Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

Exploration of Metabolomic Markers Associated With Declining Kidney Function in People With Type 2 Diabetes Mellitus

Thu, 04/01/2024 - 12:00
J Endocr Soc. 2023 Dec 22;8(1):bvad166. doi: 10.1210/jendso/bvad166. eCollection 2023 Dec 1.ABSTRACTBACKGROUND: Metabolomics, the study of small molecules in biological systems, can provide valuable insights into kidney dysfunction in people with type 2 diabetes mellitus (T2DM), but prospective studies are scarce. We investigated the association between metabolites and kidney function decline in people with T2DM.METHODS: The Edinburgh Type 2 Diabetes Study, a population-based cohort of 1066 men and women aged 60 to 75 years with T2DM. We measured 149 serum metabolites at baseline and investigated individual associations with baseline estimated glomerular filtration rate (eGFR), incident chronic kidney disease [CKD; eGFR <60 mL/min/(1.73 m)2], and decliner status (5% eGFR decline per year).RESULTS: At baseline, mean eGFR was 77.5 mL/min/(1.73 m)2 (n = 1058), and 216 individuals had evidence of CKD. Of those without CKD, 155 developed CKD over a median 7-year follow-up. Eighty-eight metabolites were significantly associated with baseline eGFR (β range -4.08 to 3.92; PFDR < 0.001). Very low density lipoproteins, triglycerides, amino acids (AAs), glycoprotein acetyls, and fatty acids showed inverse associations, while cholesterol and phospholipids in high-density lipoproteins exhibited positive associations. AA isoleucine, apolipoprotein A1, and total cholines were not only associated with baseline kidney measures (PFDR < 0.05) but also showed stable, nominally significant association with incident CKD and decline.CONCLUSION: Our study revealed widespread changes within the metabolomic profile of CKD, particularly in lipoproteins and their lipid compounds. We identified a smaller number of individual metabolites that are specifically associated with kidney function decline. Replication studies are needed to confirm the longitudinal findings and explore if metabolic signals at baseline can predict kidney decline.PMID:38174155 | PMC:PMC10763986 | DOI:10.1210/jendso/bvad166

Identifying subgroups of childhood obesity by using multiplatform metabotyping

Thu, 04/01/2024 - 12:00
Front Mol Biosci. 2023 Dec 20;10:1301996. doi: 10.3389/fmolb.2023.1301996. eCollection 2023.ABSTRACTIntroduction: Obesity results from an interplay between genetic predisposition and environmental factors such as diet, physical activity, culture, and socioeconomic status. Personalized treatments for obesity would be optimal, thus necessitating the identification of individual characteristics to improve the effectiveness of therapies. For example, genetic impairment of the leptin-melanocortin pathway can result in rare cases of severe early-onset obesity. Metabolomics has the potential to distinguish between a healthy and obese status; however, differentiating subsets of individuals within the obesity spectrum remains challenging. Factor analysis can integrate patient features from diverse sources, allowing an accurate subclassification of individuals. Methods: This study presents a workflow to identify metabotypes, particularly when routine clinical studies fail in patient categorization. 110 children with obesity (BMI > +2 SDS) genotyped for nine genes involved in the leptin-melanocortin pathway (CPE, MC3R, MC4R, MRAP2, NCOA1, PCSK1, POMC, SH2B1, and SIM1) and two glutamate receptor genes (GRM7 and GRIK1) were studied; 55 harboring heterozygous rare sequence variants and 55 with no variants. Anthropometric and routine clinical laboratory data were collected, and serum samples processed for untargeted metabolomic analysis using GC-q-MS and CE-TOF-MS and reversed-phase U(H)PLC-QTOF-MS/MS in positive and negative ionization modes. Following signal processing and multialignment, multivariate and univariate statistical analyses were applied to evaluate the genetic trait association with metabolomics data and clinical and routine laboratory features. Results and Discussion: Neither the presence of a heterozygous rare sequence variant nor clinical/routine laboratory features determined subgroups in the metabolomics data. To identify metabolomic subtypes, we applied Factor Analysis, by constructing a composite matrix from the five analytical platforms. Six factors were discovered and three different metabotypes. Subtle but neat differences in the circulating lipids, as well as in insulin sensitivity could be established, which opens the possibility to personalize the treatment according to the patients categorization into such obesity subtypes. Metabotyping in clinical contexts poses challenges due to the influence of various uncontrolled variables on metabolic phenotypes. However, this strategy reveals the potential to identify subsets of patients with similar clinical diagnoses but different metabolic conditions. This approach underscores the broader applicability of Factor Analysis in metabotyping across diverse clinical scenarios.PMID:38174068 | PMC:PMC10761426 | DOI:10.3389/fmolb.2023.1301996

