Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

Effect of statin treatment on metabolites, lipids and prostanoids in patients with Statin Associated Muscle Symptoms (SAMS)

Fri, 15/12/2023 - 12:00
PLoS One. 2023 Dec 15;18(12):e0294498. doi: 10.1371/journal.pone.0294498. eCollection 2023.ABSTRACTBACKGROUND: Between 5-10% of patients discontinue statin therapy due to statin-associated adverse reactions, primarily statin associated muscle symptoms (SAMS). The absence of a clear clinical phenotype or of biomarkers poses a challenge for diagnosis and management of SAMS. Similarly, our incomplete understanding of the pathogenesis of SAMS hinders the identification of treatments for SAMS. Metabolomics, the profiling of metabolites in biofluids, cells and tissues is an important tool for biomarker discovery and provides important insight into the origins of symptomatology. In order to better understand the pathophysiology of this common disorder and to identify biomarkers, we undertook comprehensive metabolomic and lipidomic profiling of plasma samples from patients with SAMS who were undergoing statin rechallenge as part of their clinical care.METHODS AND FINDINGS: We report our findings in 67 patients, 28 with SAMS (cases) and 39 statin-tolerant controls. SAMS patients were studied during statin rechallenge and statin tolerant controls were studied while on statin. Plasma samples were analyzed using untargeted LC-MS metabolomics and lipidomics to detect differences between cases and controls. Differences in lipid species in plasma were observed between cases and controls. These included higher levels of linoleic acid containing phospholipids and lower ether lipids and sphingolipids. Reduced levels of acylcarnitines and altered amino acid profile (tryptophan, tyrosine, proline, arginine, and taurine) were observed in cases relative to controls. Pathway analysis identified significant increase of urea cycle metabolites and arginine and proline metabolites among cases along with downregulation of pathways mediating oxidation of branched chain fatty acids, carnitine synthesis, and transfer of acetyl groups into mitochondria.CONCLUSIONS: The plasma metabolome of patients with SAMS exhibited reduced content of long chain fatty acids and increased levels of linoleic acid (18:2) in phospholipids, altered energy production pathways (β-oxidation, citric acid cycle and urea cycles) as well as reduced levels of carnitine, an essential mediator of mitochondrial energy production. Our findings support the hypothesis that alterations in pro-inflammatory lipids (arachidonic acid pathway) and impaired mitochondrial energy metabolism underlie the muscle symptoms of patients with statin associated muscle symptoms (SAMS).PMID:38100464 | DOI:10.1371/journal.pone.0294498

Acyl and CO ligands in the [Fe]-hydrogenase cofactor scramble upon photolysis

Fri, 15/12/2023 - 12:00
Angew Chem Int Ed Engl. 2023 Dec 15:e202316478. doi: 10.1002/anie.202316478. Online ahead of print.ABSTRACT[Fe]-hydrogenase harbors the iron-guanylylpyridinol (FeGP) cofactor, in which the Fe(II) complex contains acyl-carbon, pyridinol-nitrogen, cysteine-thiolate and two CO as ligands. Irradiation with UV-A/blue light decomposes the FeGP cofactor to a 6-carboxymethyl-4-guanylyl-2-pyridone (GP) and other components. Previous in vitro biosynthesis experiments indicated that the acyl- and CO-ligands in the FeGP cofactor can scramble, but whether scrambling occurred during biosynthesis or photolysis was unclear. Here, we demonstrate that the [18O1-carboxy]-group of GP is incorporated into the FeGP cofactor by in vitro biosynthesis. MS/MS analysis of the 18O-labeled FeGP cofactor revealed that the produced [18O1]-acyl group is not exchanged with a CO ligand of the cofactor, indicating that the acyl and CO ligands are scrambled during photolysis rather than biosynthesis, which ruled out any biosynthesis mechanisms allowing acyl/CO ligands scrambling. Time-resolved infrared spectroscopy indicated that an acyl-Fe(CO)3 intermediate is formed during photolysis, in which scrambling of the CO and acyl ligands can occur. This finding also suggests that the light-excited FeGP cofactor has a higher affinity for external CO. These results contribute to our understanding of the biosynthesis and photosensitive properties of this unique H2-activating natural complex.PMID:38100251 | DOI:10.1002/anie.202316478

Combination of <em>Lacticaseibacillus paracasei</em> BEPC22 and <em>Lactiplantibacillus plantarum</em> BELP53 attenuates fat accumulation and alters the metabolome and gut microbiota in mice with high-fat diet-induced obesity

