Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

Distinct plasma metabolomic signatures differentiate autoimmune encephalitis from drug-resistant epilepsy

Tue, 16/07/2024 - 12:00
Ann Clin Transl Neurol. 2024 Jul;11(7):1897-1908. doi: 10.1002/acn3.52112. Epub 2024 Jun 21.ABSTRACTOBJECTIVE: Differentiating forms of autoimmune encephalitis (AE) from other causes of seizures helps expedite immunotherapies in AE patients and informs studies regarding their contrasting pathophysiology. We aimed to investigate whether and how Nuclear Magnetic Resonance (NMR)-based metabolomics could differentiate AE from drug-resistant epilepsy (DRE), and stratify AE subtypes.METHODS: This study recruited 238 patients: 162 with DRE and 76 AE, including 27 with contactin-associated protein-like 2 (CASPR2), 29 with leucine-rich glioma inactivated 1 (LGI1) and 20 with N-methyl-d-aspartate receptor (NMDAR) antibodies. Plasma samples across the groups were analyzed using NMR spectroscopy and compared with multivariate statistical techniques, such as orthogonal partial least squares discriminant analysis (OPLS-DA).RESULTS: The OPLS-DA model successfully distinguished AE from DRE patients with a high predictive accuracy of 87.0 ± 3.1% (87.9 ± 3.4% sensitivity and 86.3 ± 3.6% specificity). Further, pairwise OPLS-DA models were able to stratify the three AE subtypes. Plasma metabolomic signatures of AE included decreased high-density lipoprotein (HDL, -(CH2)n-, -CH3), phosphatidylcholine and albumin (lysyl moiety). AE subtype-specific metabolomic signatures were also observed, with increased lactate in CASPR2, increased lactate, glucose, and decreased unsaturated fatty acids (UFA, -CH2CH=) in LGI1, and increased glycoprotein A (GlycA) in NMDAR-antibody patients.INTERPRETATION: This study presents the first non-antibody-based biomarker for differentiating DRE, AE and AE subtypes. These metabolomics signatures underscore the potential relevance of lipid metabolism and glucose regulation in these neurological disorders, offering a promising adjunct to facilitate the diagnosis and therapeutics.PMID:39012808 | DOI:10.1002/acn3.52112

Metabolic and Bioenergetic Alterations are Associated with Infection Susceptibility in Survivors of Severe Trauma: An Exploratory Study

Tue, 16/07/2024 - 12:00
Shock. 2024 Jul 16. doi: 10.1097/SHK.0000000000002419. Online ahead of print.ABSTRACTBACKGROUND: Trauma and blood loss are frequently associated with organ failure, immune dysfunction, and a high risk of secondary bacterial lung infections. We aim to test if plasma metabolomic flux and monocyte bioenergetics are altered in association with trauma and related secondary infections.METHODS: Plasma samples were collected from trauma patients at three time points: days 0, 3, and 7 post-admission. Metabolites (140) were measured in plasma from trauma survivors (n = 24) and healthy control individuals (HC, n = 10). Further analysis within the trauma cohort included subsets of trauma/infection-negative (TIneg, n = 12) and trauma/infection-positive patients (TIpos, n = 12). The bioenergetic profile in monocytes was determined using mitochondrial and glycolytic stress tests.RESULTS: In the trauma cohort, significant alterations were observed in 29 metabolites directly affecting 11 major metabolic pathways, while 34 metabolite alterations affected 8 pathways in TIpos, versus TIneg patients. The most altered metabolic pathways included protein synthesis, the urea cycle/arginine metabolism, phenylalanine, tyrosine, tryptophan biosynthesis, and carnitine compound family. In monocytes from trauma patients, reduced mitochondrial indices and loss of glycolytic plasticity were consistent with an altered profile of plasma metabolites in the TCA cycle and glycolysis.CONCLUSIONS: Our study highlights that the metabolic profile is significantly and persistently affected by trauma and related infections. Among trauma survivors, metabolic alterations in plasma were associated with reduced monocyte bioenergetics. These exploratory findings establish a groundwork for future clinical studies aimed at enhancing our understanding of the interplay between metabolic/bioenergetic alterations associated with trauma and secondary bacterial infections.PMID:39012766 | DOI:10.1097/SHK.0000000000002419

Dysregulation of Lipid Metabolism Serves as A Link Between Alzheimer's and Cardiovascular Disease, As Witnessed in A Cross-Sectional Study