Organic acid and sugar components accumulation and flavor associated metabolites dynamic changes in yellow- and white-fleshed seedless loquats (<em>Eriobotrya japonica</em>)

Thu, 04/01/2024 - 12:00
Food Chem X. 2023 Dec 6;21:101046. doi: 10.1016/j.fochx.2023.101046. eCollection 2024 Mar 30.ABSTRACTTriploid loquats are divided into yellow- and white-fleshed cultivars. To better understand taste variations in triploid loquat fruits, we used a UPLC-ESI-QTRAP-MS/MS-based widely targeted metabolomic analysis to examine the metabolic composition of two different color fleshed triploid loquats with a sample size of 54 and external validation method within a confidence level of P<0.05. We identified key flavor-related differentially accumulated metabolites using the variable importance in projection (VIP) value (VIP ≥ 1.0) and fold change ≥ 2 or ≤ 0.5. Furthermore, the results of the HPLC analysis showed that white-fleshed loquats had a low malic acid content. We also performed the UPLC-MS/MS system to investigate the carotenoids contents and lipidome in four triploid cultivars. In the fruits of white-fleshed varieties, the carotenoids contents were significantly downregulated, but the contents of most glycerolphospholipids were increased. Our results reveal the metabolomic changes between the yellow- and white-fleshed cultivars.PMID:38173902 | PMC:PMC10762357 | DOI:10.1016/j.fochx.2023.101046

Evaluating the causal relationship between human blood metabolites and gastroesophageal reflux disease

Thu, 04/01/2024 - 12:00
World J Gastrointest Oncol. 2023 Dec 15;15(12):2169-2184. doi: 10.4251/wjgo.v15.i12.2169.ABSTRACTBACKGROUND: Gastroesophageal reflux disease (GERD) affects approximately 13% of the global population. However, the pathogenesis of GERD has not been fully elucidated. The development of metabolomics as a branch of systems biology in recent years has opened up new avenues for the investigation of disease processes. As a powerful statistical tool, Mendelian randomization (MR) is widely used to explore the causal relationship between exposure and outcome.AIM: To analyze of the relationship between 486 blood metabolites and GERD.METHODS: Two-sample MR analysis was used to assess the causal relationship between blood metabolites and GERD. A genome-wide association study (GWAS) of 486 metabolites was the exposure, and two different GWAS datasets of GERD were used as endpoints for the base analysis and replication and meta-analysis. Bonferroni correction is used to determine causal correlation features (P < 1.03 × 10-4). The results were subjected to sensitivity analysis to assess heterogeneity and pleiotropy. Using the MR Steiger filtration method to detect whether there is a reverse causal relationship between metabolites and GERD. In addition, metabolic pathway analysis was conducted using the online database based MetaboAnalyst 5.0 software.RESULTS: In MR analysis, four blood metabolites are negatively correlated with GERD: Levulinate (4-oxovalerate), stearate (18:0), adrenate (22:4n6) and p-acetamidophenylglucuronide. However, we also found a positive correlation between four blood metabolites and GERD: Kynurenine, 1-linoleoylglycerophosphoethanolamine, butyrylcarnitine and guanosine. And bonferroni correction showed that butyrylcarnitine (odd ratio 1.10, 95% confidence interval: 1.05-1.16, P = 7.71 × 10-5) was the most reliable causal metabolite. In addition, one significant pathways, the "glycerophospholipid metabolism" pathway, can be involved in the pathogenesis of GERD.CONCLUSION: Our study found through the integration of genomics and metabolomics that butyrylcarnitine may be a potential biomarker for GERD, which will help further elucidate the pathogenesis of GERD and better guide its treatment. At the same time, this also contributes to early screening and prevention of GERD. However, the results of this study require further confirmation from both basic and clinical real-world studies.PMID:38173433 | PMC:PMC10758654 | DOI:10.4251/wjgo.v15.i12.2169

Dynamic metabolic-QTL analyses provide novel biochemical insights into the kernel development and nutritional quality improvement in common wheat

