PubMed
Integrating metabolomics and transcriptomics to analyze the differences of breast muscle quality and flavor formation between Daweishan mini chicken and broiler
Poult Sci. 2024 May 31;103(8):103920. doi: 10.1016/j.psj.2024.103920. Online ahead of print.ABSTRACTThe quality and flavor of chicken are affected by muscle metabolites and related regulatory genes, and the molecular regulation mechanism of meat quality is different among different breeds of chicken. In this study, 40 one-day-old Daweishan mini chicken (DM) and Cobb broiler (CB) were selected from each group, with 4 replicates and 10 chickens in each replicate. The chickens were reared until 90 d of age under the same management conditions. Then, metabolomics and transcriptomics data of 90-day-old DM (n = 4) and CB (n = 4) were integrated to analyze metabolites affecting breast muscle quality and flavor, and to explore the important genes regulating meat quality and flavor related metabolites. The results showed that a total of 38 significantly different metabolites (SDMs) and 420 differentially expressed genes (DEGs) were detected in the breast muscle of the 2 breeds. Amino acid and lipid metabolism may be the cause of meat quality and flavor difference between DM and CB chickens, involving metabolites such as L-methionine, betaine, N6, N6, N6-Trimethyl-L-lysine, L-anserine, glutathione, glutathione disulfide, L-threonine, N-Acetyl-L-aspartic acid, succinate, choline, DOPC, SOPC, alpha-linolenic acid, L-palmitoylcarnitine, etc. Important regulatory genes with high correlation with flavor amino acids (GATM, GSTO1) and lipids (PPARG, LPL, PLIN1, SCD, ANGPTL4, FABP7, GK, B4GALT6, UGT8, PLPP4) were identified by correlation analysis, and the gene-metabolite interaction network of breast muscle mass and flavor formation in DM chicken was constructed. This study showed that there were significant differences in breast metabolites between DM and CB chickens, mainly in amino acid and lipid metabolites. These 2 kinds of substances may be the main reasons for the difference in breast muscle quality and flavor between the 2 breeds. In general, this study could provide a theoretical basis for further research on the molecular regulatory mechanism of the formation of breast muscle quality and flavor differences between DM and CB chickens, and provide a reference for the development, utilization and genetic breeding of high-quality meat chicken breeds.PMID:38909504 | DOI:10.1016/j.psj.2024.103920
Untargeted metabolomics unravels distinct gut microbial metabolites derived from plant-based and animal-origin proteins using in vitro modeling
Food Chem. 2024 Jun 21;457:140161. doi: 10.1016/j.foodchem.2024.140161. Online ahead of print.ABSTRACTThe popularity of plant-based meat alternatives (PBMAs) has sparked a contentious debate about their influence on intestinal homeostasis compared to traditional animal-based meats. This study aims to explore the changes in gut microbial metabolites (GMMs) induced by the gut microbiota on different digested patties: beef meat and pea-protein PBMA. After digesting in vitro, untargeted metabolomics revealed 32 annotated metabolites, such as carnitine and acylcarnitines correlated with beef meat, and 45 annotated metabolites, like triterpenoids and lignans, linked to our PBMA. Secondly, (un)targeted approaches highlighted differences in GMM patterns during colonic fermentations. Our findings underscore significant differences in amino acids and their derivatives. Beef protein fermentation resulted in higher production of methyl-histidine, gamma-glutamyl amino acids, indoles, isobutyric and isovaleric acids. In contrast, PBMAs exhibit a significant release of N-acyl amino acids and unique dipeptides, like phenylalanine-arginine. This research offers valuable insights into how PBMAs and animal-based proteins differently modulate intestinal microenvironments.PMID:38909452 | DOI:10.1016/j.foodchem.2024.140161
Metabolic and microbial mechanisms related to the effects of dietary wheat levels on intramuscular fat content in finishing pigs
Meat Sci. 2024 Jun 20;216:109574. doi: 10.1016/j.meatsci.2024.109574. Online ahead of print.ABSTRACTThe current study aimed to investigate the metabolic and microbial mechanisms behind the effects of dietary wheat levels on intramuscular fat (IMF) content in the psoas major muscle (PM) of finishing pigs. Thirty-six barrows were arbitrarily assigned to two groups and fed with diets containing 25% or 55% wheat. Enhancing dietary wheat levels led to low energy states, resulting in reduced IMF content. This coincided with reduced serum glucose and low-density lipoprotein cholesterol levels. The AMP-activated protein kinase α2/sirtuin 1/peroxisome proliferator-activated receptor-γ coactivator 1α pathway may be activated by high-wheat diets, causing downregulation of adipogenesis and lipogenesis genes, and upregulation of lipolysis and gluconeogenesis genes. High-wheat diets decreased relative abundance of Lactobacillus and Coprococcus, whereas increased SMB53 proportion, subsequently decreasing colonic propionate content. Microbial