Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

Dynamic changes on sensory property, nutritional quality and metabolic profiles of green kernel black beans during Eurotium cristatum-based solid-state fermentation

Tue, 04/06/2024 - 12:00
Food Chem. 2024 May 29;455:139846. doi: 10.1016/j.foodchem.2024.139846. Online ahead of print.ABSTRACTEurotium cristatum, a unique probiotic in Fu brick tea, is widely used in food processing to enhance added values. Here, green kernel black beans (GKBBs) were solid-fermented with E. cristatum and dynamic changes in flavour, chemical composition and metabolites during fermentation were investigated. As results, E. cristatum fermentation altered aroma profiles and sensory attributes of GKBBs, especially reduced sourness. After fermentation, total polyphenolic and flavonoid contents in GKBBs were elevated, while polysaccharides, soluble proteins and short-chain fatty acids contents were decreased. E. cristatum fermentation also induced biotransformation of glycosidic isoflavones into sapogenic isoflavones. During fermentation, dynamic changes in levels of 17 amino acids were observed, in which 3 branched-chain amino acids were increased. Non-targeted metabolomics identified 51 differential compounds and 10 related metabolic pathways involved in E. cristatum fermentation of GKBBs. This study lays foundation for the development of green kernel black bean-based functional food products with E. cristatum fermentation.PMID:38833863 | DOI:10.1016/j.foodchem.2024.139846

Metabolomic analysis of the Puerarin hypoglycemic activity via AMPK-mTOR and PPARgamma-NF-kappaB signaling pathways

Tue, 04/06/2024 - 12:00
Phytomedicine. 2024 Apr 2;130:155546. doi: 10.1016/j.phymed.2024.155546. Online ahead of print.ABSTRACTBACKGROUND: Diabetes mellitus (DM) is a chronic metabolic disease characterized by hyperglycemia, and its increasing prevalence is a global concern. Early diagnostic markers and therapeutic targets are essential for DM prevention and treatment. Pueraria, derived from kudzu root, is used clinically for various symptoms, and its active compound, Puerarin, shows promise in improving insulin resistance and reducing inflammation.PURPOSE: This study aims to evaluate the protective effects of metformin and Puerarin at different doses in an STZ-induced DM mouse model. The intricate metabolites within the serum of STZ-induced diabetic mice were subjected to thorough investigation, thus elucidating the intricate mechanism through which Puerarin demonstrates notable efficacy in the treatment of diabetes.METHODS: An STZ-induced DM mouse model is established. Mice are treated with metformin and puerarin at varying doses. Physiological, biochemical, and histomorphological assessments are performed. Metabolomics analysis is carried out on serum samples from control, DM, metformin, and medium-dose Puerarin groups. Western blot and qRT-PCR technologies are used to validate the mechanisms.RESULTS: The DM mouse model replicates abnormal blood glucose, insulin levels, physiological, biochemical irregularities, as well as liver and pancreas damage. Treatment with metformin and Puerarin restores these abnormalities, reduces organ injury, and modulates AMPK, PPARγ, mTOR, and NF-κB protein and mRNA expression. Puerarin activates the AMPK-mTOR and PPARγ-NF-κB signaling pathways, regulating insulin signaling, glucolipid metabolism, and mitigating inflammatory damage.CONCLUSION: This study demonstrates that Puerarin has the potential to treat diabetes by modulating key signaling pathways. The focus was on the finding that Puerarin has been shown to improve insulin signaling, glucolipid metabolism and attenuate inflammatory damage through the modulation of the AMPK-mTOR and PPARγ-NF-κB pathways. The discovery of Puerarin's favorable protective effect and extremely complex mechanism highlights its prospect in the treatment of diabetes and provides theoretical support for its comprehensive development and utilization.PMID:38833790 | DOI:10.1016/j.phymed.2024.155546

Prevotella copri transplantation promotes neurorehabilitation in a mouse model of traumatic brain injury

