PubMed
Unraveling the mechanism of flower color variation in Brassica napus by integrated metabolome and transcriptome analyses
Front Plant Sci. 2024 Jun 12;15:1419508. doi: 10.3389/fpls.2024.1419508. eCollection 2024.ABSTRACTBrassica napus is one of the most important oil crops in the world. Breeding oilseed rape with colorful flowers can greatly enhance the ornamental value of B. napus and thus improve the economic benefits of planting. As water-soluble flavonoid secondary metabolites, anthocyanins are very important for the synthesis and accumulation of pigments in the petals of plants, giving them a wide range of bright colors. Despite the documentation of over 60 distinct flower shades in B. napus, the intricacies underlying flower color variation remain elusive. Particularly, the mechanisms driving color development across varying flower color backgrounds necessitate further comprehensive investigation. This research undertook a comprehensive exploration through the integration of transcriptome and metabolome analyses to pinpoint pivotal genes and metabolites underpinning an array of flower colors, including beige, beige-red, yellow, orange-red, deep orange-red, white, light-purple, and purple. First, we used a two-way BLAST search to find 275 genes in the reference genome of B. napus Darmor v10 that were involved in making anthocyanins. The subsequent scrutiny of RNA-seq outcomes underscored notable upregulation in the structural genes F3H and UGT, alongside the MYB75, GL3, and TTG1 transcriptional regulators within petals, showing anthocyanin accumulation. By synergizing this data with a weighted gene co-expression network analysis, we identified CHS, F3H, MYB75, MYB12, and MYB111 as the key players driving anthocyanin synthesis in beige-red, orange-red, deep orange-red, light-purple, and purple petals. By integrating transcriptome and weighted gene co-expression network analysis findings with anthocyanin metabolism data, it is hypothesized that the upregulation of MYB75, which, in turn, enhances F3H expression, plays a pivotal role in the development of pigmented oilseed rape flowers. These findings help to understand the transcriptional regulation of anthocyanin biosynthesis in B. napus and provide valuable genetic resources for breeding B. napus varieties with novel flower colors.PMID:38933465 | PMC:PMC11199733 | DOI:10.3389/fpls.2024.1419508
Exploring regulatory network of icariin synthesis in <em>Herba Epimedii</em> through integrated omics analysis
Front Plant Sci. 2024 Jun 12;15:1409601. doi: 10.3389/fpls.2024.1409601. eCollection 2024.ABSTRACTHerba Epimedii's leaves are highly valued in traditional Chinese medicine for their substantial concentration of flavonoids, which play a crucial role in manifesting the plant's therapeutic properties. This study investigated the metabolomic, transcriptomic and proteomic profiles of leaves from two Herba Epimedii cultivars, Epipremnum sagittatum (J) and Epipremnum pubescens (R), at three different developmental stages. Metabolite identification and analysis revealed a total of 1,412 and 1,421 metabolites with known structures were found. Flavonoids made up of 33%, including 10 significant accumulated icariin analogues. Transcriptomic analysis unveiled totally 41,644 differentially expressed genes (DEGs) containing five encoded genes participated in icariin biosynthesis pathways. Totally, 9,745 differentially expressed proteins (DEPs) were found, including Cluster-47248.2.p1 (UDP-glucuronosy/UDP-glucosyltransferase), Cluster-30441.2.p1 (O-glucosyltransferase), and Cluster-28344.9.p1 (anthocyanidin 3-O-glucoside 2 "-O-glucosyltransferase-like) through proteomics analysis which are involved to icariin biosynthesis. Protein-protein interaction (PPI) assay exhibited, totally 12 proteins showing a strong relationship of false discovery rate (FDR) <0.05 with these three proteins containing 2 leucine-rich repeat receptor kinase-like protein SRF7, and 5 methyl jasmonate esterase 1. Multi-omics connection networks uncovered 237 DEGs and 72 DEPs exhibited significant associations with the 10 icariin analogues. Overall, our integrated omics approach provides comprehensive insights into the regulatory network underlying icariin synthesis in Herba Epimedii, offering valuable resources for further research and development in medicinal plant cultivation and pharmaceutical applications.PMID:38933461 | PMC:PMC11203402 | DOI:10.3389/fpls.2024.1409601
Deep learning framework for comprehensive molecular and prognostic stratifications of triple-negative breast cancer
