PubMed
A novel humanized mouse model for HIV and tuberculosis co-infection studies
Front Immunol. 2024 May 10;15:1395018. doi: 10.3389/fimmu.2024.1395018. eCollection 2024.ABSTRACTBACKGROUND: Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), continues to be a major public health problem worldwide. The human immunodeficiency virus (HIV) is another equally important life-threatening pathogen. HIV infection decreases CD4+ T cell levels markedly increasing Mtb co-infections. An appropriate animal model for HIV/Mtb co-infection that can recapitulate the diversity of the immune response in humans during co-infection would facilitate basic and translational research in HIV/Mtb infections. Herein, we describe a novel humanized mouse model.METHODS: The irradiated NSG-SGM3 mice were transplanted with human CD34+ hematopoietic stem cells, and the humanization was monitored by staining various immune cell markers for flow cytometry. They were challenged with HIV and/or Mtb, and the CD4+ T cell depletion and HIV viral load were monitored over time. Before necropsy, the live mice were subjected to pulmonary function test and CT scan, and after sacrifice, the lung and spleen homogenates were used to determine Mtb load (CFU) and cytokine/chemokine levels by multiplex assay, and lung sections were analyzed for histopathology. The mouse sera were subjected to metabolomics analysis.RESULTS: Our humanized NSG-SGM3 mice were able to engraft human CD34+ stem cells, which then differentiated into a full-lineage of human immune cell subsets. After co-infection with HIV and Mtb, these mice showed decrease in CD4+ T cell counts overtime and elevated HIV load in the sera, similar to the infection pattern of humans. Additionally, Mtb caused infections in both lungs and spleen, and induced granulomatous lesions in the lungs. Distinct metabolomic profiles were also observed in the tissues from different mouse groups after co-infections.CONCLUSION: The humanized NSG-SGM3 mice are able to recapitulate the pathogenic effects of HIV and Mtb infections and co-infection at the pathological, immunological and metabolism levels and are therefore a reproducible small animal model for studying HIV/Mtb co-infection.PMID:38799434 | PMC:PMC11116656 | DOI:10.3389/fimmu.2024.1395018
Measurement of very low-molecular weight metabolites by traveling wave ion mobility and its use in human urine samples
J Pharm Anal. 2024 May;14(5):100921. doi: 10.1016/j.jpha.2023.12.011. Epub 2023 Dec 16.ABSTRACTThe collision cross-sections (CCS) measurement using ion mobility spectrometry (IMS) in combination with mass spectrometry (MS) offers a great opportunity to increase confidence in metabolite identification. However, owing to the lack of sensitivity and resolution, IMS has an analytical challenge in studying the CCS values of very low-molecular-weight metabolites (VLMs ≤ 250 Da). Here, we describe an analytical method using ultrahigh-performance liquid chromatography (UPLC) coupled to a traveling wave ion mobility-quadrupole-time-of-flight mass spectrometer optimized for the measurement of VLMs in human urine samples. The experimental CCS values, along with mass spectral properties, were reported for the 174 metabolites. The experimental data included the mass-to-charge ratio (m/z), retention time (RT), tandem MS (MS/MS) spectra, and CCS values. Among the studied metabolites, 263 traveling wave ion mobility spectrometry (TWIMS)-derived CCS values (TWCCSN2) were reported for the first time, and more than 70% of these were CCS values of VLMs. The TWCCSN2 values were highly repeatable, with inter-day variations of <1% relative standard deviation (RSD). The developed method revealed excellent TWCCSN2 accuracy with a CCS difference (ΔCCS) within ±2% of the reported drift tube IMS (DTIMS) and TWIMS CCS values. The complexity of the urine matrix did not affect the precision of the method, as evidenced by ΔCCS within ±1.92%. According to the Metabolomics Standards Initiative, 55 urinary metabolites were identified with a confidence level of 1. Among these 55 metabolites, 53 (96%) were VLMs. The larger number of confirmed compounds found in this study was a result of the addition of TWCCSN2 values, which clearly increased metabolite identification confidence.PMID:38799238 | PMC:PMC11127212 | DOI:10.1016/j.jpha.2023.12.011
The cardiovascular toxicity of polystyrene microplastics in rats: based on untargeted metabolomics analysis