Tue, 16/07/2024 - 12:00
Aging Dis. 2024 Jul 23. doi: 10.14336/AD.2024.0434. Online ahead of print.ABSTRACTCardiovascular risk factors and established cardiovascular disease (CVD) increase the risk of suffering dementia of the Alzheimer's type (DAT). Here, we set out to define specific molecular profiles of CVD in patients with DAT to better understand its relationship, to unravel the mechanisms underlying the high risk of developing DAT in CVD patients and to define new markers of early disease. Plasma samples from patients with DAT, with and without CVD, were analyzed through a multiomics approach, with integration of metabolomics and proteomics datasets using the OmicsNet web-based tool. Metabolomics results showed an enrichment in lipids and lipid-like molecules. Similarly, the most significant cluster identified through proteomics was formed by 5 proteins related to lipoprotein and cholesterol metabolism. After integration and functional enrichment, glycerolipid metabolism, fatty acid degradation and sphingolipid metabolism were among the most significant functions. Finally, differential expression of ABCA1 and APOH proteins was verified, in an independent cohort also including controls and patients with CVD alone. Both proteins positively correlated with phospho-Tau (181), a classical hallmark of DAT. Different molecular profiles exist in patients with DAT, with and without CVD, with exacerbated alterations in patients in which DAT and CVD co-exist. This information may help to define biomarkers like ABCA1 and APOH that identify patients with cardiovascular dysfunction that are at high risk of developing DAT. Such markers will allow more personalized interventions to be selected, a further step towards precision medicine for individuals whose molecular profiles indicate a distinct response to the same management strategies.PMID:39012677 | DOI:10.14336/AD.2024.0434

Secondary bile acids in portal blood contribute to liver regeneration in a rat model of partial hepatectomy

Tue, 16/07/2024 - 12:00
Am J Physiol Gastrointest Liver Physiol. 2024 Jul 16. doi: 10.1152/ajpgi.00301.2023. Online ahead of print.ABSTRACTGut metabolites via the portal vein affect several liver functions, including regeneration. Here, we investigated gut microbiota-derived metabolites in portal and peripheral serum during liver regeneration. We developed rat models of 70% partial hepatectomy (PHx) with and without prior gut microbiota modulation by three-week antibiotic (Abx) treatment. Sham without Abx were used as controls and compared to sham with Abx. Liver regeneration at day 2 following PHx was assessed by expression of proliferating cell nuclear antigen (PCNA) protein in liver tissues and cyclin genes in primary hepatocytes. High pressure liquid chromatography-mass spectrometry (HPLC-MS) based portal and peripheral venous serum metabolomics was performed to identify differentially altered metabolites (DAMs). Compared to controls, rat livers at day 2 post-PHx showed significant upregulation in the average number of PCNA-positive cells, which positively correlated with the expression of cell cycle genes in hepatocytes. In Abx-treated PHx, we observed reduced PCNA-positivity and downregulation in gene expression of various cyclins in hepatocytes compared to PHx. We identified 224 DAMs between controls vs PHx and 189 DAMs between Abx-treated PHx vs PHx in portal serum. Many common DAMs showed opposite expression trends in PHx vs controls and then Abx+PHx vs PHx in portal serum, such as sphingosine-1-phosphate and deoxycholic acid. In vitro studies with deoxycholic acid demonstrated that it enhanced the viability and proliferation of primary hepatocytes and hepatocyte organoids. The study underscores the critical role of deoxycholic acid in portal blood in enhancing hepatocyte proliferation and subsequently, liver regeneration.PMID:39012497 | DOI:10.1152/ajpgi.00301.2023

Knowledge translation and knowledge mobilization from the FoodBAll project

Tue, 16/07/2024 - 12:00
Appl Physiol Nutr Metab. 2024 Jul 16. doi: 10.1139/apnm-2023-0573. Online ahead of print.ABSTRACTThis report describes the knowledge mobilization and translation outcomes of the Canadian-funded portion of a large, international project called the Food Biomarker Alliance (FoodBAll), which ran from 2015 to 2019. This remarkably successful project led to a large number of important findings, outputs, and impacts. In particular, FoodBAll unequivocally demonstrated that metabolomics could be used to not only discover biomarkers of food intake (BFIs), but also to measure diet in a more objective manner. FoodBAll also created standards for assessing and validating BFIs, papers and databases describing BFIs, and kits for measuring BFIs and it laid the groundwork for many global studies exploring food composition and precision nutrition.PMID:39011902 | DOI:10.1139/apnm-2023-0573

Consumption of dietary turmeric promotes fat browning and thermogenesis in association with gut microbiota regulation in high-fat diet-fed mice