Fundam Res. 2022 Jun 29;4(3):678-689. doi: 10.1016/j.fmre.2022.06.008. eCollection 2024 May.ABSTRACTTriple-negative breast cancer (TNBC) is the most challenging breast cancer subtype. Molecular stratification and target therapy bring clinical benefit for TNBC patients, but it is difficult to implement comprehensive molecular testing in clinical practice. Here, using our multi-omics TNBC cohort (N = 425), a deep learning-based framework was devised and validated for comprehensive predictions of molecular features, subtypes and prognosis from pathological whole slide images. The framework first incorporated a neural network to decompose the tissue on WSIs, followed by a second one which was trained based on certain tissue types for predicting different targets. Multi-omics molecular features were analyzed including somatic mutations, copy number alterations, germline mutations, biological pathway activities, metabolomics features and immunotherapy biomarkers. It was shown that the molecular features with therapeutic implications can be predicted including the somatic PIK3CA mutation, germline BRCA2 mutation and PD-L1 protein expression (area under the curve [AUC]: 0.78, 0.79 and 0.74 respectively). The molecular subtypes of TNBC can be identified (AUC: 0.84, 0.85, 0.93 and 0.73 for the basal-like immune-suppressed, immunomodulatory, luminal androgen receptor, and mesenchymal-like subtypes respectively) and their distinctive morphological patterns were revealed, which provided novel insights into the heterogeneity of TNBC. A neural network integrating image features and clinical covariates stratified patients into groups with different survival outcomes (log-rank P < 0.001). Our prediction framework and neural network models were externally validated on the TNBC cases from TCGA (N = 143) and appeared robust to the changes in patient population. For potential clinical translation, we built a novel online platform, where we modularized and deployed our framework along with the validated models. It can realize real-time one-stop prediction for new cases. In summary, using only pathological WSIs, our proposed framework can enable comprehensive stratifications of TNBC patients and provide valuable information for therapeutic decision-making. It had the potential to be clinically implemented and promote the personalized management of TNBC.PMID:38933195 | PMC:PMC11197495 | DOI:10.1016/j.fmre.2022.06.008
Insights into the biodegradation of pentachlorobiphenyl by Microbacterium paraoxydans: proteomic and metabolomic studies
Front Microbiol. 2024 Jun 12;15:1389805. doi: 10.3389/fmicb.2024.1389805. eCollection 2024.ABSTRACTBacterial degradation mechanism for high chlorinated pentachlorobiphenyl (PentaCB) with worse biodegradability has not been fully elucidated, which could limit the full remediation of environments afflicted by the complex pollution of polychlorinated biphenyls (PCBs). In this research, a new PentaCB-degrading bacterium Microbacterium paraoxydans that has not been reported was obtained using enzymatic screening method. The characteristics of its intracellular enzymes, proteome and metabolome variation during PentaCB degradation were investigated systematically compared to non-PentaCB conditions. The findings indicate that the degradation rate of PentaCB (1 mg/L) could reach 23.9% within 4 hours and achieve complete degradation within 12 hours, with the mixture of intracellular enzymes being most effective at a pH of 6.0. During the biodegradation of PentaCB, the 12 up-regulated proteins characterized included ABC transporter PentaCB-binding protein, translocase protein TatA, and signal peptidase I (SPase I), indicating the presence of functional proteins for PentaCB degradation in both the cytoplasm and the outer surface of the cytoplasmic membrane. Furthermore, five differentially enriched metabolites were strongly associated with the aforementioned proteins, especially the up-regulated 1, 2, 4-benzenetriol which feeds into multiple degradation pathways of benzoate, chlorocyclohexane, chlorobenzene and aminobenzoate. These relevant results help to understand and speculate the complex mechanisms regarding PentaCB degradation by M. paraoxydans, which have both theoretical and practical implications for PCB bioremediation.PMID:38933025 | PMC:PMC11203399 | DOI:10.3389/fmicb.2024.1389805
Lipidomic signatures in Colombian adults with metabolic syndrome
J Diabetes Metab Disord. 2024 May 4;23(1):1279-1292. doi: 10.1007/s40200-024-01423-5. eCollection 2024 Jun.ABSTRACTBACKGROUND AND AIMS: Metabolic syndrome (MetS) comprises a set of risk factors that contribute to the development of chronic and cardiovascular diseases, increasing the mortality rate. Altered lipid metabolism is associated with the development of metabolic disorders such as insulin resistance, obesity, atherosclerosis, and metabolic syndrome; however, there is a lack of knowledge about lipids compounds and the lipidic pathways associated with this condition, particularly in the Latin-American population. Innovative approaches, such as lipidomic analysis, facilitate the identification of lipid species related to these risk factors. This study aimed to assess the plasma lipidome