Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

What is in the fish? Collaborative trial in suspect and non-target screening of organic micropollutants using LC- and GC-HRMS

Thu, 02/11/2023 - 11:00
Environ Int. 2023 Oct 25;181:108288. doi: 10.1016/j.envint.2023.108288. Online ahead of print.ABSTRACTA collaborative trial involving 16 participants from nine European countries was conducted within the NORMAN network in efforts to harmonise suspect and non-target screening of environmental contaminants in whole fish samples of bream (Abramis brama). Participants were provided with freeze-dried, homogenised fish samples from a contaminated and a reference site, extracts (spiked and non-spiked) and reference sample preparation protocols for liquid chromatography (LC) and gas chromatography (GC) coupled to high resolution mass spectrometry (HRMS). Participants extracted fish samples using their in-house sample preparation method and/or the protocol provided. Participants correctly identified 9-69 % of spiked compounds using LC-HRMS and 20-60 % of spiked compounds using GC-HRMS. From the contaminated site, suspect screening with participants' own suspect lists led to putative identification of on average ∼145 and ∼20 unique features per participant using LC-HRMS and GC-HRMS, respectively, while non-target screening identified on average ∼42 and ∼56 unique features per participant using LC-HRMS and GC-HRMS, respectively. Within the same sub-group of sample preparation method, only a few features were identified by at least two participants in suspect screening (16 features using LC-HRMS, 0 features using GC-HRMS) and non-target screening (0 features using LC-HRMS, 2 features using GC-HRMS). The compounds identified had log octanol/water partition coefficient (KOW) values from -9.9 to 16 and mass-to-charge ratios (m/z) of 68 to 761 (LC-HRMS and GC-HRMS). A significant linear trend was found between log KOW and m/z for the GC-HRMS data. Overall, these findings indicate that differences in screening results are mainly due to the data analysis workflows used by different participants. Further work is needed to harmonise the results obtained when applying suspect and non-target screening approaches to environmental biota samples.PMID:37918065 | DOI:10.1016/j.envint.2023.108288

A benchmark study of data normalisation methods for PTR-TOF-MS exhaled breath metabolomics

Thu, 02/11/2023 - 11:00
J Breath Res. 2023 Nov 2. doi: 10.1088/1752-7163/ad08ce. Online ahead of print.ABSTRACTBACKGROUND: Volatilomics is the branch of metabolomics dedicated to the analysis of volatile organic compounds (VOCs) in exhaled breath for medical diagnostic or therapeutic monitoring purposes. Real-time mass spectrometry technologies such as proton transfer reaction mass spectrometry (PTR-MS) are commonly used, and data normalisation is an important step to discard unwanted variation from non-biological sources, as batch effects and loss of sensitivity over time may be observed. As normalisation methods for real-time breath analysis have been poorly investigated, we aimed to benchmark known metabolomic data normalisation methods and apply them to PTR-MS data analysis.METHODS: We compared seven normalisation methods, five statistically based and two using multiple standard metabolites, on two datasets from clinical trials for COVID-19 diagnosis in patients from the emergency department or intensive care unit. We evaluated different means of feature selection to select the standard metabolites, as well as the use of multiple repeat measurements of ambient air to train the normalisation methods.RESULTS: We show that the normalisation tools can correct for time-dependent drift. The methods that provided the best corrections for both cohorts were Probabilistic Quotient Normalisation and Normalisation using Optimal Selection of Multiple Internal Standards. Normalisation also improved the diagnostic performance of the machine learning models, significantly increasing sensitivity, specificity and area under the ROC curve for the diagnosis of COVID-19.CONCLUSIONS: Our results highlight the importance of adding an appropriate normalisation step during the processing of PTR-MS data, which allows significant improvements in the predictive performance of statistical models.
Clinical trials: VOC-COVID-Diag (EudraCT 2020-A02682-37); RECORDS trial (EudraCT 2020-000296-21)
Keywords: Data normalisation, PTR-TOF-MS, machine learning, exhaled breath&#xD.PMID:37917990 | DOI:10.1088/1752-7163/ad08ce

Integrative Transcriptome and Metabolome Analysis to Reveal Red Leaf Coloration in Shiya Tea (<em>Adinandra nitida</em>)