Tue, 04/06/2024 - 12:00
J Neuroinflammation. 2024 Jun 4;21(1):147. doi: 10.1186/s12974-024-03116-5.ABSTRACTBACKGROUND: The gut microbiota plays a critical role in regulating brain function through the microbiome-gut-brain axis (MGBA). Dysbiosis of the gut microbiota is associated with neurological impairment in Traumatic brain injury (TBI) patients. Our previous study found that TBI results in a decrease in the abundance of Prevotella copri (P. copri). P. copri has been shown to have antioxidant effects in various diseases. Meanwhile, guanosine (GUO) is a metabolite of intestinal microbiota that can alleviate oxidative stress after TBI by activating the PI3K/Akt pathway. In this study, we investigated the effect of P. copri transplantation on TBI and its relationship with GUO-PI3K/Akt pathway.METHODS: In this study, a controlled cortical impact (CCI) model was used to induce TBI in adult male C57BL/6J mice. Subsequently, P. copri was transplanted by intragastric gavage for 7 consecutive days. To investigate the effect of the GUO-PI3K/Akt pathway in P. copri transplantation therapy, guanosine (GUO) was administered 2 h after TBI for 7 consecutive days, and PI3K inhibitor (LY294002) was administered 30 min before TBI. Various techniques were used to assess the effects of these interventions, including quantitative PCR, neurological behavior tests, metabolite analysis, ELISA, Western blot analysis, immunofluorescence, Evans blue assays, transmission electron microscopy, FITC-dextran permeability assay, gastrointestinal transit assessment, and 16 S rDNA sequencing.RESULTS: P. copri abundance was significantly reduced after TBI. P. copri transplantation alleviated motor and cognitive deficits tested by the NSS, Morris's water maze and open field test. P. copri transplantation attenuated oxidative stress and blood-brain barrier damage and reduced neuronal apoptosis after TBI. In addition, P. copri transplantation resulted in the reshaping of the intestinal flora, improved gastrointestinal motility and intestinal permeability. Metabolomics and ELISA analysis revealed a significant increase in GUO levels in feces, serum and injured brain after P. copri transplantation. Furthermore, the expression of p-PI3K and p-Akt was found to be increased after P. copri transplantation and GUO treatment. Notably, PI3K inhibitor LY294002 treatment attenuated the observed improvements.CONCLUSIONS: We demonstrate for the first time that P. copri transplantation can improve GI functions and alter gut microbiota dysbiosis after TBI. Additionally, P. copri transplantation can ameliorate neurological deficits, possibly via the GUO-PI3K/Akt signaling pathway after TBI.PMID:38835057 | DOI:10.1186/s12974-024-03116-5

Morphological, Metabolomic and Genomic Evidences on Drought Stress Protective Functioning of the Endophyte Bacillus safensis Ni7

Tue, 04/06/2024 - 12:00
Curr Microbiol. 2024 Jun 4;81(7):209. doi: 10.1007/s00284-024-03720-x.ABSTRACTThe metabolomic and genomic characterization of an endophytic Bacillus safensis Ni7 was carried out in this study. This strain has previously been isolated from the xerophytic plant Nerium indicum L. and reported to enhance the drought tolerance in Capsicum annuum L. seedlings. The effects of drought stress on the morphology, biofilm production, and metabolite production of B. safensis Ni7 are analyzed in the current study. From the results obtained, the organism was found to have multiple strategies such as aggregation and clumping, robust biofilm production, and increased production of surfactin homologues under the drought induced condition when compared to non-stressed condition. Further the whole genome sequencing (WGS) based analysis has demonstrated B. safensis Ni7 to have a genome size of 3,671,999 bp, N50 value of 3,527,239, and a mean G+C content of 41.58%. Interestingly the organism was observed to have the presence of various stress-responsive genes (13, 20U, 16U,160, 39, 17M, 18, 26, and ctc) and genes responsible for surfactin production (srfAA, srfAB, srfAC, and srfAD), biofilm production (epsD, epsE, epsF, epsG, epsH, epsI, epsK, epsL, epsM, epsN, and pel), chemotaxis (cheB_1, cheB_2, cheB_3, cheW_1, cheW_2 cheR, cheD, cheC, cheA, cheY, cheV, and cheB_4), flagella synthesis (flgG_1, flgG_2, flgG_3, flgC, and flgB) as supportive to the drought tolerance. Besides these, the genes responsible for plant growth promotion (PGP), including the genes for nitrogen (nasA, nasB, nasC, nasD, and nasE) and sulfur assimilation (cysL_1&L_2, cysI) and genes for phosphate solubilization (phoA, phoP_1& phoP_2, and phoR) could also be predicted. Along with the same, the genes for catalase, superoxide dismutase, protein homeostasis, cellular fitness, osmoprotectants production, and protein folding could also be predicted from its WGS data. Further pan-genome analysis with plant associated B. safensis strains available in the public databases revealed B. safensis Ni7 to have the presence of a total of 5391 gene clusters. Among these, 3207 genes were identified as core genes, 954 as shell genes and 1230 as cloud genes. This variation in gene content could be taken as an indication of evolution of strains of Bacillus safensis as per specific conditions and hence in the case of B. safensis Ni7 its role in habitat adaptation of plant is well expected. This diversity in endophytic bacterial genes may attribute its role to support the plant system to cope up with stress conditions. Overall, the study provides genomic evidence on Bacillus safensis Ni7 as a stress alleviating microbial partner in plants.PMID:38834921 | DOI:10.1007/s00284-024-03720-x