in subjects with MetS.METHODS: This correlation study included healthy adults and adults with MetS. Blood samples were analyzed. The lipidomic profile was determined using an Agilent Technologies 1260 liquid chromatography system coupled to a Q-TOF 6545 quadrupole mass analyzer with electrospray ionization. The main differences were determined between the groups.RESULTS: The analyses reveal a distinct lipidomic profile between healthy adults and those with MetS, including increased concentrations of most identified glycerolipids -both triglycerides and diglycerides- and decreased levels of ether lipids and sphingolipids, especially sphingomyelins, in MetS subjects. Association between high triglycerides, waist circumference, and most differentially expressed lipids were found.CONCLUSION: Our results demonstrate dysregulation of lipid metabolism in subjects with Mets, supporting the potential utility of plasma lipidome analysis for a deeper understanding of MetS pathophysiology.SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s40200-024-01423-5.PMID:38932852 | PMC:PMC11196482 | DOI:10.1007/s40200-024-01423-5
Gut microbiota in insulin resistance: a bibliometric analysis
J Diabetes Metab Disord. 2024 Feb 14;23(1):173-188. doi: 10.1007/s40200-023-01342-x. eCollection 2024 Jun.ABSTRACTBACKGROUND: Insulin resistance (IR) is considered the pathogenic driver of diabetes, and can lead to obesity, hypertension, coronary artery disease, metabolic syndrome, and other metabolic disorders. Accumulating evidence indicates that the connection between gut microbiota and IR. This bibliometric analysis aimed to summarize the knowledge structure of gut microbiota in IR.METHODS: Articles and reviews related to gut microbiota in IR from 2013 to 2022 were retrieved from the Web of Science Core Collection (WoSCC), and the bibliometric analysis and visualization were performed by Microsoft Excel, Origin, R package (bibliometrix), Citespace, and VOSviewer.RESULTS: A total of 4 749 publications from WoSCC were retrieved, including 3 050 articles and 1 699 reviews. The majority of publications were from China and USA. The University Copenhagen and Shanghai Jiao Tong University were the most active institutions. The journal of Nutrients published the most papers, while Nature was the top 1 co-cited journal, and the major area of these publications was molecular, biology, and immunology. Nieuwdorp M published the highest number of papers, and Cani PD had the highest co-citations. Keyword analysis showed that the most frequently occurring keywords were "gut microbiota", "insulin-resistance", "obesity", and "inflammation". Trend topics and thematic maps showed that serum metabolome and natural products, such as resveratrol, flavonoids were the research hotspots in this field.CONCLUSION: This bibliometric analysis summarised the hotspots, frontiers, pathogenesis, and treatment strategies, providing a clear and comprehensive profile of gut microbiota in IR.SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s40200-023-01342-x.PMID:38932838 | PMC:PMC11196565 | DOI:10.1007/s40200-023-01342-x
Exploring the metabolomics profile of frailty- a systematic review
J Diabetes Metab Disord. 2024 Jan 13;23(1):289-303. doi: 10.1007/s40200-023-01379-y. eCollection 2024 Jun.ABSTRACTBACKGROUND: Frailty is a multifaceted geriatric syndrome characterized by an increased vulnerability to stressful events. metabolomics studies are valuable tool for better understanding the underlying mechanisms of pathologic conditions. This review aimed to elucidate the metabolomics profile of frailty.METHOD: This systematic review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) 2020 statement. A comprehensive search was conducted across multiple databases. Initially, 5027 results were retrieved, and after removing duplicates, 1838 unique studies were subjected to screening. Subsequently, 248 studies underwent full-text screening, with 21 studies ultimately included in the analysis. Data extraction was performed meticulously by two authors, and the quality of the selected studies was assessed using the Critical Appraisal Skills Program (CASP) checklist.RESULTS: The findings revealed that certain Branched-chain amino acids (BCAAs) levels were lower in frail subjects compared to robust subjects, while levels of glutamate and glutamine were higher in frail individuals. Moreover, sphingomyelins and phosphatidylcholines (PC) displayed a decreasing trend as frailty advanced. Additionally, other metabolic derivatives, such as carnitine, exhibited significant associations with frailty. These metabolites were primarily interconnected through biochemical pathways related to the tricarboxylic acid and urea cycles. Notably, frailty was associated with a decrease in metabolic derivatives, including carnitine.CONCLUSION: This study underscores the intricate relationship between essential metabolites, including amino acids and lipids, and their varying levels in frail individuals compared to their robust counterparts. It provides a comprehensive panel of metabolites, shedding light on their potential associations with frailty and expanding our understanding of this complex syndrome.PMID:38932837 | PMC:PMC11196473 | DOI:10.1007/s40200-023-01379-y