Front Pharmacol. 2024 May 10;15:1336369. doi: 10.3389/fphar.2024.1336369. eCollection 2024.ABSTRACTBACKGROUND: Polystyrene microplastics (PS-MPs) exhibit multi-target, multi-dimensional, chronic, and low toxicity to the cardiovascular system. They enter the bloodstream through the gastrointestinal tract and respiratory system, altering blood parameters and conditions, inducing thrombotic diseases, and damaging myocardial tissue through the promotion of oxidative stress and inflammatory responses in myocardial cells. However, many of the links and mechanisms remain unclear.METHODS: In this study, 48 wistar rats were randomly divided into four groups and exposed to different concentrations of PS-MPs: control group (0 mg/kg/d), low dose group (0.5 mg/kg/d), middle dose group (5 mg/kg/d) and high dose group (50 mg/kg/d), with 12 rats in each group. After 90 consecutive days of intragastric administration of PS-MPs, biochemical markers in myocardium, aorta and blood were detected, and HE staining was performed to observe the toxic effects of PS-mps on cardiovascular system. Furthermore, non-targeted metabolomics methods were used to analyze the effect of PS-MPs exposure on the metabolism of cardiovascular system in rats, and to explore its potential molecular mechanism.RESULTS: The results revealed no pathological changes in the heart and aorta following PS-MPs exposure. However, the myocardial enzyme levels in the high dose PS-MPs group of rats showed a significant increase. Moreover, exposure to polystyrene microplastics caused a disorder in lipid metabolism in rats, and led to an increase in indicators of inflammation and oxidative stress in myocardial and aortic tissues, but resulted in a decrease in the level of IL-6. Untargeted metabolomics results showed that metabolites with antioxidant and anti-inflammatory effects, including equol and 4-hydroxybenzoic acid, were significantly upregulated.CONCLUSION: These results suggest that long-term exposure to high concentrations of PS-MPs may lead to abnormal lipid metabolism and cardiovascular system damage. The mechanism may be related to oxidative stress and inflammatory response. Exogenous antioxidants and changes in own metabolites may have a protective effect on the injury. Therefore, understanding the toxicological mechanism of PS-MPs not only helps to elucidate its pathogenesis, but also provides new ideas for the treatment of chronic diseases.PMID:38799170 | PMC:PMC11127592 | DOI:10.3389/fphar.2024.1336369
The high-quality genome of <em>Grona styracifolia</em> uncovers the genomic mechanism of high levels of schaftoside, a promising drug candidate for treatment of COVID-19
Hortic Res. 2024 Mar 30;11(5):uhae089. doi: 10.1093/hr/uhae089. eCollection 2024 May.ABSTRACTRecent study has evidenced that traditional Chinese medicinal (TCM) plant-derived schaftoside shows promise as a potential drug candidate for COVID-19 treatment. However, the biosynthetic pathway of schaftoside in TCM plants remains unknown. In this study, the genome of the TCM herb Grona styracifolia (Osbeck) H.Ohashi & K.Ohashi (GSO), which is rich in schaftoside, was sequenced, and a high-quality assembly of GSO genome was obtained. Our findings revealed that GSO did not undergo recent whole genome duplication (WGD) but shared an ancestral papilionoid polyploidy event, leading to the gene expansion of chalcone synthase (CHS) and isoflavone 2'-hydroxylase (HIDH). Furthermore, GSO-specific tandem gene duplication resulted in the gene expansion of C-glucosyltransferase (CGT). Integrative analysis of the metabolome and transcriptome identified 13 CGTs and eight HIDHs involved in the biosynthetic pathway of schaftoside. Functional studies indicated that CGTs and HIDHs identified here are bona fide responsible for the biosynthesis of schaftoside in GSO, as confirmed through hairy root transgenic system and in vitro enzyme activity assay. Taken together, the ancestral papilionoid polyploidy event expanding CHSs and HIDHs, along with the GSO-specific tandem duplication of CGT, contributes, partially if not completely, to the robust biosynthesis of schaftoside in GSO. These findings provide insights into the genomic mechanisms underlying the abundant biosynthesis of schaftoside in GSO, highlighting the potential of GSO as a source of bioactive compounds for pharmaceutical development.PMID:38799125 | PMC:PMC11119794 | DOI:10.1093/hr/uhae089
Pseudotargeted lipidomics analysis of scoparone on glycerophospholipid metabolism in non-alcoholic steatohepatitis mice by LC-MRM-MS
PeerJ. 2024 May 21;12:e17380. doi: 10.7717/peerj.17380. eCollection 2024.ABSTRACTAs the inflammatory subtype of nonalcoholic fatty liver disease (NAFLD), the progression of nonalcoholic steatohepatitis (NASH) is associated with disorders of glycerophospholipid metabolism. Scoparone is the major bioactive component in Artemisia capillaris which has been widely used to treat NASH in traditional Chinese medicine. However, the underlying mechanisms of scoparone against NASH are not yet fully understood, which hinders the development of effective therapeutic agents for NASH. Given the crucial role of glycerophospholipid metabolism in NASH progression, this study aimed to characterize the differential expression of glycerophospholipids that is responsible for scoparone's pharmacological effects and assess its efficacy against NASH. Liquid chromatography-multiple reaction monitoring-mass spectrometry (LC-MRM-MS) was performed to get the concentrations of glycerophospholipids, clarify mechanisms of disease, and highlight insights into drug discovery. Additionally, pathologic findings also presented consistent changes in high-fat diet-induced NASH model, and after scoparone treatment, both the levels of glycerophospholipids and histopathology were similar to normal levels, indicating a beneficial effect during the observation time. Altogether, these results refined the insights on the mechanisms of scoparone against NASH and suggested a route to relieve NASH with glycerophospholipid metabolism. In addition, the current work demonstrated that a pseudotargeted lipidomic platform provided a novel insight into the potential mechanism of scoparone action.PMID:38799063 | PMC:PMC11122033 | DOI:10.7717/peerj.17380