Development of a Novel Non-invasive Metabolomics Assay to Predict Implantation Potential of Human Embryos

Tue, 04/06/2024 - 12:00
Reprod Sci. 2024 Jun 4. doi: 10.1007/s43032-024-01583-y. Online ahead of print.ABSTRACTCan a set of metabolites present in embryo culture media correlate with embryo implantation? Case-control study in two phases: discovery phase (101 samples) and validation phase (169 samples), collected between 2018 and 2022, with a total of 218 participants. Culture media samples with known implantation outcomes were collected after blastocyst embryo transfer (including both PGT and non-PGT cycles) and were analyzed using chromatography followed by mass spectrometry. The spectra were processed and analyzed using statistical and machine learning techniques to identify biomarkers associated with embryo implantation, and to develop a predictive model. In the discovery phase, 148 embryo implantation biomarkers were identified using high resolution equipment, and 47 of them were characterized. Our results indicate a significant enrichment of tryptophan metabolism, arginine and proline metabolism, and lysine degradation biochemical pathways. After transferring the method to a lower resolution equipment, a model able to assign a Metabolite Pregnancy Index (MPI) to each embryo culture media was developed, taking the concentration of 36 biomarkers as input. Applying this model to 20% of the validation samples (N=34) used as the test set, an accuracy of 85.29% was achieved, with a PPV (Positive Predictive Value) of 88% and a NPV (Negative Predictive Value) of 77.78%. Additionally, informative results were obtained for all the analyzed samples. Metabolite concentration in the media after in vitro culture shows correlation with embryo implantation potential. Furthermore, the mathematical combination of biomarker concentrations using Artificial Intelligence techniques can be used to predict embryo implantation outcome with an accuracy of around 85%.PMID:38834841 | DOI:10.1007/s43032-024-01583-y

Screening new opioids with metabolomics

Tue, 04/06/2024 - 12:00
Lab Anim (NY). 2024 Jun;53(6):126. doi: 10.1038/s41684-024-01382-7.NO ABSTRACTPMID:38834803 | DOI:10.1038/s41684-024-01382-7

Increase of secondary metabolites in sweet basil (Ocimum basilicum L.) leaves by exposure to N<sub>2</sub>O<sub>5</sub> with plasma technology

Tue, 04/06/2024 - 12:00
Sci Rep. 2024 Jun 4;14(1):12759. doi: 10.1038/s41598-024-63508-8.ABSTRACTExposure to N2O5 generated by plasma technology activates immunity in Arabidopsis through tryptophan metabolites. However, little is known about the effects of N2O5 exposure on other plant species. Sweet basil synthesizes many valuable secondary metabolites in its leaves. Therefore, metabolomic analyses were performed at three different exposure levels [9.7 (Ex1), 19.4 (Ex2) and 29.1 (Ex3) μmol] to assess the effects of N2O5 on basil leaves. As a result, cinnamaldehyde and phenolic acids increased with increasing doses. Certain flavonoids, columbianetin, and caryophyllene oxide increased with lower Ex1 exposure, cineole and methyl eugenol increased with moderate Ex2 exposure and L-glutathione GSH also increased with higher Ex3 exposure. Furthermore, gene expression analysis by quantitative RT-PCR showed that certain genes involved in the syntheses of secondary metabolites and jasmonic acid were significantly up-regulated early after N2O5 exposure. These results suggest that N2O5 exposure increases several valuable secondary metabolites in sweet basil leaves via plant defense responses in a controllable system.PMID:38834771 | DOI:10.1038/s41598-024-63508-8

A culture method with berbamine, a plant alkaloid, enhances CAR-T cell efficacy through modulating cellular metabolism