glycolysis/gluconeogenesis, d-glutamine and D-glutamate metabolism, flagellar assembly, and caprolactam degradation were linked to IMF content. Metabolomic analysis indicated that enhancing dietary wheat levels promoted the protein digestion and absorption and affected amino acids and lipid metabolism. Enhancing dietary wheat levels reduced serum glucose and colonic propionate content, coupled with strengthened amino acid metabolism, contributing to the low energy states. Furthermore, alterations in microbial composition and propionate resulted from high-wheat diets were associated with primary bile acid biosynthesis, arachidonic acid metabolism, steroid hormone biosynthesis, and biosynthesis of unsaturated fatty acids, as well as IMF content. Colonic microbiota played a role in reducing IMF content through modulating the propionate-mediated peroxisome proliferators-activated receptor signaling pathway. In conclusion, body energy and gut microbiota balance collectively influenced lipid metabolism.PMID:38909450 | DOI:10.1016/j.meatsci.2024.109574
The rheumatoid arthritis drug auranofin exerts potent anti-lymphoma effect by stimulating TXNRD-mediated ROS generation and inhibition of energy metabolism
Redox Biol. 2024 Jun 18;75:103245. doi: 10.1016/j.redox.2024.103245. Online ahead of print.ABSTRACTSince the survival of lymphoma patients who experience disease progression or relapse remains very poor, new therapeutic approaches and effective drugs are urgently needed. Here we show that auranofin (AF), an anti-rheumatoid drug thought to inhibit thioredoxin reductases (TXNRDs) as its mechanism of action, exhibited potent activity against multiple cancer types, especially effective against B cell lymphoma. Surprisingly, a knockdown of TXNRD1 and TXNRD2 did not cause significant cytotoxicity, suggesting that abrogation of TXNRD enzyme per se was insufficient to cause cancer cell death. Further mechanistic study showed that the interaction of AF with TXNRD could convert this antioxidant enzyme to a ROS-generating molecule via disrupting its electron transport, leading to a leak of electrons that interact with molecular oxygen to form superoxide. AF also suppressed energy metabolism by inhibiting both mitochondria complex II and the glycolytic enzyme GAPDH, leading to a significant depletion of ATP and inhibition of cancer growth in vitro and in vivo. Importantly, we found that the AF-mediated ROS stress could induce PD-L1 expression, revealing an unwanted effect of AF in causing immune suppression. We further showed that a combination of AF with anti-PD-1 antibody could enhance the anticancer activity in a syngeneic immune-competent mouse B-cell lymphoma model. Our study suggests that AF could be a potential drug for lymphoma treatment, and its combination with immune checkpoint inhibitors would be a logical strategy to increase the therapeutic activity.PMID:38909408 | DOI:10.1016/j.redox.2024.103245
Metabolic flexibility ensures proper neuronal network function in moderate neuroinflammation
Sci Rep. 2024 Jun 22;14(1):14405. doi: 10.1038/s41598-024-64872-1.ABSTRACTMicroglia, brain-resident macrophages, can acquire distinct functional phenotypes, which are supported by differential reprogramming of cell metabolism. These adaptations include remodeling in glycolytic and mitochondrial metabolic fluxes, potentially altering energy substrate availability at the tissue level. This phenomenon may be highly relevant in the brain, where metabolism must be precisely regulated to maintain appropriate neuronal excitability and synaptic transmission. Direct evidence that microglia can impact on neuronal energy metabolism has been widely lacking, however. Combining molecular profiling, electrophysiology, oxygen microsensor recordings and mathematical modeling, we investigated microglia-mediated disturbances in brain energetics during neuroinflammation. Our results suggest that proinflammatory microglia showing enhanced nitric oxide release and decreased CX3CR1 expression transiently increase the tissue lactate/glucose ratio that depends on transcriptional reprogramming in microglia, not in neurons. In this condition, neuronal network activity such as gamma oscillations (30-70 Hz) can be fueled by increased ATP production in mitochondria, which is reflected by elevated oxygen consumption. During dysregulated inflammation, high energy demand and low glucose availability can be boundary conditions for neuronal metabolic fitness as revealed by kinetic modeling of single neuron energetics. Collectively, these findings indicate that metabolic flexibility protects neuronal network function against alterations in local substrate availability during moderate neuroinflammation.PMID:38909138 | DOI:10.1038/s41598-024-64872-1
Succinate promotes pulmonary fibrosis through GPR91 and predicts death in idiopathic pulmonary fibrosis