Quality evaluation and identification of Houttuynia cordata bleached with sodium metabisulfite based on whole spectrum metabolomics
Food Chem X. 2024 May 14;22:101463. doi: 10.1016/j.fochx.2024.101463. eCollection 2024 Jun 30.ABSTRACTHouttuynia Cordata (HC) is a widely distributed plant in Asia and is used extensively for both food and medicinal purposes. A preliminary investigation found that HC is often bleached with sodium metabisulfite solution during its field processing, leading to health risks. In this study, the effects of sodium metabisulfite on the quality of HC were comprehensively evaluated using volatile and non-volatile targeted metabolomic methods. The results revealed a positive correlation between the extent of chemical composition changes and the bleaching time. These notable changes mainly occurred at the initial stage of bleaching. Subsequently, an untargeted UPLC/Q-TOF MS method was used to explore the potential chemical bleaching markers in bleached HC. The marker 1-hydroxy-3-oxodecane-1-sulfonic acid was subsequently prepared, isolated, and identified. Market sample verification further validated the accuracy and effectiveness of this marker.PMID:38798794 | PMC:PMC11127148 | DOI:10.1016/j.fochx.2024.101463
Supplementation with soluble or insoluble rice-bran fibers increases short-chain fatty acid producing bacteria in the gut microbiota <em>in vitro</em>
Front Nutr. 2024 May 10;11:1304045. doi: 10.3389/fnut.2024.1304045. eCollection 2024.ABSTRACTINTRODUCTION: Studies have shown that a diet high in fiber and prebiotics has a positive impact on human health due largely to the fermentation of these compounds by the gut microbiota. One underutilized source of fiber may be rice bran, a waste product of rice processing that is used most frequently as an additive to livestock feed but may be a good source of fibers and other phenolic compounds as a human diet supplement. Previous studies focused on specific compounds extracted from rice bran showed that soluble fibers extracted from rice bran can improve glucose response and reduce weight gain in mouse models. However, less is known about changes in the human gut microbiota in response to regular rice bran consumption.METHODS: In this study, we used a Simulator of the Human Intestinal Microbial Ecology (SHIME®) to cultivate the human gut microbiota of 3 different donors in conditions containing either soluble or insoluble fiber fractions from rice bran. Using 16S rRNA amplicon sequencing and targeted metabolomics via Gas Chromatography-Mass Spectrometry, we explored how gut microbial communities developed provided different supplemental fiber sources.RESULTS: We found that insoluble and soluble fiber fractions increased short-chain fatty acid production, indicating that both fractions were fermented. However, there were differences in response between donors, for example the gut microbiota from donor 1 increased acetic acid production with both fiber types compared with control; whereas for donors 2 and 3, butanoic acid production increased with ISF and SF supplementation. Both soluble and insoluble rice bran fractions increased the abundance of Bifidobacterium and Lachnospiraceae taxa.DISCUSSION: Overall, analysis of the effect of soluble and insoluble rice bran fractions on the human in vitro gut microbiota and the metabolites produced revealed individually variant responses to these prebiotics.PMID:38798771 | PMC:PMC11116651 | DOI:10.3389/fnut.2024.1304045
Multi-omics analyses provide insights into the evolutionary history and the synthesis of medicinal components of the Chinese wingnut
Plant Divers. 2024 Apr 8;46(3):309-320. doi: 10.1016/j.pld.2024.03.010. eCollection 2024 May.ABSTRACTChinese wingnut (Pterocarya stenoptera) is a medicinally and economically important tree species within the family Juglandaceae. However, the lack of high-quality reference genome has hindered its in-depth research. In this study, we successfully assembled its chromosome-level genome and performed multi-omics analyses to address its evolutionary history and synthesis of medicinal components. A thorough examination of genomes has uncovered a significant expansion in the Lateral Organ Boundaries Domain gene family among the winged group in Juglandaceae. This notable increase may be attributed to their frequent exposure to flood-prone environments. After further differentiation between Chinese wingnut and Cyclocarya paliurus, significant