Thu, 02/11/2023 - 11:00
Front Biosci (Landmark Ed). 2023 Oct 16;28(10):236. doi: 10.31083/j.fbl2810236.ABSTRACTBACKGROUND: Adinandra nitida, commonly known as Shiya tea, is a healthcare drink enriched in several phenolic acids and flavonoids, with a purple-red leaf variety possessing a unique flavor and a higher economic value. However, the mechanisms underlying leaf coloration and senescence discoloration remain unknown.METHODS: Here, we compared both varieties of A. nitida (purple-red leaf, RL, and green leaf, GL) at two stages of development. To make sure the difference in leaf color in these four groups, several indexes, leaf colorimetric differences, H2O2 content in leaf cells, and antioxidant enzymes activities (superoxide dismutase (SOD), catalase (CAT)) were measured. With the integration of metabolome and transcriptome becoming a trend, metabolites in four groups were detected using an Ultra performance liquid chromatography-tandem mass spectrometer (UPLC-MS/MS) system, and the transcriptome was performed after the extraction of RNA in samples. Afterward, the activities of laccase (LAC) and peroxidase (POD) were measured for further analysis.RESULTS: The deeper or discoloration of leaf color was not caused by the reactive oxygen species (ROS) stress because the H2O2 content was similar for each group. And the SOD and CAT activities improved significantly in young leaves, especially RL_young. Metabolome data showed a large shift in four groups. By focusing on the variation of flavonoids and 1079 metabolites detected in both varieties, along with the accumulation of flavonoids and tannins, proanthocyanins (PAs) were mostly accumulated in young RL. Differential analysis of expressed genes (DEGs) revealed six genes associated with leaf discoloration as hub factors, of which ANRs (ANR1 and ANR2) were positively correlated with the accumulation of PA in RL.CONCLUSIONS: Using integrate analysis of metabolome and transcriptome, our results revealed that six structural genes found in proanthocyanin biosynthesis, two reductases (ANR), two oxidative polymerases (POD64, LAC17) and two TFs (bHLH3 and MYB4) related to biosynthesis and polymerization of proanthocyanins were associated with not only the difference of GL and RL but also the faded coloration in two RL groups (RL_young and RL_old), which provided a foundation for further research on an understanding of the regulatory genes and the enzymes specific for proanthocyanidin biosynthesis, facilitating the genetic engineering of crops for beneficial metabolite accumulation.PMID:37919071 | DOI:10.31083/j.fbl2810236

Serum Metabolomic Profile in Hypoxia-Induced Pulmonary Hypertension Mice after C75 Treatment

Thu, 02/11/2023 - 11:00
Front Biosci (Landmark Ed). 2023 Oct 20;28(10):251. doi: 10.31083/j.fbl2810251.ABSTRACTBACKGROUND: Inhibition of fatty acid synthase (FAS) plays a crucial protective role in pulmonary hypertension (PH). Our aim was to identify novel metabolites in mice with hypoxia-induced PH after treatment with C75 (FAS inhibitor) and to confirm the presence of these metabolites in paediatric patients with PH.METHODS: The PH mouse model was built by chronic hypoxia and ovalbumin (OVA) assistance. Untargeted metabolomics was used to analyse mouse serum. Six children with PH and six relative controls (patients without lung and heart disease) were selected in Shanghai Children's Hospital and they all performed blood tandem mass spectrometry during hospitalization.RESULTS: First, a total of 29 differential metabolites, including lipid metabolites, polyamine, and glutamine were identified as differential metabolites in the hypoxia group compared with the control group. After C75 treatment, symptoms were partially relieved in the PH mouse, and 15 differential metabolites, including lipid metabolites, polyamine, and glutamine were identified in the hypoxia + C75 group compared with the hypoxia group. These differential metabolites were enriched in arginine and glycerolipid metabolism through metabolite set enrichment analyses and were involved in excessive cell proliferation, which was a characteristic of PH. Second, glutamine and caproyl carnitine levels were increased in paediatric patients with PH.CONCLUSIONS: FAS may be a potential PH therapeutic target. Lipid metabolites, polyamine, and glutamine, are closely related to PH. Putrescine and glutamine might be biomarkers for PH.PMID:37919066 | DOI:10.31083/j.fbl2810251