Thu, 04/01/2024 - 12:00
Plant Commun. 2024 Jan 3:100792. doi: 10.1016/j.xplc.2024.100792. Online ahead of print.ABSTRACTDespite recent advances in crop metabolomics, the genetic control and molecular basis of wheat kernel metabolomes at different developmental stages remain largely unknown. Here, we performed a widely-targeted metabolic profiling in kernels at three developmental stages, namely grain filling kernels (FK), mature kernels (MK) and germinating kernels (GK), using a population of 159 recombinant inbred lines (RILs). A total of 625 annotated metabolites were detected, and 3173, 3143 and 2644 metabolite quantitative trait loci (mQTL) were mapped in FK, MK and GK, respectively. Only 52 mQTL were simultaneously mapped in all three stages, indicating a high stage-specificity of the wheat kernel metabolome. Subsequently, four candidate genes were functionally validated by in vitro enzymatic reactions and/ or transgenic approaches in wheat, with three of these mediating the tricin metabolic pathway. Meanwhile, both metabolite flux efficiencies within the tricin pathway and the superior candidate haplotypes were evaluated. Thus, the current work represents a comprehensive delineation of the pathway of tricin metabolism in wheat. Finally, further wheat metabolic pathways were re-constructed by updating them to incorporate the 177 candidates identified in the current study. To this end, our work not only provides new knowledge on wheat kernel metabolome variations, but also identifies important molecular resources for wheat nutritional quality improvement.PMID:38173227 | DOI:10.1016/j.xplc.2024.100792

Dysregulation of extracellular vesicle protein cargo in female myalgic encephalomyelitis/chronic fatigue syndrome cases and sedentary controls in response to maximal exercise

Thu, 04/01/2024 - 12:00
J Extracell Vesicles. 2024 Jan;13(1):e12403. doi: 10.1002/jev2.12403.ABSTRACTIn healthy individuals, physical exercise improves cardiovascular health and muscle strength, alleviates fatigue and reduces the risk of chronic diseases. Although exercise is suggested as a lifestyle intervention to manage various chronic illnesses, it negatively affects people with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), who suffer from exercise intolerance. We hypothesized that altered extracellular vesicle (EV) signalling in ME/CFS patients after an exercise challenge may contribute to their prolonged and exacerbated negative response to exertion (post-exertional malaise). EVs were isolated by size exclusion chromatography from the plasma of 18 female ME/CFS patients and 17 age- and BMI-matched female sedentary controls at three time points: before, 15 min, and 24 h after a maximal cardiopulmonary exercise test. EVs were characterized using nanoparticle tracking analysis and their protein cargo was quantified using Tandem Mass Tag-based (TMT) proteomics. The results show that exercise affects the EV proteome in ME/CFS patients differently than in healthy individuals and that changes in EV proteins after exercise are strongly correlated with symptom severity in ME/CFS. Differentially abundant proteins in ME/CFS patients versus controls were involved in many pathways and systems, including coagulation processes, muscle contraction (both smooth and skeletal muscle), cytoskeletal proteins, the immune system and brain signalling.PMID:38173127 | DOI:10.1002/jev2.12403

Haplotype-resolved genome assembly of Phanera championii reveals molecular mechanisms of flavonoid synthesis and adaptive evolution

Thu, 04/01/2024 - 12:00
Plant J. 2024 Jan 3. doi: 10.1111/tpj.16620. Online ahead of print.ABSTRACTPhanera championii is a medicinal liana plant that has successfully adapted to hostile karst habitats. Despite extensive research on its medicinal components and pharmacological effects, the molecular mechanisms underlying the biosynthesis of critical flavonoids and its adaptation to karst habitats remain elusive. In this study, we performed high-coverage PacBio and Hi-C sequencing of P. championii, which revealed its high heterozygosity and phased the genome into two haplotypes: Hap1 (384.60 Mb) and Hap2 (383.70 Mb), encompassing a total of 58 612 annotated genes. Comparative genomes analysis revealed that P. championii experienced two whole-genome duplications (WGDs), with approximately 59.59% of genes originating from WGD events, thereby providing a valuable genetic resource for P. championii. Moreover, we identified a total of 112 genes that were strongly positively selected. Additionally, about 81.60 Mb of structural variations between the two haplotypes. The allele-specific expression patterns suggested that the dominant effect of P. championii was the elimination of deleterious mutations and the promotion of beneficial mutations to enhance fitness. Moreover, our transcriptome and metabolome analysis revealed alleles in different tissues or different haplotypes collectively regulate the synthesis of flavonoid metabolites. In summary, our comprehensive study highlights the significance of genomic and morphological adaptation in the successful adaptation of P. championii to karst habitats. The high-quality phased genomes obtained in this study serve as invaluable genomic resources for various applications, including germplasm conservation, breeding, evolutionary studies, and elucidation of pathways governing key biological traits of P. championii.PMID:38173092 | DOI:10.1111/tpj.16620

Metabolomic profiling of exosomes reveals age-related changes in ovarian follicular fluid