Sci Rep. 2024 Jun 22;14(1):14376. doi: 10.1038/s41598-024-64844-5.ABSTRACTIdiopathic pulmonary fibrosis (IPF) is believed to be associated with a notable disruption of cellular energy metabolism. By detecting the changes of energy metabolites in the serum of patients with pulmonary fibrosis, we aimed to investigate the diagnostic and prognostic value of energy metabolites in IPF, and further elucidated the mechanism of their involvement in pulmonary fibrosis. Through metabolomics research, it was discovered that the TCA cycle intermediates changed dramatically in IPF patients. In another validation cohort of 55 patients with IPF compared to 19 healthy controls, it was found that succinate, an intermediate product of TCA cycle, has diagnostic and prognostic value in IPF. The cut-off levels of serum succinate were 98.36 μM for distinguishing IPF from healthy controls (sensitivity, 83.64%; specificity, 63.16%; likelihood ratio, 2.27, respectively). Moreover, a high serum succinate level was independently associated with higher rates of disease progression (OR 13.087, 95%CI (2.819-60.761)) and mortality (HR 3.418, 95% CI (1.308-8.927)). In addition, accumulation of succinate and increased expression of the succinate receptor GPR91 were found in both IPF patients and BLM mouse models of pulmonary fibrosis. Reducing succinate accumulation in BLM mice alleviated pulmonary fibrosis and 21d mortality, while exogenous administration of succinate can aggravate pulmonary fibrosis in BLM mice. Furthermore, GPR91 deficiency protected against lung fibrosis caused by BLM. In vitro, succinate promoted the activation of lung fibroblasts by activating ERK pathway through GPR91. In summary, succinate is a promising biomarker for diagnosis and prognosis of IPF. The accumulation of succinate may promote fibroblast activation through GPR91 and pulmonary fibrosis.PMID:38909094 | DOI:10.1038/s41598-024-64844-5
An integrated strategy for quality control of Pseudobulbus Cremastrae seu Pleiones based on Q-marker
J Chromatogr A. 2024 Jun 17:465105. doi: 10.1016/j.chroma.2024.465105. Online ahead of print.ABSTRACTPseudobulbus Cremastrae seu Pleiones (PCsP), a traditional Chinese medicine known as ‶Shan-Ci-Gu″, possesses properties for clearing heat, counteracting toxicity, dissipating phlegm, and resolving masses. As a TCM with multiple bases, the dried pseudobulbs of Pleione bulbocodioides (PB), Pleione yunnanensis (PY) and Cremastra appendiculata (CA) are considered to be the official sources of PCsP. Additionally, several unofficial substitutes are also available in the market. To enhance the quality control of PCsP, an integrated strategy based on Q-marker was proposed. Initially, a study of integrating plant metabolomics, target isolation, structure identification, and activity testing afforded five Q-markers, including three new compounds. Furthermore, a quality evaluation method using a single standard to determine multi-components (SSDMC) based on Q-marker was established, which could effectively distinguish PB from CA and the counterfeit herbs. Finally, the transitivity of Q-markers was explored through a representative Chinese compound prescription containing PCsP. The results indicated that the identified Q-markers together with the established analysis methods could be effectively applied for quality control of PCsP and its preparations.PMID:38908999 | DOI:10.1016/j.chroma.2024.465105
Metabolic Engineering of CHO Cells Towards Cysteine Prototrophy and Systems Analysis of The Ensuing Phenotype
Metab Eng. 2024 Jun 20:S1096-7176(24)00076-4. doi: 10.1016/j.ymben.2024.06.003. Online ahead of print.ABSTRACTChinese hamster ovary (CHO) cells require cysteine for growth and productivity in fed-batch cultures. In intensified processes, supplementation of cysteine at high concentrations is a challenge due to its limited solubility and instability in solution. Methionine can be converted to cysteine (CYS) but key enzymes, cystathionine beta-synthase (Cbs) and cystathionine gamma-lyase (Cth), are not active in CHO cells resulting in accumulation of an intermediate, homocysteine (HCY), in cell culture milieu. In this study, Cbs and Cth were overexpressed in CHO cells to confer cysteine prototrophy, i.e., the ability to grow in a cysteine free environment. These pools (CbCt) needed homocysteine and beta-mercaptoethanol (βME) to grow in CYS-free medium. To increase intracellular homocysteine levels, Gnmt was overexpressed in CbCt pools. The resultant cell pools (GnCbCt), post adaptation in CYS-free medium with decreasing residual HCY and βME levels, were able to proliferate in the HCY-free, βME-free and CYS-free environment. Interestingly, CbCt pools were also able to be adapted to grow in HCY-free and CYS-free conditions, albeit at significantly higher doubling times than GnCbCt cells, but couldn't completely adapt to βME-free conditions. Further, single cell clones derived from the GnCbCt cell pool had a wide range in expression levels of Cbs, Cth and Gnmt and, when cultivated in CYS-free fed-batch conditions, performed similarly to the wild type (WT) cell line cultivated in CYS supplemented fed-batch culture. Intracellular metabolomic analysis showed that HCY and glutathione (GSH) levels were lower in the CbCt pool in CYS-free conditions but were restored closer to WT levels in the GnCbCt cells cultivated in CYS-free conditions. Transcriptomic analysis showed that GnCbCt cells upregulated several genes encoding transporters as well as methionine catabolism and transsulfuration pathway enzymes that support these cells to biosynthesize cysteine effectively. Further, 'omics analysis suggested CbCt pool was under ferroptotic stress in CYS-free conditions, which, when inhibited, enhanced the growth and viability of these cells in CYS-free conditions.PMID:38908817 | DOI:10.1016/j.ymben.2024.06.003