Exosomes isolated from metabolically unhealthy normal weight and overweight phenotypes deteriorate the ER/PR positive breast cancer behavior
J Diabetes Metab Disord. 2023 Oct 11;23(1):533-544. doi: 10.1007/s40200-023-01295-1. eCollection 2024 Jun.ABSTRACTPURPOSE: Obesity has been linked to a higher risk of postmenopausal breast cancer Yet, research indicates an opposite correlation between obesity and premenopausal breast cancer risk. Various obesity phenotypes based on metabolic health could play a significant part. This study aims to assess how plasma exosomes taken from women with varying obesity phenotypes impact MCF-7 cell migration, matrix metalloproteinase-2 activity, and apoptosis.METHODS: The characterization of isolated exosomes and their internalization into MCF-7 cells was evaluated. The treatment of MCF-7 cells with exosomes isolated from different groups was done. Migration, the activity of MMP-2, mRNA expression of Bax and Bcl-2, protein expression of p-53 and Thr55 p-p53, and apoptosis were assessed.RESULTS: Isolated exosomes from unhealthy obese individuals increase MCF-7 cell migration. Regarding MMP activities, unhealthy normal weight and overweight and healthy obese groups isolated exosomes increase the MMP-2 activity than the treated group with exosomes isolated from counterpart groups. Furthermore, unhealthy normal weight and overweight and healthy obese obtained exosomes decrease apoptosis compared to counterpart groups.CONCLUSION: Altogether, plasma exosomes derived from both unhealthy individuals with normal weight and overweight status, as well as those with unhealthy obesity, negatively impacted the behavior of estrogen/progesterone receptor-positive breast cancer cells.SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s40200-023-01295-1.PMID:38932828 | PMC:PMC11196455 | DOI:10.1007/s40200-023-01295-1
ACE I/D gene polymorphisms and polycystic ovary syndrome manifestations
J Diabetes Metab Disord. 2023 Oct 30;23(1):681-688. doi: 10.1007/s40200-023-01335-w. eCollection 2024 Jun.ABSTRACTOBJECTIVE: Polycystic ovary syndrome (PCOS) is a common multifactorial endocrine disorder affecting women of reproductive age. ACE enzyme is involved in the physiopathology of the ovarian system, and there are inconsistencies between studies regarding the association between ACE gene variants and PCOS. The objective of this study is to evaluate the association between ACE I/D gene polymorphisms and PCOS, as well as its clinical manifestations, in Iranian women with PCOS.DESIGN: This study included 140 patients with PCOS and 153 controls without the disease. Samples were collected from Yas Hospital Complex in Tehran-Iran during 2018 to 2022. Genomic DNA was obtained from whole blood samples using salt extraction, and genotyping was carried out using polymerase chain reaction (PCR).RESULTS: Variants of DD, ID, and II were observed in 31.4, 44.3, and 24.3% of PCOS, and 38.6, 44.1, and 17.2% of control group, respectively. The frequency of ACE gene variants did not differ between PCOS patients and control group. A significant difference was observed between the frequency of elevated LH to FSH ratio > 2 and ACE gene polymorphisms in patients with PCOS (OR: 0.32 (0.12-0.88), P value 0.024) with lower frequency observed in D allele carriers.CONCLUSION: This study indicate that although ACE I/D variants frequency in PCOS women is similar to non-PCOS women, it may be involved in the pathogenesis of the disease through mechanisms regulating steroidogenesis in the ovary and suggests that ACE might be related to exacerbated clinical manifestations of PCOS which requires further investigations.PMID:38932810 | PMC:PMC11196500 | DOI:10.1007/s40200-023-01335-w
Plasma acylcarnitines and amino acids in dyslipidemia: An integrated metabolomics and machine learning approach