positive selection occurred on the genes of NADH dehydrogenase related to mitochondrial aerobic respiration in Chinese wingnut, enhancing its ability to cope with waterlogging stress. Comparative genomic analysis revealed Chinese wingnut evolved more unique genes related to arginine synthesis, potentially endowing it with a higher capacity to purify nutrient-rich water bodies. Expansion of terpene synthase families enables the production of increased quantities of terpenoid volatiles, potentially serving as an evolved defense mechanism against herbivorous insects. Through combined transcriptomic and metabolomic analysis, we identified the candidate genes involved in the synthesis of terpenoid volatiles. Our study offers essential genetic resources for Chinese wingnut, unveiling its evolutionary history and identifying key genes linked to the production of terpenoid volatiles.PMID:38798724 | PMC:PMC11119516 | DOI:10.1016/j.pld.2024.03.010
Small molecule biomarkers predictive of Chagas disease progression
medRxiv [Preprint]. 2024 May 23:2024.05.13.24307310. doi: 10.1101/2024.05.13.24307310.ABSTRACTChagas disease (CD) is a neglected tropical disease caused by the parasitic protozoan Trypanosoma cruzi. However, only 20% to 30% of infected individuals will progress to severe symptomatic cardiac manifestations. Current treatments are benznidazole and nifurtimox, which are poorly tolerated regimens. Developing a biomarker to determine the likelihood of patient progression would be helpful for doctors to optimize patient treatment strategies. Such a biomarker would also benefit drug discovery efforts and clinical trials. In this study, we combined untargeted and targeted metabolomics to compare serum samples from T. cruzi-infected individuals who progressed to severe cardiac disease, versus infected individuals who remained at the same disease stage (non-progressors). We identified four unannotated biomarker candidates, which were validated in an independent cohort using both untargeted and targeted analysis techniques. Overall, our findings demonstrate that serum small molecules can predict CD progression, offering potential for clinical monitoring.PMID:38798659 | PMC:PMC11118624 | DOI:10.1101/2024.05.13.24307310
Untargeted Metabolome Atlas for Sleep Phenotypes in the Hispanic Community Health Study/Study of Latinos
medRxiv [Preprint]. 2024 May 17:2024.05.17.24307286. doi: 10.1101/2024.05.17.24307286.ABSTRACTSleep is essential to maintaining health and wellbeing of individuals, influencing a variety of outcomes from mental health to cardiometabolic disease. This study aims to assess the relationships between various sleep phenotypes and blood metabolites. Utilizing data from the Hispanic Community Health Study/Study of Latinos, we performed association analyses between 40 sleep phenotypes, grouped in several domains (i.e., sleep disordered breathing (SDB), sleep duration, timing, insomnia symptoms, and heart rate during sleep), and 768 metabolites measured via untargeted metabolomics profiling. Network analysis was employed to visualize and interpret the associations between sleep phenotypes and metabolites. The patterns of statistically significant associations between sleep phenotypes and metabolites differed by superpathways, and highlighted subpathways of interest for future studies. For example, some xenobiotic metabolites were associated with sleep duration and heart rate phenotypes (e.g. 1H-indole-7-acetic acid, 4-allylphenol sulfate), while ketone bodies and fatty acid metabolism metabolites were associated with sleep timing measures (e.g. 3-hydroxybutyrate (BHBA), 3-hydroxyhexanoylcarnitine (1)). Heart rate phenotypes had the overall largest number of detected metabolite associations. Many of these associations were shared with both SDB and with sleep timing phenotypes, while SDB phenotypes shared relatively few metabolite associations with sleep duration measures. A number of metabolites were associated with multiple sleep phenotypes, from a few domains. The amino acids vanillylmandelate (VMA) and 1-carboxyethylisoleucine were associated with the greatest number of sleep phenotypes, from all domains other than insomnia. This atlas of sleep-metabolite associations will facilitate hypothesis generation and further study of the metabolic underpinnings of sleep health.PMID:38798578 | PMC:PMC11118618 | DOI:10.1101/2024.05.17.24307286
Genetic screening and metabolomics identify glial adenosine metabolism as a therapeutic target in Parkinson's disease