Thu, 04/01/2024 - 12:00
Eur J Med Res. 2024 Jan 3;29(1):4. doi: 10.1186/s40001-023-01586-6.ABSTRACTBACKGROUND: Female fertility declines with increased maternal age, and this decline is even more rapid after the age of 35 years. Follicular fluid (FF) is a crucial microenvironment that plays a significant role in the development of oocytes, permits intercellular communication, and provides the oocytes with nutrition. Exosomes have emerged as being important cell communication mediators that are linked to age-related physiological and pathological conditions. However, the metabolomic profiling of FF derived exosomes from advanced age females are still lacking.METHODS: The individuals who were involved in this study were separated into two different groups: young age with a normal ovarian reserve and advanced age. The samples were analysed by using gas chromatography-time of flight mass spectrometry (GC-TOFMS) analysis. The altered metabolites were analysed by using Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis to identify the functions and pathways that were involved.RESULTS: Our data showed that metabolites in exosomes from FF were different between women of young age and women of advanced age. The set of 17 FF exosomal metabolites (P ≤ 0.05) may be biomarkers to differentiate between the two groups. Most of these differentially expressed metabolites in FF were closely involved in the regulation of oocyte number and hormone levels.CONCLUSIONS: In this study, we identified differences in the metabolites of exosomes from FF between women of young age and women of advanced age. These different metabolites were tightly related to oocyte count and hormone levels. Importantly, these findings elucidate the metabolites of the FF exosomes and provide a better understanding of the nutritional profiles of the follicles with age.PMID:38173013 | DOI:10.1186/s40001-023-01586-6

Genome sequencing and molecular networking analysis of the wild fungus Anthostomella pinea reveal its ability to produce a diverse range of secondary metabolites

Wed, 03/01/2024 - 12:00
Fungal Biol Biotechnol. 2024 Jan 3;11(1):1. doi: 10.1186/s40694-023-00170-1.ABSTRACTBACKGROUND: Filamentous fungi are prolific producers of bioactive molecules and enzymes with important applications in industry. Yet, the vast majority of fungal species remain undiscovered or uncharacterized. Here we focus our attention to a wild fungal isolate that we identified as Anthostomella pinea. The fungus belongs to a complex polyphyletic genus in the family of Xylariaceae, which is known to comprise endophytic and pathogenic fungi that produce a plethora of interesting secondary metabolites. Despite that, Anthostomella is largely understudied and only two species have been fully sequenced and characterized at a genomic level.RESULTS: In this work, we used long-read sequencing to obtain the complete 53.7 Mb genome sequence including the full mitochondrial DNA. We performed extensive structural and functional annotation of coding sequences, including genes encoding enzymes with potential applications in biotechnology. Among others, we found that the genome of A. pinea encodes 91 biosynthetic gene clusters, more than 600 CAZymes, and 164 P450s. Furthermore, untargeted metabolomics and molecular networking analysis of the cultivation extracts revealed a rich secondary metabolism, and in particular an abundance of sesquiterpenoids and sesquiterpene lactones. We also identified the polyketide antibiotic xanthoepocin, to which we attribute the anti-Gram-positive effect of the extracts that we observed in antibacterial plate assays.CONCLUSIONS: Taken together, our results provide a first glimpse into the potential of Anthstomella pinea to provide new bioactive molecules and biocatalysts and will facilitate future research into these valuable metabolites.PMID:38172933 | DOI:10.1186/s40694-023-00170-1

Abnormal arginine synthesis confers worse prognosis in patients with middle third gastric cancer

Wed, 03/01/2024 - 12:00
Cancer Cell Int. 2024 Jan 3;24(1):6. doi: 10.1186/s12935-023-03200-5.ABSTRACTBACKGROUND: Gastric cancer at different locations has distinct prognoses and biological behaviors, but the specific mechanism is unclear.METHODS: Non-targeted metabolomics was performed to examine the differential metabolite phenotypes that may be associated with the effects of tumor location on the prognosis of gastric cancer. And silencing of the rate-limiting enzyme to evaluate the effect of abnormal changes in metabolic pathway on the functional biological assays of gastric cancer cells HGC-27 and MKN28.RESULTS: In a retrospective study of 94 gastric cancer patients, the average survival time of patients with gastric cancer in the middle third of the stomach was significantly lower than that of patients with gastric cancer in other locations (p < 0.05). The middle third location was also found to be an independent risk factor for poor prognosis (HR = 2.723, 95%CI 1.334-5.520), which was closely associated with larger tumors in this location. Non-targeted metabolomic analysis showed that the differential metabolites affected 16 signaling pathways including arginine synthesis, retrograde endocannabinoid signaling, arginine biosynthesis, and alanine and aspartate and glutamate metabolism between gastric cancer and normal tissue, as well as between tumors located in the middle third of the stomach and other locations. Argininosuccinate synthetase 1 (ASS1), the rate-limiting enzyme of the arginine biosynthesis pathway, catalyzes the production of argininosuccinic acid. Here, knockdown of ASS1 significantly inhibited the proliferation, colony formation, and migration/invasion of gastric cancer cells, and promoted apoptosis.CONCLUSIONS: Our study suggests that abnormal arginine synthesis may lead to larger tumor size and worse prognosis in gastric cancer located in the middle third position of the stomach. These findings may provide the basis for the stratification and targeted treatment of gastric cancer in different locations.PMID:38172873 | DOI:10.1186/s12935-023-03200-5

