In this study, hydracrylic acid, 3-bromo-1-propanol and benzyl serine were found to be significantly upregulated in the estrous phase of buffalo (p-value ≤0.05, FC ≥ 2). Further confirmation of the metabolic biomarkers was done using Receiver operating characteristics (ROC) analysis which also supported these three metabolites as probable biomarkers as they had AUC values of 0.7 or greater. Hence, this study will be of prime importance for the people working in the area of animal metabolomics.PMID:38364903 | DOI:10.1016/j.jprot.2024.105124

Determination of urinary androgens in women with polycystic ovary syndrome using LC-QqQ/MS and the application of thin film solid-phase microextraction (TF-SPME)

Fri, 16/02/2024 - 12:00
J Chromatogr A. 2024 Feb 11;1718:464735. doi: 10.1016/j.chroma.2024.464735. Online ahead of print.ABSTRACTHyperandrogenism is one of the most pronounced symptoms of Polycystic Ovary Syndrome (PCOS) and seems to play a key role in the pathogenesis of this complex disorder. Nevertheless, there is still a lack of consistent results regarding common steroid predictors of PCOS. Therefore, a liquid chromatography tandem mass spectrometry (HPLC-QqQ/MS) method was developed and validated to determine the concentrations of four classic androgens: androstenedione (An-dione), testosterone (T), 5α-dihydrotestosterone (DHT) and androsterone (An) in urine samples obtained from women with PCOS and healthy controls. The limits of detection were between 0.04 and 0.09 ng/mL, while the limits of quantification ranged from 0.1 to 0.3 ng/mL respectively. As a pre-treatment procedure prior to analysis, hydrolysis using β-glucuronidase and thin film solid-phase microextraction (TF-SPME) was applied. The methodology was employed to perform targeted metabolomics of urinary steroids in women with PCOS and healthy controls. All measured androgens: An-dione (p < 0.0001), T (p = 0.0001), DHT (p < 0.0001) and An (p = 0.0002) showed significantly higher concentrations in the urine of women with PCOS. The largest difference in the mean concentration was found for DHT, which was 2.8 times higher in the PCOS group (13.9 ± 14.1 ng/mg creatinine) in comparison to healthy controls (4.9 ± 3.4 ng/mg creatinine). The results of receiver operating characteristic curve indicated that determination of the panel of three urinary androgens: T+DHT+An-dione with, under the study assumptions, was the best predictor of PCOS diagnosis (AUC of ROC curve = 0.91 (95 % CI: 0.8212-0.9905). The application of an LC-MS/MS-based analysis, together with highly sensitive extraction techniques like TF-SPME, is a suitable approach to perform fast assays and obtain reliable results - crucial in the search for valuable and significant steroids predictors of PCOS.PMID:38364619 | DOI:10.1016/j.chroma.2024.464735

A quantitative chemomics strategy for the comprehensive comparison of Murraya paniculata and M. exotica using liquid chromatography coupled with mass spectrometry

Fri, 16/02/2024 - 12:00
J Chromatogr A. 2024 Feb 12;1718:464736. doi: 10.1016/j.chroma.2024.464736. Online ahead of print.ABSTRACTMurrayae Folium et Cacumen (MFC) is a traditional Chinese medicine (TCM) derived from two plant species, Murraya exotica L. and Murraya paniculata (L.) Jack, as recorded in the Chinese Pharmacopoeia. However, there is no research available on the comprehensive analysis and comparison of the chemical constituents of these two species. In the present study, an integrated LC-MS-based quantitative metabolome strategy was proposed to conduct a comprehensive and in-depth qualitative and quantitative analysis and comparison of the chemome of M. exotica and M. paniculata. Firstly, the universal chemical information of two plants was obtained by quadrupole-time-of-flight mass spectrometry (Q-TOF-MS) combined with hybrid triple quadrupole-linear ion trap mass spectrometry (Qtrap-MS). Subsequently, a UNIFI in house database, the proposed fragmentation patterns, and a quantitative structure chromatographic retention relationship (QSRR) model were integrated for the rapid, comprehensive, and accurate structural elucidation of the chemical constituents of these two species. Thirdly, a large-scale quantitation method was established using scheduled multiple reaction monitoring mode (sMRM) and 76 primary components were selected as quantitative markers for the method validation. The obtained dataset was then subjected for multivariate statistical analysis to comprehensive comparison of these two plants. As a result, a total of 209 and 212 compounds were identified from M. exotica and M. paniculata, respectively. Among them, 103 common constituents were disclosed in both plants. The multivariate statistical analysis and absolute quantitative analysis revealed noticeable differences in the contents of specific chemical constituents between these two plants. The higher quantity constituents in M. exotica are 7-methoxycoumarins, while polymethoxylated flavonoids are the major constituents in M. paniculata. The common compounds accounted for approximately 80 % of the quantitative components in both plants, which provides a theoretical basis for their common use as the official source of MFC. In sum, the established quantitative chemomics strategy supplies an effective means for comprehensive chemical comparison of multi-source TCMs.PMID:38364618 | DOI:10.1016/j.chroma.2024.464736

Microplastics weaken the exoskeletal mechanical properties of Pacific whiteleg shrimp Litopenaeus vannamei