Tue, 04/06/2024 - 12:00
Commun Biol. 2024 Jun 4;7(1):685. doi: 10.1038/s42003-024-06297-0.ABSTRACTMemory T cells demonstrate superior in vivo persistence and antitumor efficacy. However, methods for manufacturing less differentiated T cells are not yet well-established. Here, we show that producing chimeric antigen receptor (CAR)-T cells using berbamine (BBM), a natural compound found in the Chinese herbal medicine Berberis amurensis, enhances the antitumor efficacy of CAR-T cells. BBM is identified through cell-based screening of chemical compounds using induced pluripotent stem cell-derived T cells, leading to improved viability with a memory T cell phenotype. Transcriptomics and metabolomics using stem cell memory T cells reveal that BBM broadly enhances lipid metabolism. Furthermore, the addition of BBM downregulates the phosphorylation of p38 mitogen-activated protein kinase and enhanced mitochondrial respiration. CD19-CAR-T cells cultured with BBM also extend the survival of leukaemia mouse models due to their superior in vivo persistence. This technology offers a straightforward approach to enhancing the antitumor efficacy of CAR-T cells.PMID:38834758 | DOI:10.1038/s42003-024-06297-0

Sphingosine d18:1 promotes nonalcoholic steatohepatitis by inhibiting macrophage HIF-2α

Tue, 04/06/2024 - 12:00
Nat Commun. 2024 Jun 4;15(1):4755. doi: 10.1038/s41467-024-48954-2.ABSTRACTNon-alcoholic steatohepatitis (NASH) is a severe type of the non-alcoholic fatty liver disease (NAFLD). NASH is a growing global health concern due to its increasing morbidity, lack of well-defined biomarkers and lack of clinically effective treatments. Using metabolomic analysis, the most significantly changed active lipid sphingosine d18:1 [So(d18:1)] is selected from NASH patients. So(d18:1) inhibits macrophage HIF-2α as a direct inhibitor and promotes the inflammatory factors secretion. Male macrophage-specific HIF-2α knockout and overexpression mice verified the protective effect of HIF-2α on NASH progression. Importantly, the HIF-2α stabilizer FG-4592 alleviates liver inflammation and fibrosis in NASH, which indicated that macrophage HIF-2α is a potential drug target for NASH treatment. Overall, this study confirms that So(d18:1) promotes NASH and clarifies that So(d18:1) inhibits the transcriptional activity of HIF-2α in liver macrophages by suppressing the interaction of HIF-2α with ARNT, suggesting that macrophage HIF-2α may be a potential target for the treatment of NASH.PMID:38834568 | DOI:10.1038/s41467-024-48954-2

Semaglutide ameliorates cardiac remodeling in male mice by optimizing energy substrate utilization through the Creb5/NR4a1 axis

Tue, 04/06/2024 - 12:00
Nat Commun. 2024 Jun 4;15(1):4757. doi: 10.1038/s41467-024-48970-2.ABSTRACTSemaglutide, a glucagon-like peptide-1 receptor agonist, is clinically used as a glucose-lowering and weight loss medication due to its effects on energy metabolism. In heart failure, energy production is impaired due to altered mitochondrial function and increased glycolysis. However, the impact of semaglutide on cardiomyocyte metabolism under pressure overload remains unclear. Here we demonstrate that semaglutide improves cardiac function and reduces hypertrophy and fibrosis in a mouse model of pressure overload-induced heart failure. Semaglutide preserves mitochondrial structure and function under chronic stress. Metabolomics reveals that semaglutide reduces mitochondrial damage, lipid accumulation, and ATP deficiency by promoting pyruvate entry into the tricarboxylic acid cycle and increasing fatty acid oxidation. Transcriptional analysis shows that semaglutide regulates myocardial energy metabolism through the Creb5/NR4a1 axis in the PI3K/AKT pathway, reducing NR4a1 expression and its translocation to mitochondria. NR4a1 knockdown ameliorates mitochondrial dysfunction and abnormal glucose and lipid metabolism in the heart. These findings suggest that semaglutide may be a therapeutic agent for improving cardiac remodeling by modulating energy metabolism.PMID:38834564 | DOI:10.1038/s41467-024-48970-2

Tidy-Direct-to-MS: An Open-Source Data-Processing Pipeline for Direct Mass Spectrometry-Based Metabolomics Experiments

Tue, 04/06/2024 - 12:00
J Proteome Res. 2024 Jun 4. doi: 10.1021/acs.jproteome.3c00784. Online ahead of print.ABSTRACTDirect-to-Mass Spectrometry and ambient ionization techniques can be used for biochemical fingerprinting in a fast way. Data processing is typically accomplished with vendor-provided software tools. Here, a novel, open-source functionality, entitled Tidy-Direct-to-MS, was developed for data processing of direct-to-MS data sets. It allows for fast and user-friendly processing using different modules for optional sample position detection and separation, mass-to-charge ratio drift detection and correction, consensus spectra calculation, and bracketing across sample positions as well as feature abundance calculation. The tool also provides functionality for the automated comparison of different sets of parameters, thereby assisting the user in the complex task of finding an optimal combination to maximize the total number of detected features while also checking for the detection of user-provided reference features. In addition, Tidy-Direct-to-MS has the capability for data quality review and subsequent data analysis, thereby simplifying the workflow of untargeted ambient MS-based metabolomics studies. Tidy-Direct-to-MS is implemented in the Python programming language as part of the TidyMS library and can thus be easily extended. Capabilities of Tidy-Direct-to-MS are showcased in a data set acquired in a marine metabolomics study reported in MetaboLights (MTBLS1198) using a transmission mode Direct Analysis in Real Time-Mass Spectrometry (TM-DART-MS)-based method.PMID:38833568 | DOI:10.1021/acs.jproteome.3c00784