Analysis of fecal microbiome and metabolome changes in goats with pregnant toxemia

Wed, 03/01/2024 - 12:00
BMC Vet Res. 2024 Jan 3;20(1):2. doi: 10.1186/s12917-023-03849-0.ABSTRACTBACKGROUND: Pregnancy toxemia is a common disease, which occurs in older does that are pregnant with multiple lambs in the third trimester. Most of the sick goats die within a few days, which can seriously impact the economic benefits of goat breeding enterprises. The disease is believed to be caused by malnutrition, stress, and other factors, that lead to the disorder of lipid metabolism, resulting in increased ketone content, ketosis, ketonuria, and neurological symptoms. However, the changes in gut microbes and their metabolism in this disease are still unclear. The objective of this experiment was to evaluate the effect of toxemia of pregnancy on the fecal microbiome and metabolomics of does.RESULTS: Eight pregnant does suspected of having toxemia of pregnancy (PT group) and eight healthy does during the same pregnancy (NC group) were selected. Clinical symptoms and pathological changes at necropsy were observed, and liver tissue samples were collected for pathological sections. Jugular venous blood was collected before morning feeding to detect biochemical indexes. Autopsy revealed that the liver of the pregnancy toxemia goat was enlarged and earthy yellow, and the biochemical results showed that the serum levels of aspartate aminotransferase (AST) and β-hydroxybutyric acid (B-HB) in the PT group were significantly increased, while calcium (Ca) levels were significantly reduced. Sections showed extensive vacuoles in liver tissue sections. The microbiome analysis found that the richness and diversity of the PT microbiota were significantly reduced. Metabolomic analysis showed that 125 differential metabolites were screened in positive ion mode and enriched in 12 metabolic pathways. In negative ion mode, 100 differential metabolites were screened and enriched in 7 metabolic pathways.CONCLUSIONS: Evidence has shown that the occurrence of pregnancy toxemia is related to gut microbiota, and further studies are needed to investigate its pathogenesis and provide research basis for future preventive measures of this disease.PMID:38172782 | DOI:10.1186/s12917-023-03849-0

Comparative physiological, metabolomic and transcriptomic analyses reveal the mechanisms of differences in pear fruit quality between distinct training systems

Wed, 03/01/2024 - 12:00
BMC Plant Biol. 2024 Jan 4;24(1):28. doi: 10.1186/s12870-023-04716-8.ABSTRACTBACKGROUND: Canopy architecture is critical in determining the fruit-zone microclimate and, ultimately, in determining an orchard's success in terms of the quality and quantity of the fruit produced. However, few studies have addressed how the canopy environment leads to metabolomic and transcriptomic alterations in fruits. Designing strategies for improving the quality of pear nutritional components relies on uncovering the related regulatory mechanisms.RESULTS: We performed an in-depth investigation of the impact of canopy architecture from physiological, metabolomic and transcriptomic perspectives by comparing pear fruits grown in a traditional freestanding system (SP) or a flat-type trellis system (DP). Physiological studies revealed relatively greater fruit sizes, soluble solid contents and titratable acidities in pear fruits from DP systems with open canopies. Nontargeted metabolite profiling was used to characterize fruits at the initial ripening stage. Significant differences in fruit metabolites, including carbohydrates, nucleic acids, alkaloids, glycerophospholipids, sterol lipids, and prenol lipids, were observed between the two groups. Transcriptomic analysis indicated that a series of organic substance catabolic processes (e.g., the glycerol-3-phosphate catabolic process, pectin catabolic process and glucan catabolic process) were overrepresented in fruits of the DP system. Moreover, integrative analysis of the metabolome and transcriptome at the pathway level showed that DP pear fruits may respond to the canopy microenvironment by upregulating phenylpropanoid biosynthesis pathway genes such as PpPOD. Transient assays revealed that the contents of malic acid and citric acid were lower in the pear flesh of PpPOD RNAi plants, which was associated with regulating the expression of organic acid metabolism-related genes.CONCLUSIONS: Our results provide fundamental evidence that at the physiological and molecular levels, open-canopy architecture contributes to improving pear fruit quality and is correlated with increased levels of carbohydrates and lipid-like molecules. This study may lead to the development of rational culture practices for enhancing the nutritional traits of pear fruits.PMID:38172675 | DOI:10.1186/s12870-023-04716-8