Fri, 15/12/2023 - 12:00
Food Funct. 2023 Dec 15. doi: 10.1039/d3fo03557c. Online ahead of print.ABSTRACTThis study evaluated the effects of formulations with Lacticaseibacillus paracasei BEPC22 and Lactiplantibacillus plantarum BELP53 on adiposity, the alteration of microbiota, and the metabolome in high-fat diet-fed mice. The strains were selected based on their fat and glucose absorption inhibitory activities and potential metabolic interactions. The optimal ratio of the two strains in the probiotic formulation was determined based on their adipocyte differentiation inhibitory activities. Treatment of formulations with BEPC22 and BELP53 for 10 weeks decreased body weight gain at 6 weeks; it also decreased the food efficiency ratio, white adipose tissue volume, and adipocyte size. Moreover, it decreased the expression of the lipogenic gene Ppar-γ in the liver, while significantly increasing the expression of the fat oxidation gene Ppar-α in the white adipose tissue. Notably, treatment with a combination of the two strains significantly reduced the plasma levels of the obesity hormone leptin and altered the microbiota and metabolome. The omics data also indicated the alteration of anti-obesity microbes and metabolites such as Akkermansia and indolelactic acid, respectively. These findings suggest that treatment with a combination of BEPC22 and BELP53 exerts synergistic beneficial effects against obesity.PMID:38099933 | DOI:10.1039/d3fo03557c

Mechanisms of reduced myocardial energetics of the dystrophic heart

Fri, 15/12/2023 - 12:00
Am J Physiol Heart Circ Physiol. 2023 Dec 15. doi: 10.1152/ajpheart.00636.2023. Online ahead of print.ABSTRACTHeart disease is a leading cause of death in patients with Duchenne muscular dystrophy (DMD), characterized by the progressive replacement of contractile tissue with scar tissue. Effective therapies for dystrophic cardiomyopathy will require addressing the disease prior to the onset of fibrosis, however the mechanisms of the early disease are poorly understood. To understand the pathophysiology of DMD we perform detailed functional assessment of cardiac function of the mdx mouse, a model of DMD. These studies use a combination of functional, metabolomic, and spectroscopic approaches to fully characterize the contractile, energetic, and mitochondrial function of beating hearts. Through these innovative approaches we demonstrate that the dystrophic heart has reduced cardiac reserve and is energetically limited. We show that this limitation does not result from poor delivery of oxygen. Using spectroscopic approaches, we provide evidence that mitochondria in the dystrophic heart have attenuated mitochondrial membrane potential and deficits in the flow of electrons in complex IV of the electron transport chain. These studies provide evidence that poor myocardial energetics procede the onset of significant cardiac fibrosis and likely results from mitochondrial dysfunction centered around complex IV and reduced membrane potential. The multi-modal approach employed here implicates specific molecular components in the etiology of reduced energetics. Future studies focused on these targets may provide therapies that improve the energetics of the dystrophic heart leading to improved resiliency against damage and preservation of myocardial contractile tissue.PMID:38099842 | DOI:10.1152/ajpheart.00636.2023

Prostate Cell Lineage Identities Are Governed by Distinct Metabolomes

Fri, 15/12/2023 - 12:00
Cancer Discov. 2023 Dec 15:OF1. doi: 10.1158/2159-8290.CD-RW2023-198. Online ahead of print.ABSTRACTBasal and luminal cell identities are regulated by distinct metabolisms in the prostate epithelium.PMID:38099703 | DOI:10.1158/2159-8290.CD-RW2023-198

Detecting horizontal gene transfer among microbiota: an innovative pipeline for identifying co-shared genes within the mobilome through advanced comparative analysis

Fri, 15/12/2023 - 12:00
Microbiol Spectr. 2023 Dec 15:e0196423. doi: 10.1128/spectrum.01964-23. Online ahead of print.ABSTRACTHorizontal gene transfer (HGT) is a key driver in the evolution of bacterial genomes. The acquisition of genes mediated by HGT may enable bacteria to adapt to ever-changing environmental conditions. Long-term application of antibiotics in intensive agriculture is associated with the dissemination of antibiotic resistance genes among bacteria with the consequences causing public health concern. Commensal farm-animal-associated gut microbiota are considered the reservoir of the resistance genes. Therefore, in this study, we identified known and not-yet characterized mobilized genes originating from chicken and porcine fecal samples using our innovative pipeline followed by network analysis to provide appropriate visualization to support proper interpretation.PMID:38099617 | DOI:10.1128/spectrum.01964-23