Tue, 16/07/2024 - 12:00
Food Funct. 2024 Jul 16. doi: 10.1039/d4fo01489h. Online ahead of print.ABSTRACTThis study was designed to verify the anti-obesity effect of dietary turmeric powder (TP) as a traditional cooking spice and its underlying mechanism. The HFD-fed C57BL/6J mice were supplemented with or without TP (8%) for 12 weeks. The results indicated that the glucolipid metabolism disorder of high-fat diet (HFD)-fed mice was significantly ameliorated through the supplementation of TP. The consumption of TP also induced beige-fat development and brown adipose tissue (BAT)-derived nonshivering thermogenesis in HFD-fed obese mice. 16S rDNA-based microbiota or targeted metabolomics analysis indicated that TP ameliorated the intestinal microbiota dysbiosis and microbial metabolism abnormality caused by HFD, reflected by dramatically increasing the relative abundance of Muribaculaceae, Candidatus_Saccharimonas, and Bifidobacterium and production of short-chain fatty acids (SCFAs) and succinate. Interestingly, TP-induced BAT thermogenesis and iWAT browning were highly correlated with the reconstruction of the gut microbiome and formation of SCFAs and succinate. Collectively, these findings manifest beneficial actions of TP on the promotion of adipose browning and thermogenesis in association with gut microbiota reconstruction, and our findings may provide a promising way for preventing obesity.PMID:39011866 | DOI:10.1039/d4fo01489h

Biofortification, metabolomic profiling and quantitative analysis of vitamin B(12) enrichment in guava juice via lactic acid fermentation using Levilactobacillus brevis strain KU15152

Tue, 16/07/2024 - 12:00
J Sci Food Agric. 2024 Jul 16. doi: 10.1002/jsfa.13741. Online ahead of print.ABSTRACTBACKGROUND: Chemical fortification and dose supplementation of vitamin B12 are widely implemented to combat deficiency symptoms. However, in situ, fortification of vitamin B12 in food matrixes can be a promising alternative to chemical fortification. The present study aimed to produce vitamin B12-rich, probiotic guava juice fermented with Levilactobacillus brevis strain KU15152. Pasteurized fresh guava juice was inoculated with 7.2 log CFU mL-1 L. brevis strain KU15152 and incubated for 72 h at 37 °C anaerobically. The antioxidants, total phenolic compounds, vitamin B12 production, sugars, organic acids, pH and viable count were analyzed at 24, 48 and 72 h of incubation. The fermented juice was stored at 4 °C, and the changes in its functional properties were analyzed at 7-day intervals up to 28 days of storage.RESULTS: During fermentation, the bacteria cell count was increased from 7.01 ± 0.06 to 9.76 ± 0.42 log CFU mL-1 after 72 h of fermentation and was decreased to 6.94 ± 0.34 CFU mL-1 during storage at 4 °C after 28 days. The pH, total soluble solids, crude fiber, citric acid and total sugars decreased, while titratable acidity, total protein, antioxidants, phenolic compounds and lactic acid contents increased during fermentation. The fermented guava juice exhibited higher 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS)) radical scavenging activities (85.97% and 75.97%, respectively) at 48 h of fermentation. The concentration of active vitamin B12 in the sample reached 109.5 μg L-1 at 72 h of fermentation. However, this concentration gradually decreased to 70.2 μg L-1 during the storage period. During storage for 28 days at 4 °C, both the fermented and control guava juices exhibited a decline in antioxidant and phenolic compound concentrations. Furthermore, the addition of 20% honey and guava flavor enhanced the organoleptic properties and acceptability of fermented guava juice.CONCLUSION: The value-added fermented guava juice could be a novel functional food product to combat vitamin B12 deficiency. © 2024 The Author(s). Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.PMID:39011860 | DOI:10.1002/jsfa.13741

NFκB dynamics-dependent epigenetic changes modulate inflammatory gene expression and induce cellular senescence

Tue, 16/07/2024 - 12:00
FEBS J. 2024 Jul 16. doi: 10.1111/febs.17227. Online ahead of print.ABSTRACTUpregulation of nuclear factor κB (NFκB) signaling is a hallmark of aging and a major cause of age-related chronic inflammation. However, its effect on cellular senescence remains unclear. Here, we show that alteration of NFκB nuclear dynamics from oscillatory to sustained by depleting a negative feedback regulator of NFκB pathway, NFκB inhibitor alpha (IκBα), in the presence of tumor necrosis factor α (TNFα) promotes cellular senescence. Sustained NFκB activity enhanced inflammatory gene expression through increased NFκB-DNA binding and slowed the cell cycle. IκBα protein was decreased under replicative or oxidative stress in vitro. Furthermore, a decrease in IκBα protein and an increase in DNA-NFκB binding at the transcription start sites of age-associated genes in aged mouse hearts suggested that nuclear NFκB dynamics may play a critical role in the progression of aging. Our study suggests that nuclear NFκB dynamics-dependent epigenetic changes regulated over time in a living system, possibly through a decrease in IκBα, enhance the expression of inflammatory genes to advance the cells to a senescent state.PMID:39011799 | DOI:10.1111/febs.17227