Intergrative metabolomic and transcriptomic analyses reveal the potential regulatory mechanism of unique dihydroxy fatty acid biosynthesis in the seeds of an industrial oilseed crop Orychophragmus violaceus

Wed, 03/01/2024 - 12:00
BMC Genomics. 2024 Jan 3;25(1):29. doi: 10.1186/s12864-023-09906-0.ABSTRACTBACKGROUND: Orychophragmus violaceus is a potentially important industrial oilseed crop due to the two 24-carbon dihydroxy fatty acids (diOH-FA) that was newly identified from its seed oil via a 'discontinuous elongation' process. Although many research efforts have focused on the diOH-FA biosynthesis mechanism and identified the potential co-expressed diacylglycerol acyltranferase (DGAT) gene associated with triacylglycerol (TAG)-polyestolides biosynthesis, the dynamics of metabolic changes during seed development of O. violaceus as well as its associated regulatory network changes are poorly understood.RESULTS: In this study, by combining metabolome and transcriptome analysis, we identified that 1,003 metabolites and 22,479 genes were active across four stages of seed development, which were further divided into three main clusters based on the patterns of metabolite accumulation and/or gene expression. Among which, cluster2 was mostly related to diOH-FA biosynthesis pathway. We thus further constructed transcription factor (TF)-structural genes regulatory map for the genes associated with the flavonoids, fatty acids and diOH-FA biosynthesis pathway in this cluster. In particular, several TF families such as bHLH, B3, HD-ZIP, MYB were found to potentially regulate the metabolism associated with the diOH-FA pathway. Among which, multiple candidate TFs with promising potential for increasing the diOH-FA content were identified, and we further traced the evolutionary history of these key genes among species of Brassicaceae.CONCLUSION: Taken together, our study provides new insight into the gene resources and potential relevant regulatory mechanisms of diOH-FA biosynthesis uniquely in seeds of O. violaceus, which will help to promote the downstream breeding efforts of this potential oilseed crop and advance the bio-lubricant industry.PMID:38172664 | DOI:10.1186/s12864-023-09906-0

Differential oral and gut microbial structure related to systemic metabolism in kidney stone patients

Wed, 03/01/2024 - 12:00
World J Urol. 2024 Jan 3;42(1):6. doi: 10.1007/s00345-023-04712-5.ABSTRACTOBJECTIVES: To investigate the role of the oral and gut microbiome related to systemic metabolism and clinical parameters in various types of kidney stone disease.PATIENTS AND METHODS: We conducted a case-control study by analyzing 16S rRNA and untargeted metabolomics profiling of 76 fecal, 68 saliva, 73 urine, and 43 serum samples from 76 participants aged 18-75 years old. The participants included 15 patients with uric acid stones, 41 patients with calcium oxalate stones, and 20 healthy controls. Correlations among microbiome, metabolism, and clinical parameters were identified through Spearman's correlation analysis. (Clinical trial No. ChiCTR2200055316).RESULTS: Patients with uric acid stones exhibited reduced richness and diversity in their microbiome, as well as altered composition in both oral and gut microbiome. Furthermore, their fecal samples showed lower relative abundances of Bacteroides and Lachnospiraceae, while their saliva samples showed higher relative abundances of Porphyromonas and Neisseria. Predicted KEGG metabolism pathways, including amino acid and fatty acid metabolisms, were significantly altered in subjects with uric acid stones. Oral, gut microbiota, and metabolism were also associated with low water intake and urine pH. The area under the curve (AUC) of the specific microbiota and metabolite prediction models was over 0.85.CONCLUSION: The structure and composition of the oral and gut microbiome in different types of kidney stone disease, the correlations between oral and gut microbiome, and the associations among oral and gut microbiota, systemic metabolism and clinical parameters imply an important role that the oral and gut microbiome may play in kidney stone disease.PMID:38172428 | DOI:10.1007/s00345-023-04712-5

Low vitamin D levels are linked with increased cardiovascular disease risk in young adults: a sub-study and secondary analyses from the ACTIBATE randomized controlled trial