bioRxiv [Preprint]. 2024 May 15:2024.05.15.594309. doi: 10.1101/2024.05.15.594309.ABSTRACTParkinson's disease (PD) is the second most common neurodegenerative disorder and lacks disease-modifying therapies. We developed a Drosophila model for identifying novel glial-based therapeutic targets for PD. Human alpha-synuclein is expressed in neurons and individual genes are independently knocked down in glia. We performed a forward genetic screen, knocking down the entire Drosophila kinome in glia in alpha-synuclein expressing flies. Among the top hits were five genes (Ak1, Ak6, Adk1, Adk2, and awd) involved in adenosine metabolism. Knockdown of each gene improved locomotor dysfunction, rescued neurodegeneration, and increased brain adenosine levels. We determined that the mechanism of neuroprotection involves adenosine itself, as opposed to a downstream metabolite. We dove deeper into the mechanism for one gene, Ak1, finding rescue of dopaminergic neuron loss, alpha-synuclein aggregation, and bioenergetic dysfunction after glial Ak1 knockdown. We performed metabolomics in Drosophila and in human PD patients, allowing us to comprehensively characterize changes in purine metabolism and identify potential biomarkers of dysfunctional adenosine metabolism in people. These experiments support glial adenosine as a novel therapeutic target in PD.PMID:38798570 | PMC:PMC11118494 | DOI:10.1101/2024.05.15.594309
Sex-dependent adipose glucose partitioning by the mitochondrial pyruvate carrier
bioRxiv [Preprint]. 2024 May 14:2024.05.11.593540. doi: 10.1101/2024.05.11.593540.ABSTRACTOBJECTIVE: The mitochondrial pyruvate carrier (MPC) occupies a critical node in intermediary metabolism, prompting interest in its utility as a therapeutic target for the treatment of obesity and cardiometabolic disease. Dysregulated nutrient metabolism in adipose tissue is a prominent feature of obesity pathophysiology, yet the functional role of adipose MPC has not been explored. We investigated whether the MPC shapes the adaptation of adipose tissue to dietary stress in female and male mice.METHODS: The impact of pharmacological and genetic disruption of the MPC on mitochondrial pathways of triglyceride assembly (lipogenesis and glyceroneogenesis) was assessed in 3T3L1 adipocytes and murine adipose explants, combined with analyses of adipose MPC expression in metabolically compromised humans. Whole-body and adipose-specific glucose metabolism were subsequently investigated in male and female mice lacking adipocyte MPC1 ( Mpc1 AD-/- ) and fed either standard chow, high-fat western style, or high-sucrose lipid restricted diets for 24 weeks, using a combination of radiolabeled tracers and GC/MS metabolomics.RESULTS: Treatment with UK5099 or siMPC1 impaired the synthesis of lipids and glycerol-3-phosphate from pyruvate and blunted triglyceride accumulation in 3T3L1 adipocytes, whilst MPC expression in human adipose tissue was negatively correlated with indices of whole-body and adipose tissue metabolic dysfunction. Mature adipose explants from Mpc1 AD-/- mice were intrinsically incapable of incorporating pyruvate into triglycerides. In vivo , MPC deletion restricted the incorporation of circulating glucose into adipose triglycerides, but only in female mice fed a zero fat diet, and this associated with sex-specific reductions in tricarboxylic acid cycle pool sizes and compensatory transcriptional changes in lipogenic and glycerol metabolism pathways. However, whole-body adiposity and metabolic health were preserved in Mpc1 AD-/- mice regardless of sex, even under conditions of zero dietary fat.CONCLUSION: These findings highlight the greater capacity for mitochondrially driven triglyceride assembly in adipose from female versus male mice and expose a reliance upon MPC-gated metabolism for glucose partitioning in female adipose under conditions of dietary lipid restriction.PMID:38798427 | PMC:PMC11118482 | DOI:10.1101/2024.05.11.593540
Examining the Mechanism of Treatment for Primary Dysmenorrhea with Wenjing Huoxue Decoction Based on Transcriptomics, Metabolomics, and Network Pharmacology
Curr Pharm Des. 2024 May 24. doi: 10.2174/0113816128295774240523062258. Online ahead of print.ABSTRACTBACKGROUND: Wenjing Huoxue Decoction (WJHXD) is a traditional treatment for primary dysmenorrhea (PD) that can quickly relieve various symptoms caused by PD. Previous clinical studies have shown that WJHXD has better long-term efficacy than ibuprofen in the treatment of PD and can reverse the disorder of T cell subsets.OBJECTIVE: To investigate the effect of WJHXD on serum-related factors in the treatment of PD, including the identification of key targets, pathways, and active ingredients.METHODS: In order to study the effects of the WJHXD intervention in Parkinson's Disease (PD) rats, we used transcriptomics and metabolomics methods to examine the differentially expressed genes (DEGs) and differentially expressed metabolites (DEMs). We also utilized network pharmacology to predict the target and effective route of WJHXD in treating PD. Finally, we employed molecular docking (MD) technology to confirm the placement of important targets and metabolites.RESULTS: WJHXD has been found to be effective in prolonging the onset time and decreasing the number of writhing episodes in PD rats after oxytocin injection. It has also been observed to reduce the levels of PGF2, COX-2, AVP, and PGE2 in the serum of PD rats to different degrees. Transcriptomics analysis has revealed that the core targets of WJHXD include KRT1, KRT16, CCL5, F2, NOS2, RAC2, and others, while