NMR-based metabolomics in Alzheimer's disease research: a review

Fri, 15/12/2023 - 12:00
Front Mol Biosci. 2023 Nov 30;10:1308500. doi: 10.3389/fmolb.2023.1308500. eCollection 2023.ABSTRACTAlzheimer's disease (AD) is a progressive neurodegenerative disorder and represents the most common cause of dementia in the elderly population worldwide. Currently, there is no cure for AD, and the continuous increase in the number of susceptible individuals poses one of the most significant emerging threats to public health. However, the molecular pathways involved in the onset and progression of AD are not fully understood. This information is crucial for developing less invasive diagnostic instruments and discovering novel potential therapeutic targets. Metabolomics studies the complete ensemble of endogenous and exogenous metabolites present in biological specimens and may provide an interesting approach to identify alterations in multiple biochemical processes associated with AD onset and evolution. In this mini review, we summarize the results from metabolomic studies conducted using nuclear magnetic resonance (NMR) spectroscopy on human biological samples (blood derivatives, cerebrospinal fluid, urine, saliva, and tissues) from AD patients. We describe the metabolic alterations identified in AD patients compared to controls and to patients diagnosed with mild cognitive impairment (MCI). Moreover, we discuss the challenges and issues associated with the application of NMR-based metabolomics in the context of AD research.PMID:38099198 | PMC:PMC10720579 | DOI:10.3389/fmolb.2023.1308500

Brain and serum metabolomic studies reveal therapeutic effects of san hua decoction in rats with ischemic stroke

Fri, 15/12/2023 - 12:00
Front Endocrinol (Lausanne). 2023 Nov 30;14:1289558. doi: 10.3389/fendo.2023.1289558. eCollection 2023.ABSTRACTSan Hua Decoction (SHD) is a traditional four-herbal formula that has long been used to treat stroke. Our study used a traditional pharmacodynamic approach combined with systematic and untargeted metabolomics analyses to further investigate the therapeutic effects and potential mechanisms of SHD on ischemic stroke (IS). Male Sprague-Dawley rats were randomly divided into control, sham-operated, middle cerebral artery occlusion reperfusion (MCAO/R) model and SHD groups. The SHD group was provided with SHD (7.2 g/kg, i.g.) and the other three groups were provided with equal amounts of purified water once a day in the morning for 10 consecutive days. Our results showed that cerebral infarct volumes were reduced in the SHD group compared with the model group. Besides, SHD enhanced the activity of SOD and decreased MDA level in MCAO/R rats. Meanwhile, SHD could ameliorate pathological abnormalities by reducing neuronal damage, improving the structure of damaged neurons and reducing inflammatory cell infiltration. Metabolomic analysis of brain and serum samples with GC-MS techniques revealed 55 differential metabolites between the sham and model groups. Among them, the levels of 12 metabolites were restored after treatment with SHD. Metabolic pathway analysis showed that SHD improved the levels of 12 metabolites related to amino acid metabolism and carbohydrate metabolism, 9 of which were significantly associated with disease. SHD attenuated brain inflammation after ischemia-reperfusion. The mechanisms underlying the therapeutic effects of SHD in MCAO/R rats are related to amino acid and carbohydrate metabolism.PMID:38098862 | PMC:PMC10720749 | DOI:10.3389/fendo.2023.1289558

Effect of different fertilization strategies on the yield, quality of Euryales Semen and soil microbial community

Fri, 15/12/2023 - 12:00
Front Microbiol. 2023 Nov 30;14:1310366. doi: 10.3389/fmicb.2023.1310366. eCollection 2023.ABSTRACTINTRODUCTION: Euryales Semen, a medicinal herb widely utilized in Asia, faces a critical constraint in its production, primarily attributed to fertilizer utilization. Understanding the impact of different fertilization schemes on Euryales Semen (ES) planting and exploring the supporting mechanism are crucial for achieving high yield and sustainable development of the ES planting industry.METHODS: In this study, a field plot experiment was conducted to evaluate the effects of four different fertilization treatments on the yield and quality of ES using morphological characteristics and metabolomic changes. These treatments included a control group and three groups with different organic fertilizer to chemical fertilizer ratios (3:7, 5:5, and 7:3). The results of this study revealed the mechanisms underlying the effect of the different treatments on the yield and quality of Euryales Semen. These insights were achieved through analyses of soil physicochemical properties, soil enzyme activity, and soil microbial structure.RESULTS: We found that the quality and yield of ES were the best at a ratio of organic fertilizer to chemical fertilizer of 7:3. The optimality of this treatment was reflected in the yield, soil available nitrogen, soil available phosphorus, and soil enzyme activity of ES. This ratio also increased soil microbial diversity, resulting in an increase and decrease in Proteobacteria and Firmicutes abundances, respectively. In addition, linear discriminant analysis showed that Chloroflexi, Gammaproteobacteria, and Hypocreales-incertae-sedis were significantly enriched in the ratio of organic fertilizer to chemical fertilizer of 7:3. Variance partitioning analysis showed that the soil properties, enzyme activities, and their interactions cumulatively can explain 90.80% of the differences in Euryales Semen yield and metabolome. In general, blending organic and chemical fertilizers at a 7:3 ratio can enhance soil fertility, boost Euryales Semen yield and quality, and bring forth conditions that are agriculturally beneficial to microbial (bacteria and fungi) dynamics.DISCUSSION: This study initially revealed the scientific connotation of the effects of different fertilization patterns on the planting of Euryales Semen and laid a theoretical foundation for the study of green planting patterns of Euryales Semen with high quality and yield.PMID:38098669 | PMC:PMC10719947 | DOI:10.3389/fmicb.2023.1310366