Plasma proteometabolome in lung cancer: exploring biomarkers through bidirectional Mendelian randomization and colocalization analysis

Tue, 16/07/2024 - 12:00
Hum Mol Genet. 2024 Jul 16:ddae110. doi: 10.1093/hmg/ddae110. Online ahead of print.ABSTRACTUnlike other cancers with widespread screening (breast, colorectal, cervical, prostate, and skin), lung nodule biopsies for positive screenings have higher morbidity with clinical complications. Development of non-invasive diagnostic biomarkers could thereby significantly enhance lung cancer management for at-risk patients. Here, we leverage Mendelian Randomization (MR) to investigate the plasma proteome and metabolome for potential biomarkers relevant to lung cancer. Utilizing bidirectional MR and co-localization analyses, we identify novel associations, highlighting inverse relationships between plasma proteins SFTPB and KDELC2 in lung adenocarcinoma (LUAD) and positive associations of TCL1A with lung squamous cell carcinoma (LUSC) and CNTN1 with small cell lung cancer (SCLC). Additionally, our work reveals significant negative correlations between metabolites such as theobromine and paraxanthine, along with paraxanthine-related ratios, in both LUAD and LUSC. Conversely, positive correlations are found in caffeine/paraxanthine and arachidonate (20:4n6)/paraxanthine ratios with these cancer types. Through single-cell sequencing data of normal lung tissue, we further explore the role of lung tissue-specific protein SFTPB in carcinogenesis. These findings offer new insights into lung cancer etiology, potentially guiding the development of diagnostic biomarkers and therapeutic approaches.PMID:39011643 | DOI:10.1093/hmg/ddae110

Mechanisms of Zhixiao Tang on Anti-Inflammatory Multiple Targets and Multiple Components: Metabonomics Combined with Database Mining Technology

Tue, 16/07/2024 - 12:00
J Inflamm Res. 2024 Jul 11;17:4587-4610. doi: 10.2147/JIR.S463067. eCollection 2024.ABSTRACTPURPOSE: Zhixiao Tang (ZXT), a traditional Chinese compound prescription, has been used clinically to treat pneumonia in China. However, the underlying mechanism of ZXT treatment in pneumonia is still unclear. The present study aimed to reveal the potential mechanism of ZXT in pneumonia using a strategy combining metabolomics and network pharmacology.METHODS: Initially, the chemical compositions were identified by UPLC-QE-Orbitrap-MS, while the prediction of potential signal pathways was performed through network pharmacology. To assess the anti-inflammatory properties of ZXT in the context of pneumonia, models of 16HBE cells induced by LPS and zebrafish induced by CuSO4 were established to measure levels of inflammatory markers and apoptosis. Subsequently, the differential changes of endogenous metabolites in cells caused by ZXT were examined using metabolomics technology, and the molecular docking analysis of key targets was carried out using Autodock Vina software. Ultimately, the validation of the primary pathways and targets was conducted through quantitative RT-PCR and Western blot techniques.RESULTS: A total of 75 compounds were identified through UPLC-QE-Orbitrap-MS analyses. Network pharmacological analysis shows that it plays an anti-inflammatory role in C-type lectin receptor signaling pathway. After ZXT intervention, the inflammatory factors and apoptosis in cells were significantly reduced. Metabonomics analysis showed that 18 metabolites changed significantly. Four key genes were identified, which exhibited partial compatibility with the findings of network pharmacology. Molecular docking analysis confirmed the substantial affinity of the primary targets for ZXT. Furthermore, ZXT exerted a suppressive effect on neutrophil migration, down-regulated the expression of pro-inflammatory cytokine genes, and inhibited the up-regulation of the Dectin-1/SYK/NF-κB signaling pathway. In vivo cell experiments also yielded consistent experimental outcomes.CONCLUSION: This study enhances comprehension of the pharmacological mechanism underlying ZXT's efficacy in pneumonia treatment, thereby establishing a scholarly basis for future research and clinical utilization of ZXT in pneumonia management.PMID:39011417 | PMC:PMC11249118 | DOI:10.2147/JIR.S463067

Succinic semialdehyde dehydrogenase deficiency: a metabolic and genomic approach to diagnosis