Bisphenol S Exposure induces Intestinal Inflammation via altering Gut Microbiome
Food Chem Toxicol. 2024 Jun 20:114830. doi: 10.1016/j.fct.2024.114830. Online ahead of print.ABSTRACTBisphenol S (BPS), a substitute for bisphenol A, is widely used in the manufacture of food packaging materials, raising concern over its toxicity. However, evidence is still lacking on whether gut microbiota involved in BPS induced intestinal inflammation in mammals, as well as its underlying mechanism. Using mouse BPS exposure model, we found intestinal inflammation characterized by shortened colon length, crypt distortion, macrophage accumulation and increased apoptosis. As for gut microbiota, 16s rRNA gene amplicon sequencing showed BPS exposure induced gut dysbiosis, including increased pro-inflammatory microbes such as Ileibacterium, and decreased anti-inflammatory genera such as Lactobacillus, Blautia and Romboutsia. Besides, LC-MS/MS-based untargeted metabolomic analysis indicated BPS impaired both bacteria and host metabolism. Additionally, transcriptome analysis of the intestine revealed abnormal gene expression in intestinal mucosal barrier and inflammation. More importantly, treating mice with antibiotics significantly attenuated BPS-induced gut inflammation via the regulation of both bacterial and host metabolites, indicating the role of gut microbiota. Collectively, BPS exposure induces intestinal inflammation via altering gut microbiota in mouse. This study provides the possibility of madecassic acid, an anti-inflammatory metabolite, to prevent BPS-induced intestinal inflammation and also new insights in understanding host-microbiota interaction in BPS toxicity.PMID:38908815 | DOI:10.1016/j.fct.2024.114830
Autophagic signaling promotes systems-wide remodeling in skeletal muscle upon oncometabolic stress by D2-HG
Mol Metab. 2024 Jun 20:101969. doi: 10.1016/j.molmet.2024.101969. Online ahead of print.ABSTRACTOBJECTIVES: Cachexia is a metabolic disorder and comorbidity with cancer and heart failure. The syndrome impacts more than thirty million people worldwide, accounting for 20% of all cancer deaths. In acute myeloid leukemia, somatic mutations of the metabolic enzyme isocitrate dehydrogenase 1 and 2 cause the production of the oncometabolite D2-hydroxyglutarate (D2-HG). Increased production of D2-HG is associated with heart and skeletal muscle atrophy, but the mechanistic links between metabolic and proteomic remodeling remain poorly understood. Therefore, we assessed how oncometabolic stress by D2-HG activates autophagy and drives skeletal muscle loss.METHODS: We quantified genomic, metabolomic, and proteomic changes in cultured skeletal muscle cells and mouse models of IDH-mutant leukemia using RNA sequencing, mass spectrometry, and computational modeling.RESULTS: D2-HG impairs NADH redox homeostasis in myotubes. Increased NAD+ levels drive activation of nuclear deacetylase Sirt1, which causes deacetylation and activation of LC3, a key regulator of autophagy. Using LC3 mutants, we confirm that deacetylation of LC3 by Sirt1 shifts its distribution from the nucleus into the cytosol, where it can undergo lipidation at pre-autophagic membranes. Sirt1 silencing or p300 overexpression attenuated autophagy activation in myotubes. In vivo, we identified increased muscle atrophy and reduced grip strength in response to D2-HG in male vs. female mice. In male mice, glycolytic intermediates accumulated, and protein expression of oxidative phosphorylation machinery was reduced. In contrast, female animals upregulated the same proteins, attenuating the phenotype in vivo. Network modeling and machine learning algorithms allowed us to identify candidate proteins essential for regulating oncometabolic adaptation in mouse skeletal muscle.CONCLUSIONS: Our multi-omics approach exposes new metabolic vulnerabilities in response to D2-HG in skeletal muscle and provides a conceptual framework for identifying therapeutic targets in cachexia.PMID:38908793 | DOI:10.1016/j.molmet.2024.101969
Altered bile acid and correlations with gut microbiome in transition dairy cows with different glucose and lipid metabolism status