Intracellular pyruvate-lactate-alanine cycling detected using real-time nuclear magnetic resonance spectroscopy of live cells and isolated mitochondria

Fri, 15/12/2023 - 12:00
Magn Reson Chem. 2023 Dec 14. doi: 10.1002/mrc.5419. Online ahead of print.ABSTRACTPyruvate, an end product of glycolysis, is a master fuel for cellular energy. A portion of cytosolic pyruvate is transported into mitochondria, while the remaining portion is converted reversibly into lactate and alanine. It is suggested that cytosolic lactate and alanine are transported and metabolized inside mitochondria. However, such a mechanism continues to be a topic of intense debate and investigation. As a part of gaining insight into the metabolic fate of the cytosolic lactate and alanine; in this study, the metabolism of mouse skeletal myoblast cells (C2C12) and their isolated mitochondria was probed utilizing stable isotope-labeled forms of the three glycolysis products, viz. [3-13 C1 ]pyruvate, [3-13 C1 ]lactate, and [3-13 C1 ]alanine, as substrates. The uptake and metabolism of each substrate was monitored, separately, in real-time using 1 H-13 C 2D nuclear magnetic resonance (NMR) spectroscopy. The dynamic variation of the levels of the substrates and their metabolic products were quantitated as a function of time. The results demonstrate that all three substrates were transported into mitochondria, and each substrate was metabolized to form the other two metabolites, reversibly. These results provide direct evidence for intracellular pyruvate-lactate-alanine cycling, in which lactate and alanine produced by the cytosolic pyruvate are transported into mitochondria and converted back to pyruvate. Such a mechanism suggests a role for lactate and alanine to replenish mitochondrial pyruvate, the primary source for adenosine triphosphate (ATP) synthesis through oxidative phosphorylation and the electron transport chain. The results highlight the potential of real-time NMR spectroscopy for gaining new insights into cellular and subcellular functions.PMID:38098198 | DOI:10.1002/mrc.5419

Metabolic GWAS-based dissection of genetic basis underlying nutrient quality variation and domestication of cassava storage root

Fri, 15/12/2023 - 12:00
Genome Biol. 2023 Dec 14;24(1):289. doi: 10.1186/s13059-023-03137-y.ABSTRACTBACKGROUND: Metabolites play critical roles in regulating nutritional qualities of plants, thereby influencing their consumption and human health. However, the genetic basis underlying the metabolite-based nutrient quality and domestication of root and tuber crops remain largely unknown.RESULTS: We report a comprehensive study combining metabolic and phenotypic genome-wide association studies to dissect the genetic basis of metabolites in the storage root (SR) of cassava. We quantify 2,980 metabolic features in 299 cultivated cassava accessions. We detect 18,218 significant marker-metabolite associations via metabolic genome-wide association mapping and identify 12 candidate genes responsible for the levels of metabolites that are of potential nutritional importance. Me3GT, MeMYB4, and UGT85K4/UGT85K5, which are involved in flavone, anthocyanin, and cyanogenic glucoside metabolism, respectively, are functionally validated through in vitro enzyme assays and in vivo gene silencing analyses. We identify a cluster of cyanogenic glucoside biosynthesis genes, among which CYP79D1, CYP71E7b, and UGT85K5 are highly co-expressed and their allelic combination contributes to low linamarin content. We find MeMYB4 is responsible for variations in cyanidin 3-O-glucoside and delphinidin 3-O-rutinoside contents, thus controlling SR endothelium color. We find human selection affects quercetin 3-O-glucoside content and SR weight per plant. The candidate gene MeFLS1 is subject to selection during cassava domestication, leading to decreased quercetin 3-O-glucoside content and thus increased SR weight per plant.CONCLUSIONS: These findings reveal the genetic basis of cassava SR metabolome variation, establish a linkage between metabolites and agronomic traits, and offer useful resources for genetically improving the nutrition of cassava and other root crops.PMID:38098107 | DOI:10.1186/s13059-023-03137-y