An <em>in silico</em> investigation of the toxicological effects and biological activities of 3-phenoxybenzoic acid and its metabolite products

Tue, 04/06/2024 - 12:00
Xenobiotica. 2024 Jun 4:1-20. doi: 10.1080/00498254.2024.2361457. Online ahead of print.ABSTRACTWe aimed to elucidate the toxic effects and biological activities of 3-phenoxybenzoic acid (3PBA) and its metabolite products. Numerous in silico methods were used to identify the toxic effects and biological activities of 3PBA, including PASS online, molecular docking, ADMETlab 2.0, ADMESWISS, MetaTox, and molecular dynamic simulation. Ten metabolite products were identified via Phase II reactions (O-glucuronidation, O-sulfation, and methylation). All of the investigated compounds were followed by Lipinski's rule, indicating that they were stimulants or inducers of hazardous processes. Because of their high gastrointestinal absorption and ability to reach the blood-brain barrier, the studied compounds' physicochemical and pharmacokinetic properties matched existing evidence of harmful effects, including hematemesis, reproductive dysfunction, allergic dermatitis, toxic respiration, and neurotoxicity. The studied compounds have been linked to the apoptotic pathway, the reproductivity system, neuroendocrine disruptors, phospholipid-translocating ATPase inhibitors, and JAK2 expression. An O-glucuronidation metabolite product demonstrated higher binding affinity and interaction with CYP2C9, CYP3A4, caspase 3, and caspase 8 than 3PBA and other metabolite products, whereas metabolite products from methylation were predominant and more toxic. Our in silico findings partly meet the 3Rs principle by minimizing animal testing before more study is needed to identify the detrimental effects of 3PBA on other organs (liver, kidneys). Future research directions may involve experimental validation of in silico predictions, elucidation of molecular mechanisms, and exploration of therapeutic interventions. These findings contribute to our understanding of the toxicological profile of 3PBA and its metabolites, which has implications for risk assessment and regulatory decisions.PMID:38833509 | DOI:10.1080/00498254.2024.2361457

Nitrogen and sulfur for phosphorus: Lipidome adaptation of anaerobic sulfate-reducing bacteria in phosphorus-deprived conditions

Tue, 04/06/2024 - 12:00
Proc Natl Acad Sci U S A. 2024 Jun 11;121(24):e2400711121. doi: 10.1073/pnas.2400711121. Epub 2024 Jun 4.ABSTRACTUnderstanding how microbial lipidomes adapt to environmental and nutrient stress is crucial for comprehending microbial survival and functionality. Certain anaerobic bacteria can synthesize glycerolipids with ether/ester bonds, yet the complexities of their lipidome remodeling under varying physicochemical and nutritional conditions remain largely unexplored. In this study, we thoroughly examined the lipidome adaptations of Desulfatibacillum alkenivorans strain PF2803T, a mesophilic anaerobic sulfate-reducing bacterium known for its high proportions of alkylglycerol ether lipids in its membrane, under various cultivation conditions including temperature, pH, salinity, and ammonium and phosphorous concentrations. Employing an extensive analytical and computational lipidomic methodology, we identified an assemblage of nearly 400 distinct lipids, including a range of glycerol ether/ester lipids with various polar head groups. Information theory-based analysis revealed that temperature fluctuations and phosphate scarcity profoundly influenced the lipidome's composition, leading to an enhanced diversity and specificity of novel lipids. Notably, phosphorous limitation led to the biosynthesis of novel glucuronosylglycerols and sulfur-containing aminolipids, termed butyramide cysteine glycerols, featuring various ether/ester bonds. This suggests a novel adaptive strategy for anaerobic heterotrophs to thrive under phosphorus-depleted conditions, characterized by a diverse array of nitrogen- and sulfur-containing polar head groups, moving beyond a reliance on conventional nonphospholipid types.PMID:38833476 | DOI:10.1073/pnas.2400711121

yQTL Pipeline: A structured computational workflow for large scale quantitative trait loci discovery and downstream visualization