Wed, 03/01/2024 - 12:00
J Endocrinol Invest. 2024 Jan 4. doi: 10.1007/s40618-023-02272-4. Online ahead of print.ABSTRACTPURPOSE: Vitamin D deficiency is related to metabolic disturbances. Indeed, a poor vitamin D status has been usually detected in patients with cardiovascular disease (CVD). However, the relationship between vitamin D and CVD risk factors in young adults remains controversial at present. This study aimed to examine the association between circulating 25-hydroxivitamin D (25(OH)D) and CVD risk factors in young adults.METHODS: The present cross-sectional study included a cohort of 177 young adults aged 18-25 years old (65% women). 25(OH)D serum concentrations were assessed using a competitive chemiluminescence immunoassay. Fasting CVD risk factors (i.e., body composition, blood pressure, glucose metabolism, lipid profile, liver, and inflammatory markers) were determined by routine methods. A panel of 63 oxylipins and endocannabinoids (eCBs) was also analyzed by targeted metabolomics.RESULTS: Circulating 25(OH)D concentrations were inversely associated with a wide range of CVD risk factors including anthropometrical (all P ≤ 0.005), body composition (all P ≤ 0.038), glucose metabolism (all P ≤ 0.029), lipid profile (all P < 0.035), liver (all P ≤ 0.011), and pro-inflammatory biomarkers (all P ≤ 0.030). No associations of serum 25(OH)D concentrations were found with pro-inflammatory markers (all P ≥ 0.104), omega-6 and omega-3 oxylipins, nor eCBs concentrations or their analogs (all P ≥ 0.05).CONCLUSION: The present findings support the idea that 25(OH)D could be a useful predictor of CVD risk in young individuals.PMID:38172418 | DOI:10.1007/s40618-023-02272-4

Bacteria and bacteriophage consortia are associated with protective intestinal metabolites in patients receiving stem cell transplantation

Wed, 03/01/2024 - 12:00
Nat Cancer. 2024 Jan 3. doi: 10.1038/s43018-023-00669-x. Online ahead of print.ABSTRACTThe microbiome is a predictor of clinical outcome in patients receiving allogeneic hematopoietic stem cell transplantation (allo-SCT). Microbiota-derived metabolites can modulate these outcomes. How bacteria, fungi and viruses contribute to the production of intestinal metabolites is still unclear. We combined amplicon sequencing, viral metagenomics and targeted metabolomics from stool samples of patients receiving allo-SCT (n = 78) and uncovered a microbiome signature of Lachnospiraceae and Oscillospiraceae and their associated bacteriophages, correlating with the production of immunomodulatory metabolites (IMMs). Moreover, we established the IMM risk index (IMM-RI), which was associated with improved survival and reduced relapse. A high abundance of short-chain fatty acid-biosynthesis pathways, specifically butyric acid via butyryl-coenzyme A (CoA):acetate CoA-transferase (BCoAT, which catalyzes EC 2.8.3.8) was detected in IMM-RI low-risk patients, and virome genome assembly identified two bacteriophages encoding BCoAT as an auxiliary metabolic gene. In conclusion, our study identifies a microbiome signature associated with protective IMMs and provides a rationale for considering metabolite-producing consortia and metabolite formulations as microbiome-based therapies.PMID:38172339 | DOI:10.1038/s43018-023-00669-x

Efficacy of Bifidobacterium animalis subsp. lactis BL-99 in the treatment of functional dyspepsia: a randomized placebo-controlled clinical trial

Wed, 03/01/2024 - 12:00
Nat Commun. 2024 Jan 3;15(1):227. doi: 10.1038/s41467-023-44292-x.ABSTRACTCurrent treatment for functional dyspepsia (FD) has limited and unsustainable efficacy. Probiotics have the sustainable potential to alleviate FD. This randomized controlled clinical trial (Chinese Clinical Trial Registry, ChiCTR2000041430) assigned 200 FD patients to receive placebo, positive-drug (rabeprazole), or Bifidobacterium animalis subsp. lactis BL-99 (BL-99; low, high doses) for 8-week. The primary outcome was the clinical response rate (CRR) of FD score after 8-week treatment. The secondary outcomes were CRR of FD score at other periods, and PDS, EPS, serum indicators, fecal microbiota and metabolites. The CRR in FD score for the BL-99_high group [45 (90.0%)] was significantly higher than that for placebo [29 (58.0%), p = 0.001], BL-99_low [37 (74.0%), p = 0.044] and positive_control [35 (70.0%), p = 0.017] groups after 8-week treatment. This effect was sustained until 2-week after treatment but disappeared 8-week after treatment. Further metagenomic and metabolomics revealed that BL-99 promoted the accumulation of SCFA-producing microbiota and the increase of SCFA levels in stool and serum, which may account for the increase of serum gastrin level. This study supports the potential use of BL-99 for the treatment of FD.PMID:38172093 | DOI:10.1038/s41467-023-44292-x

Exploration of urine metabolic biomarkers for new-onset, untreated pediatric epilepsy: A gas and liquid chromatography mass spectrometry-based metabolomics study