Integrated metabolome and transcriptome analyses of anthocyanin biosynthesis reveal key candidate genes involved in colour variation of Scutellaria baicalensis flowers

Fri, 15/12/2023 - 12:00
BMC Plant Biol. 2023 Dec 15;23(1):643. doi: 10.1186/s12870-023-04591-3.ABSTRACTBACKGROUND: Bright flower colour assists plants attract insects to complete pollination and provides distinct ornamental values. In some medicinal plants, diverse flower colour variations usually imply differences in active ingredients. Compared to the common bluish purple of Scutellaria baicalensis flower (SB), the natural variants present rose red (SR) and white (SW) flowers were screened out under the same growing conditions in the genuine producing area Shandong Province, China. However, the mechanism of flower colour variation in S. baicalensis was remain unclear. In the present study, we conducted integrated transcriptome and metabolome analyses to uncover the metabolic difference and regulation mechanism in three S. baicalensis flowers.RESULTS: The results showed that 9 anthocyanins were identified. Among which, 4 delphinidin-based anthocyanins were only detected in SB, 4 cyanidin-based anthocyanins (without cyanidin-3-O-glucoside) mainly accumulated in SR, and no anthocyanin but high level of flavanone, naringenin, was detected in SW. The gene expression profile indicated that the key structural genes in the flavonoid and anthocyanin biosynthesis pathway differentially expressed in flowers with different colours. Compared to SB, the down-regulated expression of F3'5'H, ANS, and 3GT gene in SR might influence the anthocyanin composition. Especially the InDel site with deletion of 7 nucleotides (AATAGAG) in F3'5'H in SR might be the determinant for lack of delphinidin-based anthocyanins in rose red flowers. In SW, the lower expression levels of DFR and two F3H genes might reduce the anthocyanin accumulation. Notably the SNP site of G > A mutation in the splicing site of DFR in SW might block anthocyanin biosynthesis from flavanones and thus cause white flowers. In addition, several key transcription factors, including MYB, bHLH, and NAC, which highly correlated with structural gene expression and anthocyanin contents were also identified.CONCLUSIONS: These results provide clues to uncover the molecular regulatory mechanism of flower colour variation in S. baicalensis and promote novel insights into understanding the anthocyanin biosynthesis and regulation.PMID:38097929 | DOI:10.1186/s12870-023-04591-3

Assessment of IgG-Fc glycosylation from individual RhD-specific B cell clones reveals regulation at clonal rather than clonotypic level

Fri, 15/12/2023 - 12:00
Immunology. 2023 Dec 14. doi: 10.1111/imm.13737. Online ahead of print.ABSTRACTThe type and strength of effector functions mediated by immunoglobulin G (IgG) antibodies rely on the subclass and the composition of the N297 glycan. Glycosylation analysis of both bulk and antigen-specific human IgG has revealed a marked diversity of the glycosylation signatures, including highly dynamic patterns as well as long-term stability of profiles, yet information on how individual B cell clones would contribute to this diversity has hitherto been lacking. Here, we assessed whether clonally related B cells share N297 glycosylation patterns of their secreted IgG. We differentiated single antigen-specific peripheral IgG+ memory B cells into antibody-secreting cells and analysed Fc glycosylation of secreted IgG. Furthermore, we sequenced the variable region of their heavy chain, which allowed the grouping of the clones into clonotypes. We found highly diverse glycosylation patterns of culture-derived IgG, which, to some degree, mimicked the glycosylation of plasma IgG. Each B cell clone secreted IgG with a mixture of different Fc glycosylation patterns. The majority of clones produced fully fucosylated IgG. B cells producing afucosylated IgG were scattered across different clonotypes. In contrast, the remaining glycosylation traits were, in general, more uniform. These results indicate IgG-Fc fucosylation to be regulated at the single-clone level, whereas the regulation of other glycosylation traits most likely occurs at a clonotypic or systemic level. The discrepancies between plasma IgG and culture-derived IgG, could be caused by the origin of the B cells analysed, clonal dominance or factors from the culture system, which need to be addressed in future studies.PMID:38097893 | DOI:10.1111/imm.13737