Tue, 16/07/2024 - 12:00
Front Genet. 2024 Jun 19;15:1405468. doi: 10.3389/fgene.2024.1405468. eCollection 2024.ABSTRACTGenomic sequencing offers an untargeted, data-driven approach to genetic diagnosis; however, variants of uncertain significance often hinder the diagnostic process. The discovery of rare genomic variants without previously known functional evidence of pathogenicity often results in variants being overlooked as potentially causative, particularly in individuals with undifferentiated phenotypes. Consequently, many neurometabolic conditions, including those in the GABA (gamma-aminobutyric acid) catabolism pathway, are underdiagnosed. Succinic semialdehyde dehydrogenase deficiency (SSADHD, OMIM #271980) is a neurometabolic disorder in the GABA catabolism pathway. The disorder is due to bi-allelic pathogenic variants in ALDH5A1 and is usually characterized by moderate-to-severe developmental delays, hypotonia, intellectual disability, ataxia, seizures, hyperkinetic behavior, aggression, psychiatric disorders, and sleep disturbances. In this study, we utilized an integrated approach to diagnosis of SSADHD by examining molecular, clinical, and metabolomic data from a single large commercial laboratory. Our analysis led to the identification of 16 patients with likely SSADHD along with three novel variants. We also showed that patients with this disorder have a clear metabolomic signature that, along with molecular and clinical findings, may allow for more rapid and efficient diagnosis. We further surveyed all available pathogenic/likely pathogenic variants and used this information to estimate the global prevalence of this disease. Taken together, our comprehensive analysis allows for a global approach to the diagnosis of SSADHD and provides a pathway to improved diagnosis and potential incorporation into newborn screening programs. Furthermore, early diagnosis facilitates referral to genetic counseling, family support, and access to targeted treatments-taken together, these provide the best outcomes for individuals living with either GABA-TD or SSADHD, as well as other rare conditions.PMID:39011401 | PMC:PMC11247174 | DOI:10.3389/fgene.2024.1405468

Causality of genetically determined metabolites on susceptibility to prevalent urological cancers: a two-sample Mendelian randomization study and meta-analysis

Tue, 16/07/2024 - 12:00
Front Genet. 2024 Jul 1;15:1398165. doi: 10.3389/fgene.2024.1398165. eCollection 2024.ABSTRACTBACKGROUND: Prevalent urological cancers, including kidney, prostate, bladder, and testicular cancers, contribute significantly to global cancer incidence and mortality. Metabolomics, focusing on small-molecule intermediates, has emerged as a tool to understand cancer etiology. Given the knowledge gap in this field, we employ a two-sample Mendelian randomization (MR) analysis to investigate the causal relationships between genetically determined metabolites (GDMs) and the susceptibility to four common urological cancers.METHODS: The study employs genome-wide association studies (GWAS) data from European populations, featuring the most extensive case count available for both blood metabolites and four prevalent urological cancers. Preliminary and secondary MR analyses were separately conducted, employing inverse variance weighted (IVW) as the primary method. Multiple statistical analyses, including the MR-Steiger test, Cochran's Q test, leave-one-out analysis, MR-Egger intercept analysis, and MR-PRESSO analysis, were executed to ensure robustness. Additionally, a meta-analysis was carried out to consolidate findings. The weighted median (WM) method was utilized for a relatively lenient correction (PWM < 0.05).RESULTS: After rigorous genetic variation filtering, 645 out of 1,400 metabolites were included in both preliminary and secondary MR analyses. Preliminary MR analysis identified 96 potential causal associations between 94 distinct metabolites and four urological cancers. Secondary analysis based on Finnish outcome data revealed 93 potential causal associations. Cross-database meta-analysis identified 68 blood metabolites associated with four urological cancers. Notably, 31 metabolites remained significant after using WM for correction, with additional 37 suggestive causal relationships. Reverse MR analysis revealed a significant causal association between genetically predicted prostate cancer and elevated 4-hydroxychlorothalonil levels (IVW, combined OR: 1.039, 95% CI 1.014-1.064, p = 0.002; WM, combined OR: 1.052, 95% CI 1.010-1.095, p = 0.014).CONCLUSION: This comprehensive MR study provides insights into the causal relationships between blood metabolites and urological cancers, revealing potential biomarkers and therapeutic targets, thereby addressing gaps in understanding and laying the foundation for targeted interventions in urological cancer research and treatment.PMID:39011400 | PMC:PMC11246892 | DOI:10.3389/fgene.2024.1398165

Machine learning of cellular metabolic rewiring

Tue, 16/07/2024 - 12:00
Biol Methods Protoc. 2024 Jul 2;9(1):bpae048. doi: 10.1093/biomethods/bpae048. eCollection 2024.ABSTRACTMetabolic rewiring allows cells to adapt their metabolism in response to evolving environmental conditions. Traditional metabolomics techniques, whether targeted or untargeted, often struggle to interpret these adaptive shifts. Here, we introduce MetaboLiteLearner, a lightweight machine learning framework that harnesses the detailed fragmentation patterns from electron ionization (EI) collected in scan mode during gas chromatography/mass spectrometry to predict changes in the metabolite composition of metabolically adapted cells. When tested on breast cancer cells with different preferences to metastasize to specific organs, MetaboLiteLearner predicted the impact of metabolic rewiring on metabolites withheld from the training dataset using only the EI spectra, without metabolite identification or pre-existing knowledge of metabolic networks. Despite its simplicity, the model learned captured shared and unique metabolomic shifts between brain- and lung-homing metastatic lineages, suggesting cellular adaptations associated with metastasis to specific organs. Integrating machine learning and metabolomics paves the way for new insights into complex cellular adaptations.PMID:39011352 | PMC:PMC11249387 | DOI:10.1093/biomethods/bpae048