J Diabetes Metab Disord. 2024 Feb 24;23(1):1057-1069. doi: 10.1007/s40200-024-01384-9. eCollection 2024 Jun.ABSTRACTPURPOSE: The Discovery of underlying intermediates associated with the development of dyslipidemia results in a better understanding of pathophysiology of dyslipidemia and their modification will be a promising preventive and therapeutic strategy for the management of dyslipidemia.METHODS: The entire dataset was selected from the Surveillance of Risk Factors of Noncommunicable Diseases (NCDs) in 30 provinces of Iran (STEPs 2016 Country report in Iran) that included 1200 subjects and was stratified into four binary classes with normal and abnormal cases based on their levels of triglyceride (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), and non-HDL-C.Plasma concentrations of 20 amino acids and 30 acylcarnitines in each class of dyslipidemia were evaluated using Tandem mass spectrometry. Then, these attributes, along with baseline characteristics data, were used to check whether machine learning (ML) algorithms could classify cases and controls.RESULTS: Our ML framework accurately predicts TG binary classes. Among the models tested, the SVM model stood out, performing slightly better with an AUC of 0.81 and a standard deviation of test accuracy at 0.04. Consequently, it was chosen as the optimal model for TG classification. Moreover, the findings showed that alanine, phenylalanine, methionine, C3, C14:2, and C16 had great power in differentiating patients with high TG from normal TG controls. Conclusions: The comprehensive output of this work, along with sex-specific attributes, will improve our understanding of the underlying intermediates involved in dyslipidemia.SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s40200-024-01384-9.PMID:38932808 | PMC:PMC11196250 | DOI:10.1007/s40200-024-01384-9
Active Molecular Network Discovery Links Lifestyle Variables to Breast Cancer in the Long Island Breast Cancer Study Project
Environ Health (Wash). 2024 Apr 18;2(6):401-410. doi: 10.1021/envhealth.3c00218. eCollection 2024 Jun 21.ABSTRACTA healthy lifestyle has been associated with decreased risk of developing breast cancer. Using untargeted metabolomics profiling, which provides unbiased information regarding lifestyle choices such as diet and exercise, we aim to identify the molecular mechanisms connecting lifestyle and breast cancer through network analysis. A total of 100 postmenopausal women, 50 with breast cancer and 50 cancer-free controls, were selected from the Long Island Breast Cancer Study Project (LIBCSP). We measured untargeted plasma metabolomics using liquid chromatography-high-resolution mass spectrometry (LC-HRMS). Using the "enet" package, we retained highly correlated metabolites representing active molecular network (AMN) clusters for analysis. LASSO was used to examine associations between cancer status and AMN metabolites and covariates such as BMI, age, and reproductive factors. LASSO was then repeated to examine associations between AMN metabolites and 10 lifestyle-related variables including smoking, physical activity, alcohol consumption, meat consumption, fruit and vegetable consumption, and supplemental vitamin use. Results were displayed as a network to uncover biological pathways linking lifestyle factors to breast cancer status. After filtering, 851 "active" metabolites out of 1797 metabolomics were retained in 197 correlation AMN clusters. Using LASSO, breast cancer status was associated with 71 "active" metabolites. Several of these metabolites were associated with lifestyle variables including meat consumption, alcohol consumption, and supplemental β-carotene, B12, and folate use. Those metabolites could potentially serve as molecular-level biological intermediaries connecting healthy lifestyle factors to breast cancer, even though direct associations between breast cancer and the investigated lifestyles at the phenotype level are not evident. In particular, DiHODE, a metabolite linked with inflammation, was associated with breast cancer status and connected to β-carotene supplement usage through an AMN. We found several plasma metabolites associated with lifestyle factors and breast cancer status. Future studies investigating the mechanistic role of inflammation in linking supplement usage to breast cancer status are warranted.PMID:38932753 | PMC:PMC11197006 | DOI:10.1021/envhealth.3c00218
The impact of high-IgE levels on metabolome and microbiome in experimental allergic enteritis
Allergy. 2024 Jun 23. doi: 10.1111/all.16202. Online ahead of print.ABSTRACTBACKGROUND: The pathological mechanism of the gastrointestinal forms of food allergies is less understood in comparison to other clinical phenotypes, such as asthma and anaphylaxis Importantly, high-IgE levels are a poor prognostic factor in gastrointestinal allergies.METHODS: This study investigated how high-IgE levels influence the development of intestinal inflammation and the metabolome in allergic enteritis (AE), using IgE knock-in (IgEki) mice expressing high levels of IgE. In addition, correlation of the altered metabolome with gut microbiome was analysed.RESULTS: Ovalbumin-sensitized and egg-white diet-fed (OVA/EW) BALB/c WT mice developed moderate AE, whereas OVA/EW IgEki mice induced more aggravated intestinal inflammation with enhanced eosinophil accumulation. Untargeted metabolomics detected the increased levels of N-tau-methylhistamine and 2,3-butanediol, and reduced levels of butyric acid in faeces and/or sera of OVA/EW IgEki mice, which was accompanied with reduced Clostridium and increased Lactobacillus