J Dairy Sci. 2024 Jun 20:S0022-0302(24)00959-7. doi: 10.3168/jds.2024-24658. Online ahead of print.ABSTRACTThe transition from pregnancy to lactation is critical in dairy cows. Among others, dairy cows experience a metabolic stress due to a large change in glucose and lipid metabolism. Recent studies revealed that bile acids (BA), besides being involved in both the emulsification and solubilization of fats during intestinal absorption, can also affect the metabolism of glucose and lipids, both directly or indirectly by affecting the gut microbiota. Thus, we used untargeted and targeted metabolomics and 16S rRNA sequencing approaches to investigate the concentration of plasma metabolites and BA, the composition of the rectum microbial community, and assess their interaction in transition dairy cows. In Experiment 1, we investigated BA and other blood parameters and gut microbiota in dairy cows without clinical diseases during the transition period, which can be seen as well adapted to the challenge of changed glucose and lipid metabolism. As expected, we detected an increased plasma concentration of β-hydroxybutyrate (BHBA) and nonesterified fatty acids (NEFA) but decreased concentration of glucose, cholesterol, and triglycerides (TG). Untargeted metabolomic analysis of the plasma revealed primary BA biosynthesis was one of the affected pathways, and was consistent with the increased concentration of BA in the plasma. A correlation approach revealed a complex association between BA and microbiota with the host plasma concentration of glucose and lipid metabolites. Among BA, chenodeoxycholic acid derivates such as glycolithocholic acid, taurolithocholic acid, lithocholic acid, taurochenodeoxycholic acid, and taurodeoxycholic acid were the main hub nodes connecting microbe and blood metabolites (such as glucose, TG, and NEFA). In Experiment 2, we investigated early postpartum dairy cows with or without hyperketonemia (HPK). As expected, HPK cows had increased concentration of NEFA and decreased concentrations of glucose and triglycerides. The untargeted metabolomic analysis of the plasma revealed that primary BA biosynthesis was also one of the affected pathways. Even though the BA concentration was similar among the 2 groups, the profiles of taurine conjugated BA changed significantly. A correlation analysis also revealed an association between BA and microbiota with the concentration in plasma of glucose and lipid metabolites (such as BHBA). Among BA, cholic acid and its derivates such as taurocholic acid, tauro α-muricholic acid, and taurodeoxycholic acid were the main hub nodes connecting microbe and blood metabolites. Our results indicated an association between BA, intestinal microbe, and glucose and lipid metabolism in transition dairy cows. These findings provide new insight into the adaptation mechanisms of dairy cows during the transition period.PMID:38908707 | DOI:10.3168/jds.2024-24658
Changes in Rumen Epithelial Morphology and Transcriptome, Rumen Metabolome, and Blood Biochemical Parameters in Lactating Dairy Cows with Subacute Rumen Acidosis Following Rumen Content Transplantation
J Dairy Sci. 2024 Jun 20:S0022-0302(24)00939-1. doi: 10.3168/jds.2024-24694. Online ahead of print.ABSTRACTInterventions targeting the gut microbiota, such as fecal microbiota transplantation, prove effective in repairing the intestinal barrier and facilitating the recovery of its function and metabolism. However, the regulatory mechanisms governing the remodeling of rumen epithelial morphology and function, rumen metabolism, and host metabolism in cows of subacute ruminal acidosis (SARA) remain poorly understood. Here, we explored the changes in rumen epithelial morphology and transcriptome, rumen metabolome, and blood biochemical parameters in SARA cows following rumen content transplantation (RCT). The entire experiment consisted of 2 periods: the SARA induction period and the RCT period. During the SARA induction period, 12 ruminally cannulated lactating Holstein cows were randomly allocated into 2 groups, fed either a conventional diet [CON; n = 4; 40% concentrate, dry matter (DM) basis] or a high-grain diet (HG; n = 8; 60% concentrate, DM basis). Following the SARA induction period, the RCT period started. The HG cows were randomly assigned to 2 groups: the donor-recipient (DR) group and the self-recipient (SR) group. Rumen contents were entirely removed from both groups before RCT. For the DR group, cows were administered 70% rumen content from the CON cows, paired based on comparable body weight; for the SR group, each cow received 70% self-derived rumen content. The results revealed no significant differences in the thicknesses of the stratum corneum, granulosum, and spinosum/basale layers, as well as the total depth of the epithelium between the SR and DR groups. All these measurements exhibited a decreasing trend and fluctuations over time after the transfer. Notably, these fluctuations tended to stabilize at 13 or 16 d after RCT in the SR group, whereas they tended to stabilize after 8 or 13 d of transfer for the DR group. Transcriptome sequencing revealed that a total of 277 differentially expressed genes (DEGs) were identified between the 2 groups. Enrichment analysis showed that the DEGs were significantly enriched in 11 Gene Ontology biological processes and 14 KEGG pathways. The DEGs corresponding to almost any of these 11 biological process terms and 14 pathways showed mixed up- or downregulation following RCT. Metabolomics analysis indicated that a total