Tue, 04/06/2024 - 12:00
PLoS One. 2024 Jun 4;19(6):e0298501. doi: 10.1371/journal.pone.0298501. eCollection 2024.ABSTRACTQuantitative trait loci (QTL) denote regions of DNA whose variation is associated with variations in quantitative traits. QTL discovery is a powerful approach to understand how changes in molecular and clinical phenotypes may be related to DNA sequence changes. However, QTL discovery analysis encompasses multiple analytical steps and the processing of multiple input files, which can be laborious, error prone, and hard to reproduce if performed manually. To facilitate and automate large-scale QTL analysis, we developed the yQTL Pipeline, where the 'y' indicates the dependent quantitative variable being modeled. Prior to the association test, the pipeline supports the calculation or the direct input of pre-defined genome-wide principal components and genetic relationship matrix when applicable. User-specified covariates can also be provided. Depending on whether familial relatedness exists among the subjects, genome-wide association tests will be performed using either a linear mixed-effect model or a linear model. The options to run an ANOVA model or testing the interaction with a covariate are also available. Using the workflow management tool Nextflow, the pipeline parallelizes the analysis steps to optimize run-time and ensure results reproducibility. In addition, a user-friendly R Shiny App is developed to facilitate result visualization. It can generate Manhattan and Miami plots of phenotype traits, genotype-phenotype boxplots, and trait-QTL connection networks. We applied the yQTL Pipeline to analyze metabolomics profiles of blood serum from the New England Centenarians Study (NECS) participants. A total of 9.1M SNPs and 1,052 metabolites across 194 participants were analyzed. Using a p-value cutoff 5e-8, we found 14,983 mQTLs associated with 312 metabolites. The built-in parallelization of our pipeline reduced the run time from ~90 min to ~26 min. Visualization using the R Shiny App revealed multiple mQTLs shared across multiple metabolites. The yQTL Pipeline is available with documentation on GitHub at https://github.com/montilab/yQTLpipeline.PMID:38833463 | DOI:10.1371/journal.pone.0298501

A metabolic profile of xenon and metabolite associations with 6-month mortality after out-of-hospital cardiac arrest: A post-hoc study of the randomised Xe-Hypotheca trial

Tue, 04/06/2024 - 12:00
PLoS One. 2024 Jun 4;19(6):e0304966. doi: 10.1371/journal.pone.0304966. eCollection 2024.ABSTRACTPURPOSE: Out-of-hospital cardiac arrest (OHCA) carries a relatively poor prognosis and requires multimodal prognostication to guide clinical decisions. Identification of previously unrecognized metabolic routes associated with patient outcome may contribute to future biomarker discovery. In OHCA, inhaled xenon elicits neuro- and cardioprotection. However, the metabolic effects remain unknown.MATERIALS AND METHODS: In this post-hoc study of the randomised, 2-group, single-blind, phase 2 Xe-Hypotheca trial, 110 OHCA survivors were randomised 1:1 to receive targeted temperature management (TTM) at 33°C with or without inhaled xenon during 24 h. Blood samples for nuclear magnetic resonance spectroscopy metabolic profiling were drawn upon admission, at 24 and 72 h.RESULTS: At 24 h, increased lactate, adjusted hazard-ratio 2.25, 95% CI [1.53; 3.30], p<0.001, and decreased branched-chain amino acids (BCAA) leucine 0.64 [0.5; 0.82], p = 0.007, and valine 0.37 [0.22; 0.63], p = 0.003, associated with 6-month mortality. At 72 h, increased lactate 2.77 [1.76; 4.36], p<0.001, and alanine 2.43 [1.56; 3.78], p = 0.001, and decreased small HDL cholesterol ester content (S-HDL-CE) 0.36 [0.19; 0.68], p = 0.021, associated with mortality. No difference was observed between xenon and control groups.CONCLUSIONS: In OHCA patients receiving TTM with or without xenon, high lactate and alanine and decreased BCAAs and S-HDL-CE associated with increased mortality. It remains to be established whether current observations on BCAAs, and possibly alanine and lactate, could reflect neural damage via their roles in the metabolism of the neurotransmitter glutamate. Xenon did not significantly alter the measured metabolic profile, a potentially beneficial attribute in the context of compromised ICU patients.TRIAL REGISTRATION: Trial Registry number: ClinicalTrials.gov Identifier: NCT00879892.PMID:38833442 | DOI:10.1371/journal.pone.0304966

Quality assessment by bile composition in normothermic machine perfusion of rat livers