the core pathways are Calcium signaling and cAMP signaling. The Estrogen signaling pathway was found to be downregulated in PD rats compared to normal uterine tissue, but WJHXD was able to up-regulate the pathway. A combined transcriptomics and metabolomics analysis suggested that WJHXD may be involved in eight metabolism-related pathways, with the most reliable ones being mucin-type O-glycan biosynthesis and glycolysis or gluconeogenesis. MD has shown that Hydroxyisocaproic acid may bind to important targets such as SLC6A4, PTGER3, IGFBP3, and IGF2.CONCLUSION: In WJHXD, the most targeted herbs were Corydalis rhizoma, licorice, and Myrrha. The most targeted active ingredients include quercetin, 3'-Hydroxy-4'-O-methylglabridin, shinpterocarpin, and isorhamnetin. Potential targets include PTGS2, NOS2, AR, SCN5A, and GAS6. Analysis revealed 72 highly reliable relationships between group A and B DEGs and DEMs, with 23 positive correlations and 49 negative correlations among them. A combined analysis of transcriptomics, metabolomics, and network pharmacology was used to identify possible targets, pathways, and active ingredients of WJHXD in PD treatment, and the correlation between DEGs and DEMs was investigated. However, further research is required to confirm the relationship between active ingredients, targets, and metabolites.PMID:38798215 | DOI:10.2174/0113816128295774240523062258
The protective role of commensal gut microbes and their metabolites against bacterial pathogens
Gut Microbes. 2024 Jan-Dec;16(1):2356275. doi: 10.1080/19490976.2024.2356275. Epub 2024 May 26.ABSTRACTMultidrug-resistant microorganisms have become a major public health concern around the world. The gut microbiome is a gold mine for bioactive compounds that protect the human body from pathogens. We used a multi-omics approach that integrated whole-genome sequencing (WGS) of 74 commensal gut microbiome isolates with metabolome analysis to discover their metabolic interaction with Salmonella and other antibiotic-resistant pathogens. We evaluated differences in the functional potential of these selected isolates based on WGS annotation profiles. Furthermore, the top altered metabolites in co-culture supernatants of selected commensal gut microbiome isolates were identified including a series of dipeptides and examined for their ability to prevent the growth of various antibiotic-resistant bacteria. Our results provide compelling evidence that the gut microbiome produces metabolites, including the compound class of dipeptides that can potentially be applied for anti-infection medication, especially against antibiotic-resistant pathogens. Our established pipeline for the discovery and validation of bioactive metabolites from the gut microbiome as novel candidates for multidrug-resistant infections represents a new avenue for the discovery of antimicrobial lead structures.PMID:38797999 | DOI:10.1080/19490976.2024.2356275
SLC7A11 as a therapeutic target to attenuate phthalates-driven testosterone level decline in mice
J Adv Res. 2024 May 24:S2090-1232(24)00216-9. doi: 10.1016/j.jare.2024.05.026. Online ahead of print.ABSTRACTINTRODUCTION: Phthalates exposure is a major public health concern due to the accumulation in the environment and associated with levels of testosterone reduction, leading to adverse pregnancy outcomes. However, the relationship between phthalate-induced testosterone level decline and ferroptosis remains poorly defined.OBJECTIVES: Herein, we aimed to explore the mechanisms of phthalates-induced testosterone synthesis disorder and its relationship to ferroptosis.METHODS: We conducted validated experiments in vivo male mice model and in vitro mouse Leydig TM3 cell line, followed by RNA sequencing and metabolomic analysis. We evaluated the levels of testosterone synthesis-associated enzymes and ferroptosis-related indicators by using qRT-PCR and Western blotting. Then, we analyzed the lipid peroxidation, ROS, Fe2+ levels and glutathione system to confirm the occurrence of ferroptosis.RESULTS: In the present study, we used di (2-ethylhexyl) phthalate (DEHP) to identify ferroptosis as the critical contributor to phthalate-induced testosterone level decline. It was demonstrated that DEHP caused glutathione metabolism and steroid synthesis disorders in Leydig cells. As the primary metabolite of DEHP, mono-2-ethylhexyl phthalate (MEHP) triggered testosterone synthesis disorder accompanied by a decrease in the expression of solute carri1er family 7 member 11 (SLC7A11) protein. Furthermore, MEHP synergistically induced ferroptosis with Erastin through the increase of intracellular and mitochondrial ROS, and lipid peroxidation production. Mechanistically, overexpression of SLC7A11 counteracts the synergistic effect of co-exposure to MEHP-Erastin.CONCLUSION: Our research results suggest that MEHP does not induce ferroptosis but synergizes Erastin-induced ferroptosis. These findings provide evidence for the role of ferroptosis in phthalates-induced testosterone synthesis disorder and point to SLC7A11 as a potential target for male reproductive diseases. This study established a correlation between ferroptosis and phthalates cytotoxicity, providing a novel view point for mitigating the issue of male reproductive disease and "The Global Plastic Toxicity Debt".PMID:38797476 | DOI:10.1016/j.jare.2024.05.026