Clinical metabolomics: Useful insights, perspectives and challenges

Tue, 16/07/2024 - 12:00
Metabol Open. 2024 May 31;22:100290. doi: 10.1016/j.metop.2024.100290. eCollection 2024 Jun.ABSTRACTMetabolomics, a cutting-edge omics technique, is a rapidly advancing field in biomedical research, concentrating on the elucidation of pathogenetic mechanisms and the discovery of novel metabolite signatures predictive of disease risk, aiding in earlier disease detection, prognosis and prediction of treatment response. The capacity of this omics approach to simultaneously quantify thousands of metabolites, i.e. small molecules less than 1500 Da in samples, positions it as a promising tool for research and clinical applications in personalized medicine. Clinical metabolomics studies have proven valuable in understanding cardiometabolic disorders, potentially uncovering diagnostic biomarkers predictive of disease risk. Liquid chromatography-mass spectrometry is the predominant analytical method used in metabolomics, particularly untargeted. Metabolomics combined with extensive genomic data, proteomics, clinical chemistry data, imaging, health records, and other pertinent health-related data may yield significant advances beneficial for both public health initiatives, clinical applications and precision medicine, particularly in rare disorders and multimorbidity. This special issue has gathered original research articles in topics related to clinical metabolomics as well as research articles, reviews, perspectives and highlights in the broader field of translational and clinical metabolic research. Additional research is necessary to identify which metabolites consistently enhance clinical risk prediction across various populations and are causally linked to disease progression.PMID:39011161 | PMC:PMC11247213 | DOI:10.1016/j.metop.2024.100290

Sub-MIC antibiotics increased the fitness cost of CRISPR-Cas in <em>Acinetobacter baumannii</em>

Tue, 16/07/2024 - 12:00
Front Microbiol. 2024 Jul 1;15:1381749. doi: 10.3389/fmicb.2024.1381749. eCollection 2024.ABSTRACTINTRODUCTION: The escalating prevalence of bacterial resistance, particularly multidrug-resistant bacteria like Acinetobacter baumannii, has become a significant global public health concern. The CRISPR-Cas system, a crucial defense mechanism in bacteria against foreign genetic elements, provides a competitive advantage. Type I-Fb and Type I-Fa are two subtypes of CRISPR-Cas systems that were found in A. baumannii, and the I-Fb CRISPR-Cas system regulates antibiotic resistance in A. baumannii. However, it is noteworthy that a majority of clinical isolates of A. baumannii lack or have incomplete CRISPR-Cas systems and most of them are multidrug-resistant. In light of this, our study aimed to examine the impact of antibiotic pressure on the fitness cost of the I-Fb CRISPR-Cas system in A. baumannii.METHODS AND RESULTS: In the study, we conducted in vitro competition experiments to investigate the influence of sub-minimum inhibitory concentration (sub-MIC) on the CRISPR-Cas systems' fitness cost in A. baumannii. We found that the fitness cost of the CRISPR-Cas system was increased under sub-MIC conditions. The expression of CRISPR-Cas-related genes was decreased, while the conjugation frequency was increased in AB43 under sub-MIC conditions. Through metabolomic analysis, we identified that sub-MIC conditions primarily affected energy metabolism pathways. In particular, we observed increased carbon metabolism, nitrogen metabolism, and intracellular ATP. Notably, the CRISPR-Cas system demonstrated resistance to the efflux pump-mediated resistance. Furthermore, the expression of efflux pump-related genes was increased under sub-MIC conditions.CONCLUSION: Our findings suggest that the I-Fb CRISPR-Cas system confers a significant competitive advantage in A. baumanni. However, under sub-MIC conditions, its function and the ability to inhibit the energy required for efflux pumps are reduced, resulting in an increased fitness cost and loss of competitive advantage.PMID:39011146 | PMC:PMC11246858 | DOI:10.3389/fmicb.2024.1381749

Evaluation of the Crosstalk Between the Host Mycobiome and Bacteriome in Patients with Chronic Pancreatitis