at the genus level. Non-sensitized and egg-white diet-fed (NC/EW) WT mice did not exhibit any signs of AE, whereas NC/EW IgEki mice developed marginal degrees of AE. Compared to NC/EW WT mice, enhanced levels of lysophospholipids, sphinganine and sphingosine were detected in serum and faecal samples of NC/EW IgEki mice. In addition, several associations of altered metabolome with gut microbiome-for example Akkermansia with lysophosphatidylserine-were detected.CONCLUSIONS: Our results suggest that high-IgE levels alter intestinal and systemic levels of endogenous and microbiota-associated metabolites in experimental AE. This study contributes to deepening the knowledge of molecular mechanisms for the development of AE and provides clues to advance diagnostic and therapeutic strategies of allergic diseases.PMID:38932655 | DOI:10.1111/all.16202
Integrated multi-omic analyses uncover the effects of aging on cell-type regulation in glucose-responsive tissues
Aging Cell. 2024 Jun 26:e14199. doi: 10.1111/acel.14199. Online ahead of print.ABSTRACTAging significantly influences cellular activity and metabolism in glucose-responsive tissues, yet a comprehensive evaluation of the impacts of aging and associated cell-type responses has been lacking. This study integrates transcriptomic, methylomic, single-cell RNA sequencing, and metabolomic data to investigate aging-related regulations in adipose and muscle tissues. Through coexpression network analysis of the adipose tissue, we identified aging-associated network modules specific to certain cell types, including adipocytes and immune cells. Aging upregulates the metabolic functions of lysosomes and downregulates the branched-chain amino acids (BCAAs) degradation pathway. Additionally, aging-associated changes in cell proportions, methylation profiles, and single-cell expressions were observed in the adipose. In the muscle tissue, aging was found to repress the metabolic processes of glycolysis and oxidative phosphorylation, along with reduced gene activity of fast-twitch type II muscle fibers. Metabolomic profiling linked aging-related alterations in plasma metabolites to gene expression in glucose-responsive tissues, particularly in tRNA modifications, BCAA metabolism, and sex hormone signaling. Together, our multi-omic analyses provide a comprehensive understanding of the impacts of aging on glucose-responsive tissues and identify potential plasma biomarkers for these effects.PMID:38932492 | DOI:10.1111/acel.14199
Genetically predicted TWEAK mediates the association between lipidome and Keratinocyte Carcinomas
Skin Res Technol. 2024 Jul;30(7):e13781. doi: 10.1111/srt.13781.ABSTRACTBACKGROUND: Reports suggest that lipid profiles may be linked to the likelihood of developing skin cancer, yet the exact causal relationship is still unknown.OBJECTIVE: This study aimed to examine the connection between lipidome and skin cancers, as well as investigate any possible mediators.METHODS: A two-sample Mendelian randomization (MR) analysis was conducted on 179 lipidomes and each skin cancer based on a genome-wide association study (GWAS), including melanoma, basal cell carcinoma (BCC), and squamous cell carcinoma (SCC). Then, Bayesian weighted MR was performed to verify the analysis results of two-sample MR. Moreover, a two-step MR was employed to investigate the impact of TNF-like weak inducer of apoptosis (TWEAK)-mediated lipidome on skin cancer rates.RESULTS: MR analysis identified higher genetically predicted phosphatidylcholine (PC) (17:0_18:2) could reduce the risk of skin tumors, including BCC (OR = 0.9149, 95% CI: 0.8667-0.9658), SCC (OR = 0.9343, 95% CI: 0.9087-0.9606) and melanoma (OR = 0.9982, 95% CI: 0.9966-0.9997). The proportion of PC (17:0_18:2) predicted by TWEAK-mediated genetic prediction was 6.6 % in BCC and 7.6% in SCC. The causal relationship between PC (17:0_18:2) and melanoma was not mediated by TWEAK.CONCLUSION: This study identified a negative causal relationship between PC (17:0_18:2) and keratinocyte carcinomas, a small part of which was mediated by TWEAK, and most of the remaining mediating factors are still unclear. Further research on other risk factors is needed in the future.PMID:38932454 | DOI:10.1111/srt.13781
Overview of the 2023 Physical Virology Gordon Research Conference-Viruses at Multiple Levels of Complexity
Viruses. 2024 Jun 1;16(6):895. doi: 10.3390/v16060895.ABSTRACTThis review accompanies the Special Issue on the subject of physical virology, which features work presented at the recent Gordon Research Conference (GRC) on this topic [...].PMID:38932189 | DOI:10.3390/v16060895
Immunomodulatory and Anticancer Effects of <em>Fridericia chica</em> Extract-Loaded Nanocapsules in Myeloid Leukemia