Molecular Characterization of Cooking Processes: A Metabolomics Decoding of Vaporous Emissions for Food Markers and Thermal Reaction Indicators

Thu, 02/11/2023 - 11:00
J Agric Food Chem. 2023 Nov 2. doi: 10.1021/acs.jafc.3c05383. Online ahead of print.ABSTRACTThermal processing of food plays a fundamental role in everyday life. Whereas most researchers study thermal processes directly in the matrix, molecular information in the form of non- and semivolatile compounds conveyed by vaporous emissions is often neglected. We performed a metabolomics study of processing emissions from 96 different food items to define the interaction between the processed matrix and released metabolites. Untargeted profiling of vapor samples revealed matrix-dependent molecular spaces that were characterized by Fourier-transform ion cyclotron resonance-mass spectrometry and ultra-performance liquid chromatography-mass spectrometry. Thermal degradation products of peptides and amino acids can be used for the differentiation of animal-based food from plant-based food, which generally is characterized by secondary plant metabolites or carbohydrates. Further, heat-sensitive processing indicators were characterized and discussed in the background of the Maillard reaction. These reveal that processing emissions contain a dense layer of information suitable for deep insights into food composition and control of cooking processes based on processing emissions.PMID:37917545 | DOI:10.1021/acs.jafc.3c05383

Metabolic and chromosomal changes in a <em>Bacillus subtilis whiA</em> mutant

Thu, 02/11/2023 - 11:00
Microbiol Spectr. 2023 Nov 2:e0179523. doi: 10.1128/spectrum.01795-23. Online ahead of print.ABSTRACTThe conserved protein WhiA is present in most Gram-positive bacteria and plays a role in cell division. WhiA contains a DNA-binding motif and is a transcription regulator of the key cell division gene ftsZ in actinomycetes. In Bacillus subtilis, the absence of WhiA influences both cell division and chromosome segregation; however, the protein does not regulate any gene involved in these processes. In this study, we addressed three alternative mechanisms by which WhiA might exert its activity in B. subtilis and examined whether WhiA influences either (i) central carbon metabolism, (ii) fatty acid composition of the cell membrane, or (iii) chromosome organization. Mutations in glycolytic enzymes have been shown to influence both cell division and DNA replication. To measure the effect of WhiA on carbon metabolism, we tested different carbon sources and measured exometabolome fluxes. This revealed that the absence of WhiA does not affect glycolysis but does influence the pool of branched-chain fatty acid precursors. Due to the effect of WhiA on chromosome segregation, we examine chromosome organization in a ∆whiA mutant using chromosome conformation capture (Hi-C) analysis. This revealed a local reduction in short-range chromosome interactions. Together, these findings provide new avenues for future research into how this protein works in the non-actinomycete firmicutes.IMPORTANCEWhiA is a conserved DNA-binding protein that influences cell division in many Gram-positive bacteria and, in B. subtilis, also chromosome segregation. How WhiA works in Bacillus subtilis is unknown. Here, we tested three hypothetical mechanisms using metabolomics, fatty acid analysis, and chromosome confirmation capture experiments. This revealed that WhiA does not influence cell division and chromosome segregation by modulating either central carbon metabolism or fatty acid composition. However, the inactivation of WhiA reduces short-range chromosome interactions. These findings provide new avenues to study the molecular mechanism of WhiA in the future.PMID:37916812 | DOI:10.1128/spectrum.01795-23

The metabolic fingerprint of chronic hepatitis C progression: Metabolome shifts and cutting-edge diagnostic options