Tue, 16/07/2024 - 12:00
Indian J Microbiol. 2024 Jun;64(2):603-617. doi: 10.1007/s12088-024-01207-8. Epub 2024 Feb 24.ABSTRACTThe human microbiome is a diverse consortium of microbial kingdoms that play pivotal roles in host health and diseases. We previously reported a dysbiotic bacteriome in chronic pancreatitis patients with diabetes (CPD) compared with patients with it's nondiabetic (CPND) phenotype. In this study, we extended our exploration to elucidate the intricate interactions between the mycobiome, bacteriome, and hosts' plasma metabolome with the disease phenotypes. A total of 25 participants (CPD, n = 7; CPND, n = 10; healthy control, n = 8) were recruited for the study. We observed elevated species richness in both the bacterial and fungal profiles within the CP diabetic cohort compared to the nondiabetic CP phenotype and healthy control cohorts. Notably, the CP group displayed heterogeneous fungal diversity, with only 40% of the CP nondiabetic patients and 20% of the CP diabetic patients exhibiting common core gut fungal profiles. Specific microbial taxa alterations were identified, including a reduction in Bifidobacterium adolescentis and an increase in the prevalence of Aspergillus penicilloides and Klebsiella sp. in the disease groups. In silico analysis revealed the enrichment of pathways related to lipopolysaccharide (LPS), apoptosis, and peptidase, as well as reduced counts of the genes responsible for carbohydrate metabolism in the CP groups. Additionally, distinct plasma metabolome signatures were observed, with CPD group exhibiting higher concentrations of sugars and glycerolipids, while the CPND cohort displayed elevated levels of amino acids in their blood. The fatty acid-binding protein (FABP) concentration was notably greater in the CPD group than in the HC group (4.220 vs. 1.10 ng/ml, p = 0.04). Furthermore, compared with healthy controls, disease groups exhibited fewer correlations between key fungal taxa (Aspergillus sp., Candida sp.) and bacterial taxa (Prevotella copri, Bifidobacteria sp., Rumminococcaceae). Our study unveils, for the first time, a dysbiotic mycobiome and emphasizes unique host bacterial-mycobial interactions in CP patient with diabetes, potentially influencing disease severity. These findings provide crucial insights for future mechanistic studies aiming to unravel the determinants of disease severity in this complex clinical context.SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12088-024-01207-8.PMID:39011022 | PMC:PMC11246408 | DOI:10.1007/s12088-024-01207-8

Detection of Changes in Soil Microbial Community Physiological Profiles in Relation to Forest Types and Presence of Antibiotics Using BIOLOG EcoPlate

Tue, 16/07/2024 - 12:00
Indian J Microbiol. 2024 Jun;64(2):773-779. doi: 10.1007/s12088-024-01294-7. Epub 2024 May 27.ABSTRACTSoil is home to microbiota with diverse metabolic activities. These microorganisms play vital roles in many ecological processes. Thus, the assessment of microbial functional diversity is an important quality indicator of soil ecosystems. In this study, we collected soil samples from three distinct forest habitats, i.e., an agroforest, a primary forest (PF), and a secondary forest, within the Angat Watershed Reservation in Bulacan, Northern Philippines. Community-level physiological profiling (CLPP) was done with the BIOLOG EcoPlate™ to analyze the responses of the soil microbial communities from the three forest habitats in the absence or presence of antibiotics. The BIOLOG EcoPlate represents 31 utilizable carbon sources. Based on the CLPP analysis, soil samples from the PF showed significantly higher utilization of most carbon sources than the other forest types (p < 0.05). Thus, less disturbed forest types constitute more functionally diverse microbial communities. The presence of antibiotics significantly decreased the carbon utilization patterns of the soil microbial communities (p < 0.05), indicating the possible use of CLPP in monitoring contamination in soil.PMID:39011008 | PMC:PMC11246321 | DOI:10.1007/s12088-024-01294-7

Insights into bioactive constituents of onion (Allium cepa L.) waste: a comparative metabolomics study enhanced by chemometric tools