Pharmaceutics. 2024 Jun 18;16(6):828. doi: 10.3390/pharmaceutics16060828.ABSTRACTNanocapsules provide selective delivery and increase the bioavailability of bioactive compounds. In this study, we examined the anticancer and immunomodulatory potential of Fridericia chica (crajiru) extract encapsulated in nanocapsules targeting myeloid leukemias. Nanocapsules containing crajiru (nanocapsules-CRJ) were prepared via interfacial polymer deposition and solvent displacement. Size and polydispersity were measured by dynamic light scattering. Biological assays were performed on leukemia cell lines HL60 and K562 and on non-cancerous Vero cells and human PBMC. The anticancer activity was evaluated using cytotoxicity and clonogenic assays, while the immunomodulatory activity was evaluated by measuring the levels of pro- and anti-inflammatory cytokines in PBMC supernatants treated with concentrations of nanocapsules-CRJ. Nanocapsules-CRJ exhibited significant cytotoxic activity against HL60 and K562 cells at concentrations ranging from 0.75 to 50 μg/mL, with the greatest reductions in cell viability observed at 50 μg/mL (p < 0.001 for HL60; p < 0.01 for K562), while not affecting non-cancerous Vero cells and human PBMCs. At concentrations of 25 μg/mL and 50 μg/mL, nanocapsules-CRJ reduced the formation of HL60 and K562 colonies by more than 90% (p < 0.0001). Additionally, at a concentration of 12 μg/mL, nanocapsules-CRJ induced the production of the cytokines IL-6 (p = 0.0002), IL-10 (p = 0.0005), IL-12 (p = 0.001), and TNF-α (p = 0.005), indicating their immunomodulatory potential. These findings suggest that nanocapsules-CRJ hold promise as a potential therapeutic agent with both cytotoxic and immunomodulatory properties.PMID:38931948 | DOI:10.3390/pharmaceutics16060828
Daphnetin Ameliorates Neuropathic Pain via Regulation of Microglial Responses and Glycerophospholipid Metabolism in the Spinal Cord
Pharmaceuticals (Basel). 2024 Jun 16;17(6):789. doi: 10.3390/ph17060789.ABSTRACTNeuropathic pain (NP) is a common type of chronic pain caused by a lesion or disease of the somatosensory nervous system. This condition imposes a considerable economic burden on society and patients. Daphnetin (DAP) is a natural product isolated from a Chinese medicinal herb with various pharmacological activities, such as anti-inflammatory and analgesic properties. However, the underlying mechanisms of these effects are not fully understood. In the present study, we aimed to investigate DAP's anti-inflammatory and analgesic effects and explore the underlying mechanisms of action. The NP model was established as chronic constrictive injury (CCI) of the sciatic nerve, and pain sensitivity was evaluated by measuring the mechanical withdrawal threshold (MWT) and thermal withdrawal threshold (TWT). The activation of microglia in the spinal dorsal horn was measured via immunofluorescence staining. Protein levels were measured using a western blot assay. Using a mass-spectrometry proteomics platform and an LC-MS/MS-based metabolomics platform, proteins and metabolites in spinal cord tissues were extracted and analyzed. DAP treatment ameliorated the MWT and TWT in CCI rats. The expression of IL-1β, IL-6, and TNF-α was inhibited by DAP treatment in the spinal cords of CCI rats. Moreover, the activation of microglia was suppressed after DAP treatment. The elevation in the levels of P2X4, IRF8, IRF5, BDNF, and p-P38/P38 in the spinal cord caused by CCI was inhibited by DAP. Proteomics and metabolomics results indicated that DAP ameliorated the imbalance of glycerophospholipid metabolism in the spinal cords of CCI rats. DAP can potentially ameliorate NP by regulating microglial responses and glycerophospholipid metabolism in the CCI model. This study provides a pharmacological justification for using DAP in the management of NP.PMID:38931456 | DOI:10.3390/ph17060789
Jingzhi Guanxin Oral Liquids Attenuate Atherosclerotic Coronary Heart Disease via Modulating Lipid Metabolism and PPAR-Related Targets
Pharmaceuticals (Basel). 2024 Jun 14;17(6):784. doi: 10.3390/ph17060784.ABSTRACTJingzhi Guanxin Oral Liquids (JZGX), a traditional Chinese medicine formulation prepared from the decoction of five herbs, has been utilized to relieve chest pain with coronary artery disease (CAD). However, the chemical composition and therapeutic mechanisms of JZGX remain obscured. In this research, the potential targets and pathways of JZGX against CAD were anticipated through network pharmacology based on analyzing its chemical constituents using UPLC-Q-TOF-MS/MS. One hundred seven ingredients in JZGX were identified. The 39 active chemicals and 37 key targets were screened, and CAD-related signaling pathways were clustered, mainly associated with lipid metabolism. Subsequently, the atherosclerotic CAD animal model employing 24 weeks of high-fat diet (HFD) ApoE-/- mice was constructed to investigate the JZGX efficacy and underlying mechanisms validating network forecasts. The histological staining examination and cardiovascular biomarker