Thu, 02/11/2023 - 11:00
J Mol Recognit. 2023 Nov 2:e3066. doi: 10.1002/jmr.3066. Online ahead of print.ABSTRACTHepatitis C virus infection causes chronic diseases such as cirrhosis and hepatocellular carcinoma. Metabolomics research has been shown to be linked to pathophysiologic pathways in liver illnesses. The aim of this study was to investigate the serum metabolic profile of patients with chronic hepatitis C (CHC) infection and to identify underlying mechanisms as well as potential biomarkers associated with the disease. Nuclear magnetic resonance (NMR) was used to evaluate the sera of 83 patients with CHC virus and 52 healthy control volunteers (NMR). Then, multivariate statistical analysis was used to find distinguishing metabolites between the two groups. Sixteen out of 40 metabolites including include 3-HB, betaine, carnitine, creatinine, fucose, glutamine, glycerol, isopropanol, lysine, mannose, methanol, methionine, ornithine, proline, serine, and valine-were shown to be significantly different between the CHC and normal control (NC) groups (variable importance in projection >1 and p < 0.05). All the metabolic perturbations in this disease are associated with pathways of Glycine, serine, and threonine metabolism, glycerolipid metabolism, arginine and proline metabolism, aminoacyl-tRNA biosynthesis, cysteine and methionine metabolism, alanine, aspartate, and glutamate metabolism. Multivariate statistical analysis constructed using these expressed metabolites showed CHC patients can be discriminated from NCs with high sensitivity (90%) and specificity (99%). The metabolomics approach may expand the diagnostic armamentarium for patients with CHC while contributing to a comprehensive understanding of disease mechanisms.PMID:37916582 | DOI:10.1002/jmr.3066

Endothelial YAP Mediates Hyperglycemia-Induced Platelet Hyperactivity and Arterial Thrombosis

Thu, 02/11/2023 - 11:00
Arterioscler Thromb Vasc Biol. 2023 Nov 2. doi: 10.1161/ATVBAHA.123.319835. Online ahead of print.ABSTRACTBACKGROUND: Hyperglycemia-a symptom that characterizes diabetes-is highly associated with atherothrombotic complications. However, the underlying mechanism by which hyperglycemia fuels platelet activation and arterial thrombus formation is still not fully understood.METHODS: The profiles of polyunsaturated fatty acid metabolites in the plasma of patients with diabetes and healthy controls were determined with targeted metabolomics. FeCl3-induced carotid injury model was used to assess arterial thrombus formation in mice with endothelial cell (EC)-specific YAP (yes-associated protein) deletion or overexpression. Flow cytometry and clot retraction assay were used to evaluate platelet activation. RNA sequencing and multiple biochemical analyses were conducted to unravel the underlying mechanism.RESULTS: The plasma PGE2 concentration was elevated in patients with diabetes with thrombotic complications and positively correlated with platelet activation. The PGE2 synthetases COX-2 and mPGES-1 were found to be highly expressed in ECs but not in other type of vessel cells in arteries from both patients with diabetes and hyperglycemic mice, compared with nondiabetic individuals and control mice, respectively. A combination of RNA sequencing and ingenuity pathway analyses indicated the involvement of YAP signaling in ECs. EC-specific deletion of YAP limited platelet activation and arterial thrombosis in hyperglycemic mice, whereas endothelial-specific overexpression of YAP in mice mimicked the prothrombotic state of diabetes, without affecting hemostasis. Mechanistically, we found that hyperglycemia/high glucose-induced endothelial YAP nuclear translocation and subsequently transcriptional expression of COX-2 and mPGES-1 contributed to the elevation of PGE2 and platelet activation. Blockade of EP3 activation by oral administration of DG-041 reversed the hyperactivity of platelets and delayed thrombus formation in both EC-specific YAP-overexpressing and hyperglycemic mice.CONCLUSIONS: Collectively, our data suggest that hyperglycemia-induced endothelial YAP activation aggravates platelet activation and arterial thrombus formation via PGE2/EP3 signaling. Targeting EP3 with DG-041 might be therapeutic for diabetes-related thrombosis.PMID:37916416 | DOI:10.1161/ATVBAHA.123.319835