Diverse biological activities and secondary metabolites profile of Penicillium brevicompactum HE19ct isolated from the high-Andean medicinal plant Perezia coerulescens

Thu, 14/12/2023 - 12:00
Fungal Biol. 2023 Dec;127(12):1439-1450. doi: 10.1016/j.funbio.2023.10.002. Epub 2023 Nov 7.ABSTRACTEndophytic fungi produced attractive primary and secondary metabolites for industries, pharmacology, and biotechnology. The bioactive potential of HE19ct, identified as Penicillium brevicompactum according to ITS-BenA-caM, was addressed. Antimicrobial and antioxidant activities and secondary metabolite contents using four culture media in Agar-plate (ApF) and Submerged (SmF) fermentation were evaluated. Some plant growth-promoting (PGP) traits and their related genes were tested. HE19ct exhibited antimicrobial activity against Staphylococcus aureus, Enterococcus faecalis, Candida albicans, C. tropicalis, Fusarium sp., Geotrichum candidum, and Alternaria sp. All cultures showed DPPH scavenging activity and phenolic compounds, where ethyl acetate extract of SmF with malt extract showed higher activity and SmF/ApF with potato-dextrose exhibited higher yield, respectively. HE19ct solubilized tricalcium-phosphate and produced siderophore, endoglucanase, proteinase, and amylase. It enhanced the alfalfa's germination at 15 °C, root development, and phenols production at 15 and 24 °C. Phenols, tannins, anthraquinones, triterpenoids/steroids, and alkaloids production were detected depending on culture media. Polyketide synthase type I gene (PksI), subtilisin-like protease prb 1 (Pbr), and siderophore D (sidD) were PCR-amplified. Finally, HE19CT could be a promising source of interesting bioactive compounds for pharmacology and agriculture mainly in extreme conditions, then metabolomic and functional genetic research must be performed to support their appropriate application.PMID:38097318 | DOI:10.1016/j.funbio.2023.10.002

Profiling canine mammary tumors: A potential model for studying human breast cancer

Thu, 14/12/2023 - 12:00
Vet J. 2023 Dec 12:106055. doi: 10.1016/j.tvjl.2023.106055. Online ahead of print.ABSTRACTDespite all clinical progress recorded in the last decades, human breast cancer (HBC) remains a major challenge worldwide both in terms of its incidence and its management. Canine mammary tumors (CMTs) share similarities with HBC and represent an alternative model for HBC. The utility of the canine model in studying HBC relies on their common features, include spontaneous development, subtype classification, mutational profile, alterations in gene expression profile, and incidence/prevalence. This review describes the similarities between CMTs and HBC regarding genomic landscape, microRNA expression alteration, methylation, and metabolomic changes occurring during mammary gland carcinogenesis. The primary purpose of this review is to highlight the advantages of using the canine model as a translational animal model for HBC research and to investigate the challenges and limitations of this approach.PMID:38097103 | DOI:10.1016/j.tvjl.2023.106055

N-nitrosamines induced gender-dimorphic effects on infant rats at environmental levels

Thu, 14/12/2023 - 12:00
Sci Total Environ. 2023 Dec 12:169196. doi: 10.1016/j.scitotenv.2023.169196. Online ahead of print.ABSTRACTThe safety of drinking water has always been a concern for people all over the world. N-nitrosamines (NAs), a kind of nitrogenous disinfection by-products (N-DBPs), are generally detected as a mixture in drinking water at home and abroad. Studies have shown that individual NAs posed strong carcinogenicity at high concentrations. However, health risks of NAs at environmental levels (concentrations in drinking water) are still unclear. Therefore, the potential health risks of environmentally relevant NAs exposure in drinking water needs to be conducted. In this study, blood biochemical analysis and metabolomics based on nuclear magnetic resonance (NMR) were performed to comprehensively investigate NAs induced metabolic disturbance in infant rats at environmental levels. Results of blood biochemical indices analysis indicated that AST in the serum of male rats in NAs-treated group exhibited a significant gender-specific difference. Multivariate statistics showed that two and eight significantly disturbed metabolic pathways were identified in the serum samples of NAs-treated male and female rats, respectively. In the urine samples of NAs-treated female rats, glycine, serine, and threonine metabolism pathway was significantly disturbed; while three significantly disturbed metabolic pathways were found in the urine of NAs-treated male rats. Finally, results of spearman correlation coefficients suggested that the disturbances of metabolism profile in serum and urine were correlated with changes in the gut microbiota (data derived from our published paper). Data presented here aimed to generate new health risk data of NAs mixture exposure at environmental levels and provide theoretical support for drinking water safety management. ENVIRONMENTAL IMPLICATION: N-nitrosamines (NAs) are a kind of nitrogenous disinfection by-products (N-DBPs) generated during drinking water disinfection processes. Herein, health risks of NAs at environmental levels (concentrations in drinking water) are investigated using blood biochemical analysis and nuclear magnetic resonance (NMR)-based metabolomics. Results confirmed NAs induced gender-specific on the metabolism in rat and the disturbances of metabolism profile in serum and urine were correlated with changes in the gut microbiota. Data presented here aimed to generate new health risk data of NAs mixture exposure at environmental levels and provide theoretical support for drinking water safety management.PMID:38097075 | DOI:10.1016/j.scitotenv.2023.169196