tests confirmed that JZGX reduced plaque formation in the aorta and decreased blood lipids in vivo. It featured anti-inflammatory, anti-thrombotic, and myocardial protective effects. JZGX prevented excessive lipid deposits and inflammation within the liver and exhibited hepatoprotective properties. Serum untargeted metabolomics analysis indicated that JZGX ameliorated metabolic abnormalities in atherosclerotic CAD mice and prompted lipid metabolism, especially linoleic acid. The PPARs and attached critical targets (SREBP1, FASN, PTGS2, and CYP3A), filtered from the networks and connected with lipid metabolism, were dramatically modulated through JZGX administration, as revealed by western blotting. The molecular docking outcomes showed that all 39 active ingredients in JZGX had good binding activity with PPARα and PPARγ. These findings illustrate that JZGX alleviates atherosclerotic CAD progression by remodeling the lipid metabolism and regulating PPAR-related proteins.PMID:38931451 | DOI:10.3390/ph17060784
Effects of Evodiamine on Behavior and Hippocampal Neurons through Inhibition of Angiotensin-Converting Enzyme and Modulation of the Renin Angiotensin Pathway in a Mouse Model of Post-Traumatic Stress Disorder
Nutrients. 2024 Jun 19;16(12):1957. doi: 10.3390/nu16121957.ABSTRACTPost-traumatic stress disorder (PTSD) is a persistent psychiatric condition that arises following exposure to traumatic events such as warfare, natural disasters, or other catastrophic incidents, typically characterized by heightened anxiety, depressive symptoms, and cognitive dysfunction. In this study, animals subjected to single prolonged stress (SPS) were administered evodiamine (EVO) and compared to a positive control group receiving sertraline. The animals were then assessed for alterations in anxiety, depression, and cognitive function. Histological analysis was conducted to examine neuronal changes in the hippocampus. In order to predict the core targets and related mechanisms of evodiamine intervention in PTSD, network pharmacology was used. The metabolic markers pre- and post-drug administration were identified using nontargeted serum metabolomics techniques, and the intersecting Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were screened. Finally, the core targets were validated through molecular docking, enzyme-linked immunosorbent assays, and immunofluorescence staining to confirm the anti-PTSD effects and mechanisms of these targets. As well as improving cognitive impairment, evodiamine reversed anxiety- and depression-like behaviors. It also inhibited the reduction in the number of hippocampal neuronal cells and Nissl bodies in SPS mice inhibited angiotensin converting enzyme (ACE) levels in the hippocampus of SPS mice, and modulated the renin angiotensin pathway and its associated serum metabolites in brain tissue. Evodiamine shows promise as a potential candidate for alleviating the symptoms of post-traumatic stress disorder.PMID:38931311 | DOI:10.3390/nu16121957
Quercetin Alleviates Insulin Resistance and Repairs Intestinal Barrier in <em>db</em>/<em>db</em> Mice by Modulating Gut Microbiota
Nutrients. 2024 Jun 14;16(12):1870. doi: 10.3390/nu16121870.ABSTRACTType 2 diabetes mellitus (T2DM) is a chronic metabolic disease which seriously affects public health. Gut microbiota remains a dynamic balance state in healthy individuals, and its disorder may affect health status and even results in metabolic diseases. Quercetin, a natural flavonoid, has been shown to have biological activities that can be used in the prevention and treatment of metabolic diseases. This study aimed to explore the mechanism of quercetin in alleviating T2DM based on gut microbiota. db/db mice were adopted as the model for T2DM in this study. After 10 weeks of administration, quercetin could significantly decrease the levels of body weight, fasting blood glucose (FBG), serum insulin (INS), the homeostasis model assessment of insulin resistance (HOMA-IR), monocyte chemoattractant protein-1 (MCP-1), D-lactic acid (D-LA), and lipopolysaccharide (LPS) in db/db mice. 16S rRNA gene sequencing and untargeted metabolomics analysis were performed to compare the differences of gut microbiota and metabolites among the groups. The results demonstrated that quercetin decreased the abundance of Proteobacteria, Bacteroides, Escherichia-Shigella and Escherichia_coli. Moreover, metabolomics analysis showed that the levels of L-Dopa and S-Adenosyl-L-methionine (SAM) were significantly increased, but 3-Methoxytyramine (3-MET), L-Aspartic acid, L-Glutamic acid, and Androstenedione were significantly decreased under quercetin intervention. Taken together, quercetin could exert its hypoglycemic effect, alleviate insulin resistance, repair the intestinal barrier, remodel the intestinal microbiota, and alter the metabolites of db/db mice.PMID:38931226 | DOI:10.3390/nu16121870