of 33 differential metabolites were detected between the SR and DR groups, mainly enriched in 5 key metabolic pathways, including plant polysaccharides and starch degradation, lipid metabolism, amino sugar and nucleotide metabolism, purine metabolism, and Krebs cycle. Among them, the levels of differential metabolites associated with the degradation of plant polysaccharides and starches, metabolism of amino sugars and nucleotides, and purine metabolism pathways were significantly elevated in the DR cows. The results of blood biochemical parameters showed that the triglyceride concentration of the DR cows was increased than that of the SR cows, comparable to the level observed in the CON cows during the SARA induction period. Generally, our findings indicated that RCT facilitated the recovery of rumen epithelial morphological structure but did not promote its function recovery. Moreover, RCT enhanced rumen plant polysaccharide and starch degradation, amino sugar and nucleotide sugar metabolism, as well as purine metabolism. Additionally, it further promoted the recovery of plasma metabolites related to lipid metabolism.PMID:38908691 | DOI:10.3168/jds.2024-24694
Akkermansia muciniphila-derived pentadecanoic acid enhances oxaliplatin sensitivity in gastric cancer by modulating glycolysis
Pharmacol Res. 2024 Jun 20:107278. doi: 10.1016/j.phrs.2024.107278. Online ahead of print.ABSTRACTAccumulating evidence has proved the close association between alterations in gut microbiota and resistance to chemotherapeutic drugs. However, the potential roles of gut microbiota in regulating oxaliplatin sensitivity in gastric cancer (GC) have not been investigated before. We first found that antibiotic treatment diminished the therapeutic efficacy of oxaliplatin in a GC mouse model. Importantly, this effect could be transmitted to germ-free mice via fecal microbiota transplantation, indicating a potential role of gut microbiota modulation in oxaliplatin efficacy. Further, metagenomics data showed that Akkermansia muciniphila (A. muciniphila) ranked first among the bacterial species with decreased relative abundances after antibiotic treatment. Metabolically active A. muciniphila promotes oxaliplatin efficacy. As shown by metabolomics analysis, the metabolic pattern of gut microbiota was disrupted with significantly downregulated levels of pentadecanoic acid (PEA), and the use of PEA significantly promoted oxaliplatin efficacy. Mechanistically, FUBP1 positively regulated aerobic glycolysis of GC cells to hinder the therapeutic efficacy of oxaliplatin. A. muciniphila-derived PEA functioned as an inhibitory factor of glycolysis by directly antagonizing the activity of FUBP1, which potentiated GC responses to oxaliplatin. Our research suggested a key role for intestinal A. muciniphila and its metabolite PEA in promoting oxaliplatin efficacy, thus providing a new perspective for probiotic and prebiotic intervention in GC patients during chemotherapy.PMID:38908613 | DOI:10.1016/j.phrs.2024.107278
Causal association between plasma metabolites and neurodegenerative diseases
Prog Neuropsychopharmacol Biol Psychiatry. 2024 Jun 20:111067. doi: 10.1016/j.pnpbp.2024.111067. Online ahead of print.ABSTRACTBACKGROUND: Establishing causal relationships between metabolic biomarkers and neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD) is a challenge faced by observational studies. In this study, our aim was to investigate the causal associations between plasma metabolites and neurodegenerative diseases using Mendelian Randomization (MR) methods.METHODS: We utilized genetic associations with 1400 plasma metabolic traits as exposures. We used large-scale genome-wide association study (GWAS) summary statistics for AD and PD as our discovery datasets. For validation, we performed repeated analyses using different GWAS datasets. The main statistical method employed was inverse variance-weighted (IVW). We also conducted enrichment pathway analysis for IVW-identified metabolites.RESULTS: In the discovered dataset, there are a total of 69 metabolites (36 negatively, 33 positively) potentially associated with AD, and 47 metabolites (24 negatively, 23 positively) potentially associated with PD. Among these, 4 significant metabolites overlap with significant metabolites (PIVW < 0.05)in the validation dataset for AD, and 1 metabolite overlaps with significant metabolites in the validation dataset for PD. Three metabolites serve as common potential metabolic markers for both AD and PD, including Tryptophan betaine, Palmitoleoylcarnitine (C16:1), and X-23655 levels. Further pathway enrichment analysis suggests that the SLC-mediated transmembrane transport pathway, involving tryptophan betaine and carnitine metabolites, may represent potential intervention targets for treating AD and PD.CONCLUSION: This study offers novel insights into the causal effects of plasma metabolites on degenerative diseases through the integration of genomics and metabolomics. The identification of metabolites and metabolic pathways linked to AD and PD enhances our comprehension of the underlying biological mechanisms and presents promising targets for future therapeutic interventions in AD and PD.PMID:38908505 | DOI:10.1016/j.pnpbp.2024.111067