Integrated metabolomics and proteomics analysis to understand muscle atrophy resistance in hibernating Spermophilus dauricus

Thu, 14/12/2023 - 12:00
Cryobiology. 2023 Dec 12:104838. doi: 10.1016/j.cryobiol.2023.104838. Online ahead of print.ABSTRACTHibernating Spermophilus dauricus experiences minor muscle atrophy, which is an attractive anti-disuse muscle atrophy model. Integrated metabolomics and proteomics analysis was performed on the hibernating S. dauricus during the pre-hibernation (PRE) stage, torpor (TOR) stage, interbout arousal (IBA) stage, and post-hibernation (POST) stage. Time course stage transition-based (TOR vs. PRE, IBA vs. TOR, POST vs. IBA) differential expression analysis was performed based on the R limma package. A total of 14 co-differential metabolites were detected. Among these, l-cystathionine, l-proline, ketoleucine, serine, and 1-Hydroxy-3,6,7-Trimethoxy-2, 8-Diprenylxanthone demonstrated the highest levels in the TOR stage; Beta-Nicotinamide adenine dinucleotide, Dihydrozeatin, Pannaric acid, and Propionylcarnitine demonstrated the highest levels in the IBA stage; Adrenosterone, PS (18:0/14,15-EpETE), S-Carboxymethylcysteine, TxB2, and 3-Phenoxybenzylalcohol demonstrated the highest levels in the POST stage. Kyoto Encyclopedia of Genes and Genomes pathways annotation analysis indicated that biosynthesis of amino acids, ATP-binding cassette transporters, and cysteine and methionine metabolism were co-differential metabolism pathways during the different stages of hibernation. The stage-specific metabolism processes and integrated enzyme-centered metabolism networks in the different stages were also deciphered. Overall, our findings suggest that (1) the periodic change of proline, ketoleucine, and serine contributes to the hindlimb lean tissue preservation; and (2) key metabolites related to the biosynthesis of amino acids, ATP-binding cassette transporters, and cysteine and methionine metabolism may be associated with muscle atrophy resistance. In conclusion, our co-differential metabolites, co-differential metabolism pathways, stage-specific metabolism pathways, and integrated enzyme-centered metabolism networks are informative for biologists to generate hypotheses for functional analyses to perturb disuse-induced muscle atrophy.PMID:38097057 | DOI:10.1016/j.cryobiol.2023.104838

Analysis of bone metabolic alterations linked with osteoporosis progression in type 2 diabetic db/db mice

Thu, 14/12/2023 - 12:00
Exp Gerontol. 2023 Dec 12:112347. doi: 10.1016/j.exger.2023.112347. Online ahead of print.ABSTRACTType 2 diabetes (T2D) is a common chronic disease, characterized by persistent hyperglycemia and insulin resistance. This disorder is associated with decreased bone quality and an elevated risk of bone fractures. However, evidence on the relationship between systemic metabolic change and the development of type 2 diabetic osteoporosis (T2DOP) remains elusive. Herein, we investigate the changes of bone metabolites with bone loss in db/db mice (an animal model of T2DOP exhibited bone loss with age progression), and explore the potential metabolic mechanism underlying type 2 diabetes and osteoporosis. C57BKS male mice were distributed in four groups, consisting six mice in each group: 8w m/m, 24w m/m, 8w db/db and 24w db/db. Bone morphometric and biomechanical parameters of db/db mice were analyzed by micro-CT and materials tester, it was found that 24w db/db mice showed severe bone loss and decreased bone tissue hardness compared with misty/misty littermates. The tibia of misty/misty mice (8 weeks, 24 weeks) and db/db mice (8 weeks, 24 weeks) were screened for differential metabolites by UPLC-Orbitrap MS. Ninety-eight metabolites were identified (35 and 63 metabolites are associated with early staged and late staged, respectively), consisting of amino acids, fatty acyls, and nucleotides. Notably, fatty acyls (such as 18-HEPE, 16(17)-EpDPE, arachidonic acid) and glycerophospholipids (such as phosphocholines (PC) (O-10:1(9E)/0:0), PC (O-16:1(9E)/0:0) [U] and phosphatidylethanolamines (PE) (P-16:0/0:0)) were significantly increased, and metabolites of amino acid pathway (such as l-glutamine, proline, phenylalanine) showed a downregulation trend. Dysregulation of lipid and glutathione pathways is the major contributor to progression of T2DOP in C57BKS mice.PMID:38097054 | DOI:10.1016/j.exger.2023.112347