Tue, 04/06/2024 - 12:00
Tissue Eng Part A. 2024 Jun 4. doi: 10.1089/ten.TEA.2024.0048. Online ahead of print.ABSTRACTBACKGROUND: The persistent challenge of organ scarcity in liver transplantation leads to an escalating dependence on organs obtained from extended criteria donors (ECD). Normothermic machine perfusion (NMP) is used for improved preservation. Due to the mimicked in vivo conditions during normothermic machine perfusion, the liver is metabolic active, which allows quality assessment during perfusion. Bile seems to be of rising interest in clinical studies since it is easily collectible for analysis. As there is currently no data on biliary bile acids during NMP, the primary objective of this study was to use our experimental rodent NMP model to assess changes in bile composition through organ damage during perfusion to inform clinical evaluation of donor organs during NMP.METHODS: 30 livers from male Sprague Dawley rats in five groups and underwent 6 hours of NMP using either erythrocyte-supplemented DMEM or Steen solution, with or without 30min of warm ischemia time (WIT). We conducted regular measurements of AST, ALT, LDH, and urea levels in the perfusate at three-hour intervals. Bile samples were analyzed for biliary pH, LDH and GGT as well as biliary bile acids via mass spectrometry and UHPLC.RESULTS: Compared to regular livers, liver injury parameters were significantly higher in our donation after circulatory death (DCD) model. Bile production was significantly reduced in livers exposed to WIT, and the bile showed a significantly more alkaline pH. This correlated with the concentration of total bile acids, which was significantly higher in livers experiencing WIT. However, regular livers produced a higher total amount of biliary bile acids during perfusion. Taurocholic acid and its metabolites were most prominent. Secondary bile acids were significantly reduced during perfusion due to the missing enterohepatic circulation.CONCLUSIONS: WIT-induced liver injury affects bile composition within our small animal NMP model. We hypothesize this phenomenon to be attributed to the energy-driven nature of bile secretion, potentially explaining why DCD livers produce less, yet more concentrated, bile. Our results may inform clinical studies, in which biliary bile acids might have a potential as a quantifiable viability marker in human NMP liver transplantation studies.PMID:38832856 | DOI:10.1089/ten.TEA.2024.0048

Statistical and computational methods for integrating microbiome, host genomics, and metabolomics data

Tue, 04/06/2024 - 12:00
Elife. 2024 Jun 4;13:e88956. doi: 10.7554/eLife.88956.ABSTRACTLarge-scale microbiome studies are progressively utilizing multiomics designs, which include the collection of microbiome samples together with host genomics and metabolomics data. Despite the increasing number of data sources, there remains a bottleneck in understanding the relationships between different data modalities due to the limited number of statistical and computational methods for analyzing such data. Furthermore, little is known about the portability of general methods to the metagenomic setting and few specialized techniques have been developed. In this review, we summarize and implement some of the commonly used methods. We apply these methods to real data sets where shotgun metagenomic sequencing and metabolomics data are available for microbiome multiomics data integration analysis. We compare results across methods, highlight strengths and limitations of each, and discuss areas where statistical and computational innovation is needed.PMID:38832759 | DOI:10.7554/eLife.88956

Relationship between human serum metabolites and angina pectoris: a Mendelian randomization study

Tue, 04/06/2024 - 12:00
Postgrad Med J. 2024 Jun 4:qgae067. doi: 10.1093/postmj/qgae067. Online ahead of print.ABSTRACTPURPOSE: We aimed to explore the causal relationship between human serum metabolites and angina pectoris.METHODS: This study used two-sample Mendelian randomization (MR) analysis to assess the association between 486 serum metabolites and angina pectoris. The analytical methods employed to reduce study bias included inverse variance weighted, MR-Egger, and weighted median method. A comprehensive sensitivity analysis was performed using the leave-one-out method, while instrumental variable pleiotropy was tested with MR-Pleiotropy RESidual Sum and Outlier. Metabolic pathways of angina-associated metabolites were analysed on the MetaboAnalyst metabolomics analysis tool platform.RESULTS: In this study, 42 serum metabolites were found to be strongly associated with angina pectoris. They mainly belonged to seven groups: amino acids, carbohydrates, cofactors and vitamins, lipids, nucleotides, unknown metabolites, and exogenous substances. Pipecolate posed the highest risk for the development of angina pectoris among the 42 serum metabolites. The main metabolic pathways associated with angina pectoris were glycine, serine, threonine metabolism, primary bile acid biosynthesis, and caffeine metabolism.CONCLUSION: We identified 25 high-risk and 17 protective human serum metabolites associated with angina pectoris. Their associated major metabolic pathways were also determined. The serum metabolite pipecolate was significantly and positively correlated with the risk of angina pectoris. This finding may serve as a valuable reference for testing serum markers associated with angina pectoris.PMID:38832627 | DOI:10.1093/postmj/qgae067