Effects of environmentally relevant concentrations of florfenicol on the glucose metabolism system, intestinal microbiome, and liver metabolome of zebrafish
Sci Total Environ. 2024 May 24:173417. doi: 10.1016/j.scitotenv.2024.173417. Online ahead of print.ABSTRACTFlorfenicol, a widely used veterinary antibiotic, has now been frequently detected in various water environments and human urines, with high concentrations. Accordingly, the ecological risks and health hazards of florfenicol are attracting increasing attention. In recent years, antibiotic exposure has been implicated in the disruption of animal glucose metabolism. However, the specific effects of florfenicol on the glucose metabolism system and the underlying mechanisms are largely unknown. Herein, zebrafish as an animal model were exposed to environmentally relevant concentrations of florfenicol for 28 days. Using biochemical and molecular analyses, we found that exposure to florfenicol disturbed glucose homeostasis, as evidenced by the abnormal levels of blood glucose and hepatic/muscular glycogen, and the altered expression of genes involved in glycogenolysis, gluconeogenesis, glycogenesis, and glycolysis. Considering the efficient antibacterial activity of florfenicol and the crucial role of intestinal flora in host glucose metabolism, we then analyzed changes in the gut microbiome and its key metabolite short-chain fatty acids (SCFAs). Results indicated that exposure to florfenicol caused gut microbiota dysbiosis, inhibited the production of intestinal SCFAs, and ultimately affected the downstream signaling pathways of SCFA involved in glucose metabolism. Moreover, non-targeted metabolomics revealed that arachidonic acid and linoleic acid metabolic pathways may be associated with insulin sensitivity changes in florfenicol-exposed livers. Overall, this study highlighted a crucial aspect of the environmental risks of florfenicol to both non-target organisms and humans, and presented novel insights into the mechanistic elucidation of metabolic toxicity of antibiotics.PMID:38797401 | DOI:10.1016/j.scitotenv.2024.173417
Polymyalgia rheumatica shows metabolomic alterations that are further altered by glucocorticoid treatment: Identification of metabolic correlates of fatigue
J Autoimmun. 2024 May 25;147:103260. doi: 10.1016/j.jaut.2024.103260. Online ahead of print.ABSTRACTOBJECTIVE: In polymyalgia rheumatica (PMR), glucocorticoids (GCs) relieve pain and stiffness, but fatigue may persist. We aimed to explore the effect of disease, GCs and PMR symptoms in the metabolite signatures of peripheral blood from patients with PMR or the related disease, giant cell arteritis (GCA).METHODS: Nuclear magnetic resonance spectroscopy was performed on serum from 40 patients with untreated PMR, 84 with new-onset confirmed GCA, and 53 with suspected GCA who later were clinically confirmed non-GCA, and 39 age-matched controls. Further samples from PMR patients were taken one and six months into glucocorticoid therapy to explore relationship of metabolites to persistent fatigue. 100 metabolites were identified using Chenomx and statistical analysis performed in SIMCA-P to examine the relationship between metabolic profiles and, disease, GC treatment or symptoms.RESULTS: The metabolite signature of patients with PMR and GCA differed from that of age-matched non-inflammatory controls (R2 > 0.7). There was a smaller separation between patients with clinically confirmed GCA and those with suspected GCA who later were clinically confirmed non-GCA (R2 = 0.135). In PMR, metabolite signatures were further altered with glucocorticoid treatment (R2 = 0.42) but did not return to that seen in controls. Metabolites correlated with CRP, pain, stiffness, and fatigue (R2 ≥ 0.39). CRP, pain, and stiffness declined with treatment and were associated with 3-hydroxybutyrate and acetoacetate, but fatigue did not. Metabolites differentiated patients with high and low fatigue both before and after treatment (R2 > 0.9). Low serum glutamine was predictive of high fatigue at both time points (0.79-fold change).CONCLUSION: PMR and GCA alter the metabolite signature. In PMR, this is further altered by glucocorticoid therapy. Treatment-induced metabolite changes were linked to measures of inflammation (CRP, pain and stiffness), but not to fatigue. Furthermore, metabolite signatures distinguished patients with high or low fatigue.PMID:38797046 | DOI:10.1016/j.jaut.2024.103260
Spatiotemporal multi-omics: exploring molecular landscapes in aging and regenerative medicine