Application of omics technologies in Cariology research: a critical review with bibliometric analysis

Thu, 14/12/2023 - 12:00
J Dent. 2023 Dec 12:104801. doi: 10.1016/j.jdent.2023.104801. Online ahead of print.ABSTRACTOBJECTIVES: To review the application of omics technologies in the field of Cariology research and provide critical insights into the emerging opportunities and challenges.DATA & SOURCES: Publications on the application of omics technologies in Cariology research up to December 2022 were sourced from online databases, including PubMed, Web of Science and Scopus. Two independent reviewers assessed the relevance of the publications to the objective of this review.STUDY SELECTION: Studies that employed omics technologies to investigate dental caries were selected from the initial pool of identified publications. A total of 922 publications with one or more omics technologies adopted were included for comprehensive bibliographic analysis. (Meta)genomics (676/922, 73%) is the predominant omics technology applied for Cariology research in the included studies. Other applied omics technologies are metabolomics (108/922, 12%), proteomics (105/922, 11%), and transcriptomics (76/922, 8%).CONCLUSION: This study identified an emerging trend in the application of multiple omics technologies in Cariology research. Omics technologies possess significant potential in developing strategies for the detection, staging evaluation, risk assessment, prevention, and management of dental caries. Despite the numerous challenges that lie ahead, the integration of multi-omics data obtained from individual biological samples, in conjunction with artificial intelligence technology, may offer potential avenues for further exploration in caries research.CLINICAL SIGNIFICANCE: This review presented a comprehensive overview of the application of omics technologies in Cariology research and discussed the advantages and challenges of using these methods to detect, assess, predict, prevent, and treat dental caries. It contributes to steering research for improved understanding of dental caries and advancing clinical translation of Cariology research outcomes.PMID:38097035 | DOI:10.1016/j.jdent.2023.104801

A systematic review of metabolomic findings in adult and pediatric renal disease

Thu, 14/12/2023 - 12:00
Clin Biochem. 2023 Dec 12:110703. doi: 10.1016/j.clinbiochem.2023.110703. Online ahead of print.ABSTRACTChronic kidney disease (CKD) affects over 0.5 billion people worldwide across their lifetimes. Despite a growingly ageing world population, an increase in all-age prevalence of kidney disease persists. Adult-onset forms of kidney disease often result from lifestyle-modifiable metabolic illnesses such as type 2 diabetes. Pediatric and adolescent forms of renal disease are primarily caused by morphological abnormalities of the kidney, as well as immunological, infectious and inherited metabolic disorders. Alterations in energy metabolism are observed in CKD of varying causes, albeit the molecular mechanisms underlying pathology are unclear. A systematic indexing of metabolites identified in plasma and urine of patients with kidney disease alongside disease enrichment analysis uncovered inborn errors of metabolism as a framework that links features of adult and pediatric kidney disease. The relationship of genetics and metabolism in kidney disease could be classified into three distinct landscapes: (i) Normal genotypes that develop renal damage because of lifestyle and / or comorbidities; (ii) Heterozygous genetic variants and polymorphisms that result in unique metabotypes that may predispose to the development of kidney disease via synergistic heterozygosity, and (iii) Homozygous genetic variants that cause renal impairment by perturbing metabolism, as found in children with monogenic inborn errors of metabolism. Interest in the identification of early biomarkers of onset and progression of CKD has grown steadily in the last years, though it has not translated into clinical routine yet. This systematic review indexes findings of differential concentration of metabolites and energy pathway dysregulation in kidney disease and appraises their potential use as biomarkers.PMID:38097032 | DOI:10.1016/j.clinbiochem.2023.110703

Pages