Wed, 03/01/2024 - 12:00
Brain Dev. 2024 Jan 2:S0387-7604(23)00209-7. doi: 10.1016/j.braindev.2023.12.004. Online ahead of print.ABSTRACTOBJECTIVE: The discovery of objective indicators for recent epileptic seizures will help confirm the diagnosis of epilepsy and evaluate therapeutic effects. Past studies had shortcomings such as the inclusion of patients under treatment and those with various etiologies that could confound the analysis results significantly. We aimed to minimize such confounding effects and to explore the small molecule biomarkers associated with the recent occurrence of epileptic seizures using urine metabolomics.METHODS: This is a multicenter prospective study. Subjects included pediatric patients aged 2 to 12 years old with new-onset, untreated epilepsy, who had had the last seizure within 1 month before urine collection. Controls included healthy children aged 2 to 12 years old. Those with underlying or chronic diseases, acute illnesses, or recent administration of medications or supplements were excluded. Targeted metabolome analysis of spot urine samples was conducted using gas chromatography (GC)- and liquid chromatography (LC)-tandem mass spectrometry (MS/MS).RESULTS: We enrolled 17 patients and 21 controls. Among 172 metabolites measured by GC/MS/MS and 41 metabolites measured by LC/MS/MS, only taurine was consistently reduced in the epilepsy group. This finding was subsequently confirmed by the absolute quantification of amino acids. No other metabolites were consistently altered between the two groups.CONCLUSIONS: Urine metabolome analysis, which covers a larger number of metabolites than conventional biochemistry analyses, found no consistently altered small molecule metabolites except for reduced taurine in epilepsy patients compared to healthy controls. Further studies with larger samples, subjects with different ages, expanded target metabolites, and the investigation of plasma samples are required.PMID:38171994 | DOI:10.1016/j.braindev.2023.12.004

Lung-to-Heart Nano-in-Micro Peptide Promotes Cardiac Recovery in a Pig Model of Chronic Heart Failure

Wed, 03/01/2024 - 12:00
J Am Coll Cardiol. 2024 Jan 2;83(1):47-59. doi: 10.1016/j.jacc.2023.10.029.ABSTRACTBACKGROUND: The lack of disease-modifying drugs is one of the major unmet needs in patients with heart failure (HF). Peptides are highly selective molecules with the potential to act directly on cardiomyocytes. However, a strategy for effective delivery of therapeutics to the heart is lacking.OBJECTIVES: In this study, the authors sought to assess tolerability and efficacy of an inhalable lung-to-heart nano-in-micro technology (LungToHeartNIM) for cardiac-specific targeting of a mimetic peptide (MP), a first-in-class for modulating impaired L-type calcium channel (LTCC) trafficking, in a clinically relevant porcine model of HF.METHODS: Heart failure with reduced ejection fraction (HFrEF) was induced in Göttingen minipigs by means of tachypacing over 6 weeks. In a setting of overt HFrEF (left ventricular ejection fraction [LVEF] 30% ± 8%), animals were randomized and treatment was started after 4 weeks of tachypacing. HFrEF animals inhaled either a dry powder composed of mannitol-based microparticles embedding biocompatible MP-loaded calcium phosphate nanoparticles (dpCaP-MP) or the LungToHeartNIM only (dpCaP without MP). Efficacy was evaluated with the use of echocardiography, invasive hemodynamics, and biomarker assessment.RESULTS: DpCaP-MP inhalation restored systolic function, as shown by an absolute LVEF increase over the treatment period of 17% ± 6%, while reversing cardiac remodeling and reducing pulmonary congestion. The effect was recapitulated ex vivo in cardiac myofibrils from treated HF animals. The treatment was well tolerated, and no adverse events occurred.CONCLUSIONS: The overall tolerability of LungToHeartNIM along with the beneficial effects of the LTCC modulator point toward a game-changing treatment for HFrEF patients, also demonstrating the effective delivery of a therapeutic peptide to the diseased heart.PMID:38171710 | DOI:10.1016/j.jacc.2023.10.029

The agavins (Agave carbohydrates) story

Wed, 03/01/2024 - 12:00
Carbohydr Polym. 2024 Mar 1;327:121671. doi: 10.1016/j.carbpol.2023.121671. Epub 2023 Dec 5.ABSTRACTFructans, are carbohydrates defined as fructose-based polymers with countable degree of polymerization (DP) ranging so far from DP3 to DP60. There are different types of fructans depending on their molecular arrangement. They are categorized as linear inulins and levans, neoseries of inulin and levan, branched graminans, and highly branched neofructans, so called agavins (Agave carbohydrates). It is worth to note that agavins are the most recently described type of fructans and they are also the most complex ones. The complexity of these carbohydrates is correlated to their various isomers and degree of polymerization range, which is correlated to their multifunctional application in industry and human health. Here, we narrate the story of the agavins' discovery. This included their chemical characterization, their benefits, biotechnological applications, and drawbacks over human health. Finally, a perspective of the study of agavins and their interactions with other metabolites through metabolomics is proposed.PMID:38171684 | DOI:10.1016/j.carbpol.2023.121671

Pages