Unveiling resilience: coelomic fluid bacteria's impact on plant metabolism and abiotic stress tolerance

Tue, 04/06/2024 - 12:00
Plant Signal Behav. 2024 Dec 31;19(1):2363126. doi: 10.1080/15592324.2024.2363126. Epub 2024 Jun 4.ABSTRACTEarthworms' coelomic fluid (CF) has been discovered to possess properties that promote plant development. In particular, the earthworm's coelomic fluid-associated bacteria (CFB) are the primary factor influencing the plants' response. To investigate this, we used bacteria isolated from the CF and selected based on different plant growth-promoting traits, in a mesocosm ecosystem that includes plants. This experiment aimed to assess their impact on the metabolism of plants growing under abiotic stress environments (alkaline soil and nitrogen (N), phosphate (P), and potassium (K) deficit) and compare the lipid profiles of plants under the various treatments. We used seven different bacterial species isolated from the CF of Aporrectodea molleri and as a plant model Zea mays L. For the metabolomic analysis method, we used gas chromatography-mass spectrometry lipidomic. After observing the metabolomic profiles, we found that a few molecular pathways are involved in how plants react to bacterial biostimulants. The bacterial isolates belonging to Pantoea vagans, Pseudomonas aeruginosa, Bacillus paramycoides, and Bacillus thuringiensis have led to a significant increase in synthesizing several metabolites belonging to various chemical categories. Contrary to predictions, abiotic stress did not cause a drop in the composition and concentration of lipids in plants treated with the CFB, demonstrating the rigidity of the protective mechanisms. The statistical analysis based on the Pearson method revealed a positive significant correlation between plant growth parameters (length of the aerial part, surface of the leaves, and biomass) and some metabolites belonging to fatty acids, carboxylic acids, benzene derivatives, and alkanes. Moreover, the standard metabolic components of all treatments in much higher concentrations during bacterial treatments than the control treatment suggests that the bacteria have stimulated the overexpression of these metabolic components. According to these results, we could assume that plants treated with CFB exhibit an adaptability of abiotic stress defense mechanisms, which may be attributed to the upregulation of genes involved in lipid biosynthesis pathways.PMID:38832593 | DOI:10.1080/15592324.2024.2363126

Metabolite analysis reveals flavonoids accumulation during flower development in <em>Rhododendron pulchrum</em> sweet (Ericaceae)

Tue, 04/06/2024 - 12:00
PeerJ. 2024 May 31;12:e17325. doi: 10.7717/peerj.17325. eCollection 2024.ABSTRACTThe azalea (Rhododendron simsii Planch.) is an important ornamental woody plant with various medicinal properties due to its phytochemical compositions and components. However little information on the metabolite variation during flower development in Rhododendron has been provided. In our study, a comparative analysis of the flavonoid profile was performed in Rhododendron pulchrum sweet at three stages of flower development, bud (stage 1), partially open flower (stage 2), and full bloom (stage 3). A total of 199 flavonoids, including flavone, flavonol, flavone C-glycosides, flavanone, anthocyanin, and isoflavone were identified. In hierarchical clustering analysis (HCA) and principal component analysis (PCA), the accumulation of flavonoids displayed a clear development stage variation. During flower development, 78 differential accumulated metabolites (DAMs) were identified, and most were enriched to higher levels at the full bloom stage. A total of 11 DAMs including flavone (chrysin, chrysoeriol O-glucuronic acid, and chrysoeriol O-hexosyl-O-pentoside), isoflavone (biochanin A), and flavonol (3,7-di-O-methyl quercetin and isorhamnetin) were significantly altered at three stages. In particular, 3,7-di-O-methyl quercetin was the top increased metabolite during flower development. Furthermore, integrative analyses of metabolomic and transcriptomic were conducted, revealing that the contents of isoflavone, biochanin A, glycitin, and prunetin were correlated with the expression of 2-hydroxyisoflavanone dehydratase (HIDH), which provide insight into the regulatory mechanism that controls isoflavone biosynthesis in R. pulchrum. This study will provide a new reference for increasing desired metabolites effectively by more accurate or appropriate genetic engineering strategies.PMID:38832044 | PMC:PMC11146334 | DOI:10.7717/peerj.17325

Pages