Editorial: Metabolomic aspects in neuropsychiatric disorders
Prog Neuropsychopharmacol Biol Psychiatry. 2024 Jun 20:111075. doi: 10.1016/j.pnpbp.2024.111075. Online ahead of print.NO ABSTRACTPMID:38908502 | DOI:10.1016/j.pnpbp.2024.111075
Short-term exposure to triclocarban alters microbial community composition and metabolite profiles in freshwater biofilms
Chemosphere. 2024 Jun 20:142674. doi: 10.1016/j.chemosphere.2024.142674. Online ahead of print.ABSTRACTTriclocarban (TCC), an emerging contaminant in water environments, its effects on freshwater biofilms remain insufficiently understood. This study investigates the effects of TCC exposure (at concentrations of 10 μg L-1 and 10 mg L-1) on mature freshwater biofilms. TCC was found to inhibit biofilm activity as evidenced by changes in surface morphology and the ratio of live/dead cells. Moreover, both concentrations of TCC were observed to modify the structure of the biofilm community. Metabolomics analysis revealed an overlap in the toxicity mechanisms and detoxification strategies triggered by various concentrations of TCC in biofilms. However, the higher toxicity induced by 10 mg L-1 TCC resulted from the downregulation of proline betaine, disrupting the homeostasis of cellular osmotic pressure regulation in biofilms. Notably, lipid and lipid-like molecules showed high sensitivity to different concentrations of TCC, indicating their potential as biomarkers for TCC exposure. Annotation of the differential metabolites by KEGG revealed that alterations in amino acid and carbon metabolism constituted the primary response mechanisms of biofilms to TCC. Moreover, the biofilm demonstrated enhanced nucleic acid metabolism, which bolstered resistance against TCC stress and heightened tolerance. Furthermore, elevated TCC concentrations prompted more robust detoxification processes for self-defense. Overall, short-term exposure to TCC induced acute toxicity in biofilms, yet they managed to regulate their community structure and metabolic levels to uphold oxidative homeostasis and activity. This research contributes to a deeper comprehension of TCC risk assessment and policy control in aquatic environments.PMID:38908443 | DOI:10.1016/j.chemosphere.2024.142674
Cellular spermine targets JAK signaling to restrain cytokine-mediated autoimmunity
Immunity. 2024 Jun 17:S1074-7613(24)00279-6. doi: 10.1016/j.immuni.2024.05.025. Online ahead of print.ABSTRACTProlonged activation of the type I interferon (IFN-I) pathway leads to autoimmune diseases such as systemic lupus erythematosus (SLE). Metabolic regulation of cytokine signaling is critical for cellular homeostasis. Through metabolomics analyses of IFN-β-activated macrophages and an IFN-stimulated-response-element reporter screening, we identified spermine as a metabolite brake for Janus kinase (JAK) signaling. Spermine directly bound to the FERM and SH2 domains of JAK1 to impair JAK1-cytokine receptor interaction, thus broadly suppressing JAK1 phosphorylation triggered by cytokines IFN-I, IFN-II, interleukin (IL)-2, and IL-6. Peripheral blood mononuclear cells (PBMCs) from individuals with SLE showing decreased spermine concentrations exhibited enhanced IFN-I and lupus gene signatures. Spermine treatment attenuated autoimmune pathogenesis in SLE and psoriasis mice and reduced IFN-I signaling in monocytes from individuals with SLE. We synthesized a spermine derivative (spermine derivative 1 [SD1]) and showed that it had a potent immunosuppressive function. Our findings reveal spermine as a metabolic checkpoint for cellular homeostasis and a potential immunosuppressive molecule for controlling autoimmune disease.PMID:38908373 | DOI:10.1016/j.immuni.2024.05.025
Association between environmental phthalates exposure and gut microbiota and metabolome in dementia with Lewy bodies
Environ Int. 2024 Jun 8;190:108806. doi: 10.1016/j.envint.2024.108806. Online ahead of print.ABSTRACTBACKGROUND: Emerging evidence has shown the potential involvement of phthalates (PAEs) exposure in the development of dementia with Lewy bodies (DLB). Metabolomics can reflect endogenous metabolites variation in the progress of disease after chemicals exposure. However, little is known about the association between PAEs, gut microbiota and metabolome in DLB.OBJECTIVE: We aim to explore the intricate relationship among urinary PAEs metabolites (mPAEs), dysbiosis of gut bacteria, and metabolite profiles in DLB.METHODS: A total of 43 DLB patients and 45 normal subjects were included in this study. Liquid chromatography was used to analyze the levels of mPAEs in the urine of the two populations. High-throughput sequencing and liquid chromatography-mass spectrometry were used to analyze gut microbiota and the profile of gut metabolome, respectively. The fecal microbiota transplantation (FMT) experiment was performed to verify the potential role of mPAEs on gut dysbiosis contribute to aggravating cognitive dysfunction in