Mil Med Res. 2024 May 27;11(1):31. doi: 10.1186/s40779-024-00537-4.ABSTRACTAging and regeneration represent complex biological phenomena that have long captivated the scientific community. To fully comprehend these processes, it is essential to investigate molecular dynamics through a lens that encompasses both spatial and temporal dimensions. Conventional omics methodologies, such as genomics and transcriptomics, have been instrumental in identifying critical molecular facets of aging and regeneration. However, these methods are somewhat limited, constrained by their spatial resolution and their lack of capacity to dynamically represent tissue alterations. The advent of emerging spatiotemporal multi-omics approaches, encompassing transcriptomics, proteomics, metabolomics, and epigenomics, furnishes comprehensive insights into these intricate molecular dynamics. These sophisticated techniques facilitate accurate delineation of molecular patterns across an array of cells, tissues, and organs, thereby offering an in-depth understanding of the fundamental mechanisms at play. This review meticulously examines the significance of spatiotemporal multi-omics in the realms of aging and regeneration research. It underscores how these methodologies augment our comprehension of molecular dynamics, cellular interactions, and signaling pathways. Initially, the review delineates the foundational principles underpinning these methods, followed by an evaluation of their recent applications within the field. The review ultimately concludes by addressing the prevailing challenges and projecting future advancements in the field. Indubitably, spatiotemporal multi-omics are instrumental in deciphering the complexities inherent in aging and regeneration, thus charting a course toward potential therapeutic innovations.PMID:38797843 | DOI:10.1186/s40779-024-00537-4
Heat stress upregulates arachidonic acid to trigger autophagy in sertoli cells via dysfunctional mitochondrial respiratory chain function
J Transl Med. 2024 May 26;22(1):501. doi: 10.1186/s12967-024-05182-y.ABSTRACTAs a key factor in determining testis size and sperm number, sertoli cells (SCs) play a crucial role in male infertility. Heat stress (HS) reduces SCs counts, negatively impacting nutrient transport and supply to germ cells, and leading to spermatogenesis failure in humans and animals. However, how HS affects the number of SCs remains unclear. We hypothesized that changes in SC metabolism contribute to the adverse effects of HS. In this study, we first observed an upregulation of arachidonic acid (AA), an unsaturated fatty acid after HS exposure by LC-MS/MS metabolome detection. By increasing ROS levels, expression of KEAP1 and NRF2 proteins as well as LC3 and LAMP2, 100 µM AA induced autophagy in SCs by activating oxidative stress (OS). We observed adverse effects of AA on mitochondria under HS with a decrease of mitochondrial number and an increase of mitochondrial membrane potential (MMP). We also found that AA alternated the oxygen transport and absorption function of mitochondria by increasing glycolysis flux and decreasing oxygen consumption rate as well as the expression of mitochondrial electron transport chain (ETC) proteins Complex I, II, V. However, pretreatment with 5 mM NAC (ROS inhibitor) and 2 µM Rotenone (mitochondrial ETC inhibitor) reversed the autophagy induced by AA. In summary, AA modulates autophagy in SCs during HS by disrupting mitochondrial ETC function, inferring that the release of AA is a switch-like response, and providing insight into the underlying mechanism of high temperatures causing male infertility.PMID:38797842 | DOI:10.1186/s12967-024-05182-y
Effect of hypercholesterolemia on circulating and cardiomyocyte-derived extracellular vesicles
Sci Rep. 2024 May 26;14(1):12016. doi: 10.1038/s41598-024-62689-6.ABSTRACTHypercholesterolemia (HC) induces, propagates and exacerbates cardiovascular diseases via various mechanisms that are yet not properly understood. Extracellular vesicles (EVs) are involved in the pathomechanism of these diseases. To understand how circulating or cardiac-derived EVs could affect myocardial functions, we analyzed the metabolomic profile of circulating EVs, and we performed an in-depth analysis of cardiomyocyte (CM)-derived EVs in HC. Circulating EVs were isolated with Vezics technology from male Wistar rats fed with high-cholesterol or control chow. AC16 human CMs were treated with Remembrane HC supplement and EVs were isolated from cell culture supernatant. The biophysical properties and the protein composition of CM EVs were analyzed. THP1-ASC-GFP cells were treated with CM EVs, and monocyte activation was measured. HC diet reduced the amount of certain phosphatidylcholines in circulating EVs, independently of their plasma level. HC treatment significantly increased EV secretion of CMs and greatly modified CM EV proteome, enriching several proteins involved in tissue remodeling. Regardless of the treatment, CM EVs did not induce the activation of THP1 monocytes. In conclusion, HC strongly affects the metabolome of circulating EVs and dysregulates CM EVs, which might contribute to HC-induced cardiac derangements.PMID:38797778 | DOI:10.1038/s41598-024-62689-6