Mon, 15/07/2024 - 12:00
BMC Complement Med Ther. 2024 Jul 15;24(1):271. doi: 10.1186/s12906-024-04559-2.ABSTRACTBACKGROUND: Onion waste was reported to be a valuable source of bioactive constituents with potential health-promoting benefits. This sparked a surge of interest among scientists for its valorization. This study aims to investigate the chemical profiles of peel and root extracts of four onion cultivars (red, copper-yellow, golden yellow and white onions) and evaluate their erectogenic and anti-inflammatory potentials.METHODS: UPLC-QqQ-MS/MS analysis and chemometric tools were utilized to determine the chemical profiles of onion peel and root extracts. The erectogenic potential of the extracts was evaluated using the PDE-5 inhibitory assay, while their anti-inflammatory activity was determined by identifying their downregulating effect on the gene expression of IL-6, IL-1β, IFN-γ, and TNF-α in LPS-stimulated WBCs.RESULTS: A total of 103 metabolites of diverse chemical classes were identified, with the most abundant being flavonoids. The organ's influence on the chemical profiles of the samples outweighed the influence of the cultivar, as evidenced by the close clustering of samples from the same organ compared to the distinct separation of root and peel samples from the same cultivar. Furthermore, the tested extracts demonstrated promising PDE-5 and anti-inflammatory potentials and effectively suppressed the upregulation of pro-inflammatory markers in LPS-stimulated WBCs. The anti-inflammatory activities exerted by peel samples surpassed those of root samples, highlighting the importance of selecting the appropriate organ to maximize activity. The main metabolites correlated with PDE-5 inhibition were cyanidin 3-O-(malonyl-acetyl)-glucoside and quercetin dimer hexoside, while those correlated with IL-1β inhibition were γ-glutamyl-methionine sulfoxide, γ-glutamyl glutamine, sativanone, and stearic acid. Taxifolin, 3'-hydroxymelanettin, and oleic acid were highly correlated with IL-6 downregulation, while quercetin 4'-O-glucoside, isorhamnetin 4'-O-glucoside, and p-coumaroyl glycolic acid showed the highest correlation to IFN-γ and TNF-α inhibition.CONCLUSION: This study provides a fresh perspective on onion waste as a valuable source of bioactive constituents that could serve as the cornerstone for developing new, effective anti-PDE-5 and anti-inflammatory drug candidates.PMID:39010091 | DOI:10.1186/s12906-024-04559-2

Influence of AAV vector tropism on long-term expression and Fc-γ receptor binding of an antibody targeting SARS-CoV-2

Mon, 15/07/2024 - 12:00
Commun Biol. 2024 Jul 16;7(1):865. doi: 10.1038/s42003-024-06529-3.ABSTRACTLong-acting passive immunization strategies are needed to protect immunosuppressed vulnerable groups from infectious diseases. To further explore this concept for COVID-19, we constructed Adeno-associated viral (AAV) vectors encoding the human variable regions of the SARS-CoV-2 neutralizing antibody, TRES6, fused to murine constant regions. An optimized vector construct was packaged in hepatotropic (AAV8) or myotropic (AAVMYO) AAV capsids and injected intravenously into syngeneic TRIANNI-mice. The highest TRES6 serum concentrations (511 µg/ml) were detected 24 weeks after injection of the myotropic vector particles and mean TRES6 serum concentrations remained above 100 µg/ml for at least one year. Anti-drug antibodies or TRES6-specific T cells were not detectable. After injection of the AAV8 particles, vector mRNA was detected in the liver, while the AAVMYO particles led to high vector mRNA levels in the heart and skeletal muscle. The analysis of the Fc-glycosylation pattern of the TRES6 serum antibodies revealed critical differences between the capsids that coincided with different binding activities to murine Fc-γ-receptors. Concomitantly, the vector-based immune prophylaxis led to protection against SARS-CoV-2 infection in K18-hACE2 mice. High and long-lasting expression levels, absence of anti-drug antibodies and favourable Fc-γ-receptor binding activities warrant further exploration of myotropic AAV vector-based delivery of antibodies and other biologicals.PMID:39009807 | DOI:10.1038/s42003-024-06529-3

Reduced adipocyte glutaminase activity promotes energy expenditure and metabolic health

Mon, 15/07/2024 - 12:00
Nat Metab. 2024 Jul 15. doi: 10.1038/s42255-024-01083-y. Online ahead of print.ABSTRACTGlutamine and glutamate are interconverted by several enzymes and alterations in this metabolic cycle are linked to cardiometabolic traits. Herein, we show that obesity-associated insulin resistance is characterized by decreased plasma and white adipose tissue glutamine-to-glutamate ratios. We couple these stoichiometric changes to perturbed fat cell glutaminase and glutamine synthase messenger RNA and protein abundance, which together promote glutaminolysis. In human white adipocytes, reductions in glutaminase activity promote aerobic glycolysis and mitochondrial oxidative capacity via increases in hypoxia-inducible factor 1α abundance, lactate levels and p38 mitogen-activated protein kinase signalling. Systemic glutaminase inhibition in male and female mice, or genetically in adipocytes of male mice, triggers the activation of thermogenic gene programs in inguinal adipocytes. Consequently, the knockout mice display higher energy expenditure and improved glucose tolerance compared to control littermates, even under high-fat diet conditions. Altogether, our findings highlight white adipocyte glutamine turnover as an important determinant of energy expenditure and metabolic health.PMID:39009762 | DOI:10.1038/s42255-024-01083-y

Pages