α-synuclein tg DLB/PD mice.RESULTS: The DLB patients had higher DEHP metabolites (MEOHP, MEHHP and MEHP), MMP and MnBP, lower MBP and MBzP than the control group and different microbiota. A significantly higher abundance of Ruminococcus gnavus and lower Prevotella copri, Prevotella stercorea and Bifidobacterium were observed in DLB. Higher 3 DEHP metabolites, MMP, MnBP and lower MBP and MBzP were significantly negatively associated with Prevotella copri, Prevotella stercorea and Bifidobacterium. Additionally, using metabolomics, we found that altered bile acids, short-chain fatty acids and amino acids metabolism are linked to these mPAEs. We further found that FMT of fecal microbiota from highest DEHP metabolites donors significantly impaired cognitive function in the germ-free DLB/PD mice.CONCLUSION: Our study suggested that PAEs exposure may alter the microbiota-gut-brain axis and providing novel insights into the interactions among environmental perturbations and microbiome-host in pathogenesis of DLB.PMID:38908272 | DOI:10.1016/j.envint.2024.108806
Comparison analysis of bioactive metabolites in soybean, pea, mung bean, and common beans: reveal the potential variations of their antioxidant property
Food Chem. 2024 Jun 16;457:140137. doi: 10.1016/j.foodchem.2024.140137. Online ahead of print.ABSTRACTThis study showed the significantly differences of basic nutrients and metabolite compounds in nine types of beans involved in soybean, mung bean, pea, and common beans. The metabolomics results showed that serval metabolites such as histidine, proline, 3-alanine, and myricetin which could be used to identify different beans. The random forest model showed that amino acid and fatty acid could be used as special indexes to distinguish different types of beans in practice. The different expressed metabolites among different types of beans were involved in various pathways including alanine, aspartate and glutamate metabolism, arginine and proline metabolism, and purine metabolism. The antioxidant activity was significantly different among different types of beans, and the contents of amino acid, coumarin, and polyphenol contributed the antioxidant activities of beans. Together, these results will provide a comprehensive understanding of metabolites in different types of beans and theoretical guideline for the future application of beans.PMID:38908251 | DOI:10.1016/j.foodchem.2024.140137
Lung-intestinal axis, Shuangshen granules attenuate lung metastasis by regulating the intestinal microbiota and related metabolites
Phytomedicine. 2024 Jun 15;132:155831. doi: 10.1016/j.phymed.2024.155831. Online ahead of print.ABSTRACTBACKGROUND: Based on the proposed lung-intestinal axis, there is a significant correlation between the microbiota and lung metastasis. Targeting the microbial composition is valuable in modulating the host response to cancer therapeutics. As a traditional Chinese medicine (TCM) formula, Shuangshen granules (SSG) are clinically useful in delaying lung metastasis, but its underlying mechanisms remain unknown.METHODS: The C57BL/6N mice were chosen to establish the Lewis lung cancer models. The broad-spectrum antibiotics (ABX) group was set up to estimate the effect of microbiota composition on metastasis. The therapeutic effects of different doses of SSG in treating lung metastasis were investigated through histopathology, immunohistochemistry, and Western blot analysis methods. Additionally, the phenotype of tumor-associated macrophages (TAMs) in the lung and blood was evaluated by flow cytometry. The fecal microbiota transplantation (FMT) and negative control (ABX plus high dose SSG group) experiments were also designed to assess intestinal microbiota's role in SSG intervention's outcome in lung metastasis. The 16S rRNA amplicon sequencing and Untargeted metabolomic analysis were used to analyze intestinal microbiota and metabolite changes mediated by SSG in tumor-bearing mice with lung metastasis.RESULT: ABX could observably lead to intestinal microbiota dysbiosis and enhance metastasis. SSG showed a significant chemopreventive effect in lung metastasis, reduced metastatic nodules and the expression levels of pre-metastatic niche biomarkers, and enriched the ratio of CD86+F4/80+CD11b+ cells, while FMT delayed metastasis similarly. The analysis of microbiota and metabolites revealed that SSG significantly enriched probiotics in feces, including Akkermansia muciniphila, Lachnoclostridium sp YL32, Limosilactobacillus reuteri, and potential anti-cancer serum metabolites, including Ginsenoside Rb1, Isoquinoline, Betulin and so on. We also investigated the mechanism of SSG protection against lung metastasis and showed that SSG regulated microbiota, improved TAMs polarization, and inhibited the expression of the NF-κB pathway.CONCLUSION: The results presented in our article demonstrated that SSG improved TAMs polarization and inhibited the NF-κB pathway by alleviating intestinal microbiota imbalance and metabolic disorders in tumor-bearing mice, resulting in delayed lung metastasis.PMID:38908193 | DOI:10.1016/j.phymed.2024.155831