Fri, 16/02/2024 - 12:00
J Hazard Mater. 2024 Feb 12;468:133771. doi: 10.1016/j.jhazmat.2024.133771. Online ahead of print.ABSTRACTThe ubiquitous presence of microplastics (MPs) in aquatic environments poses a significant threat to crustaceans. Although exoskeleton quality is critical for crustacean survival, the impact of MPs on crustacean exoskeletons remains elusive. Our study represents a pioneering effort to characterize the effects of MPs exposure on crustacean exoskeletons. In this study, the mechanical properties of whiteleg shrimp Litopenaeus vannamei exoskeletons were analyzed after exposure to environmentally realistic levels of MPs. Nanoindentation data demonstrated that MPs exposure significantly increased the hardness and modulus of both the carapace and abdominal segments of L. vannamei. Moreover, fractures and embedded MPs were detected on the exoskeleton surface using SEM-EDS analysis. Further analysis demonstrated that the degree of chitin acetylation (DA) in the shrimp exoskeleton, as indicated by FTIR peaks, was reduced by MPs exposure. In addition, exposure to MPs significantly inhibited the muscle Ca2+-ATPase activity and hemolymph calcium levels. Transcriptome and metabolome analyses revealed that the expression levels of genes encoding key enzymes and metabolites in the chitin biosynthetic pathway were significantly affected by MPs exposure. In conclusion, MPs at environmentally relevant concentrations may affect the exoskeletal mechanical properties of L. vannamei through a comprehensive mechanism involving the disruption of the crystalline structure of chitin, assimilation into the exoskeleton, and dysregulation of exoskeleton biosynthesis-related pathways.PMID:38364581 | DOI:10.1016/j.jhazmat.2024.133771

Decoding Serine Metabolism: Unveiling Novel Pathways for Evolving Cancer Therapies

Fri, 16/02/2024 - 12:00
Cancer Res. 2024 Feb 16. doi: 10.1158/0008-5472.CAN-24-0541. Online ahead of print.ABSTRACTSerine metabolism plays a pivotal role in cancer, making it an appealing therapeutic target. Two recent studies published in Nature Metabolism and Science Translational Medicine uncovered novel players and therapeutic opportunities within this crucial metabolic pathway. Papalazarou and colleagues employed genetic tools coupled with metabolomics and high-throughput imaging to identify and characterize membrane transporters involved in serine uptake and mitochondrial import in colorectal cancer. Notably, they showed that dual inhibition of these transporters in combination with impaired serine biosynthesis reduced tumor growth in xenograft models. In a parallel study, Zhang and colleagues identified isocitrate dehydrogenase I (IDH1) as a novel regulator of serine biosynthesis in non-small cell lung cancer (NSCLC). Through extensive mechanistic studies, they demonstrated that IDH1 enhances the expression of the key enzymes phosphoglycerate dehydrogenase (PHGDH) and phosphoserine aminotransferase 1 (PSAT1) via a non-canonical function independent of its enzymatic activity. Strikingly, pharmacological disruption of this novel function of IDH1 not only diminished tumor growth but also enhanced the anticancer efficacy of dietary serine restriction in mouse models of lung cancer. Together, these studies advance our mechanistic understanding of how cancer cells fulfill their serine requirements and reveal innovative therapeutic avenues to deprive tumors of this vital nutrient.PMID:38364233 | DOI:10.1158/0008-5472.CAN-24-0541

Intestinal lysozyme1 deficiency alters microbiota composition and impacts host metabolism through the emergence of NAD<sup>+</sup>-secreting <em>ASTB Qing110</em> bacteria

Fri, 16/02/2024 - 12:00
mSystems. 2024 Feb 16:e0121423. doi: 10.1128/msystems.01214-23. Online ahead of print.ABSTRACTThe intestine plays a pivotal role in nutrient absorption and host defense against pathogens, orchestrated in part by antimicrobial peptides secreted by Paneth cells. Among these peptides, lysozyme has multifaceted functions beyond its bactericidal activity. Here, we uncover the intricate relationship between intestinal lysozyme, the gut microbiota, and host metabolism. Lysozyme deficiency in mice led to altered body weight, energy expenditure, and substrate utilization, particularly on a high-fat diet. Interestingly, these metabolic benefits were linked to changes in the gut microbiota composition. Cohousing experiments revealed that the metabolic effects of lysozyme deficiency were microbiota-dependent. 16S rDNA sequencing highlighted differences in microbial communities, with ASTB_g (OTU60) highly enriched in lysozyme knockout mice. Subsequently, a novel bacterium, ASTB Qing110, corresponding to ASTB_g (OTU60), was isolated. Metabolomic analysis revealed that ASTB Qing110 secreted high levels of NAD+, potentially influencing host metabolism. This study sheds light on the complex interplay between intestinal lysozyme, the gut microbiota, and host metabolism, uncovering the potential role of ASTB Qing110 as a key player in modulating metabolic outcomes.IMPORTANCEThe impact of intestinal lumen lysozyme on intestinal health is complex, arising from its multifaceted interactions with the gut microbiota. Lysozyme can both mitigate and worsen certain health conditions, varying with different scenarios. This underscores the necessity of identifying the specific bacterial responses elicited by lysozyme and understanding their molecular foundations. Our research reveals that a deficiency in intestinal lysozyme1 may offer protection against diet-induced obesity by altering bacterial populations. We discovered a strain of bacterium, ASTB Qing110, which secretes NAD+ and is predominantly found in lyz1-deficient mice. Qing110 demonstrates positive effects in both C. elegans and mouse models of ataxia telangiectasia. This study sheds light on the intricate role of lysozyme in influencing intestinal health.PMID:38364095 | DOI:10.1128/msystems.01214-23

Pages