Pheochromocytoma: a changing perspective and current concepts

Thu, 02/11/2023 - 11:00
Ther Adv Endocrinol Metab. 2023 Oct 29;14:20420188231207544. doi: 10.1177/20420188231207544. eCollection 2023.ABSTRACTThis article aims to review current concepts in diagnosing and managing pheochromocytoma and paraganglioma (PPGL). Personalized genetic testing is vital, as 40-60% of tumors are linked to a known mutation. Tumor DNA should be sampled first. Next-generation sequencing is the best and most cost-effective choice and also helps with the expansion of current knowledge. Recent advancements have also led to the increased incorporation of regulatory RNA, metabolome markers, and the NETest in PPGL workup. PPGL presentation is highly volatile and nonspecific due to its multifactorial etiology. Symptoms mainly derive from catecholamine (CMN) excess or mass effect, primarily affecting the cardiovascular system. However, paroxysmal nature, hypertension, and the classic triad are no longer perceived as telltale signs. Identifying high-risk subjects and diagnosing patients at the correct time by using appropriate personalized methods are essential. Free plasma/urine catecholamine metabolites must be first-line examinations using liquid chromatography with tandem mass spectrometry as the gold standard analytical method. Reference intervals should be personalized according to demographics and comorbidity. The same applies to result interpretation. Threefold increase from the upper limit is highly suggestive of PPGL. Computed tomography (CT) is preferred for pheochromocytoma due to better cost-effectiveness and spatial resolution. Unenhanced attenuation of >10HU in non-contrast CT is indicative. The choice of extra-adrenal tumor imaging is based on location. Functional imaging with positron emission tomography/computed tomography and radionuclide administration improves diagnostic accuracy, especially in extra-adrenal/malignant or familial cases. Surgery is the mainstay treatment when feasible. Preoperative α-adrenergic blockade reduces surgical morbidity. Aggressive metastatic PPGL benefits from systemic chemotherapy, while milder cases can be managed with radionuclides. Short-term postoperative follow-up evaluates the adequacy of resection. Long-term follow-up assesses the risk of recurrence or metastasis. Asymptomatic carriers and their families can benefit from surveillance, with intervals depending on the specific gene mutation. Trials primarily focusing on targeted therapy and radionuclides are currently active. A multidisciplinary approach, correct timing, and personalization are key for successful PPGL management.PMID:37916027 | PMC:PMC10617285 | DOI:10.1177/20420188231207544

<em>In vitro</em> antibacterial effects of <em>Broussonetia papyrifera</em> leaf extract and its anti-colitis in DSS-treated mice

Thu, 02/11/2023 - 11:00
Front Cell Infect Microbiol. 2023 Oct 16;13:1255127. doi: 10.3389/fcimb.2023.1255127. eCollection 2023.ABSTRACTRecently, the hybrid Broussonetia papyrifera (BP) has been extensively cultivated and predominantly utilized in ruminants because of its high protein and bioactive compound content. In the present study, the effects of an ethanolic extract of BP leaves (BPE, 200 mg/kg) on mitigating 2% dextran sodium sulfate (DSS)-induced intestinal inflammation in mice were evaluated. BPE is rich in flavonoids, polyphenols, and polysaccharides, and displays potent antioxidant and antibacterial activities against pathogenic strains such as Clostridium perfringens, Salmonella Typhimurium, and Salmonella enterica subsp. enterica in vitro. In a mouse study, oral administration of DSS resulted in weight loss, incidence of diarrhea, enlargement of the liver and spleen, impaired colonic morphology, downregulation of both gene and protein expression related to intestinal antioxidant (Nrf2) and barrier function (ZO-1), decreased diversity of colonic microbiota, and 218 differentially altered colonic metabolites; however, co-treatment with BPE did not restore these modified aspects except for the liver index and colonic bacterial diversity. The singular treatment with BPE did not manifest evident side effects in normal mice but induced a mild occurrence of diarrhea and a notable alteration in the colonic metabolite profile. Moreover, a single BPE administration augmented the abundance of the commensal beneficial bacteria Faecalibaculum and Akkermansia genera. Overall, the extract of BP leaves did not demonstrate the anticipated effectiveness in alleviating DSS-induced intestinal inflammation.PMID:37915848 | PMC:PMC10616958 | DOI:10.3389/fcimb.2023.1255127

Alterations of lower respiratory tract microbiome and short-chain fatty acids in different segments in lung cancer: a multiomics analysis

Thu, 02/11/2023 - 11:00
Front Cell Infect Microbiol. 2023 Oct 16;13:1261284. doi: 10.3389/fcimb.2023.1261284. eCollection 2023.ABSTRACTINTRODUCTION: The lower respiratory tract microbiome is widely studied to pinpoint microbial dysbiosis of diversity or abundance that is linked to a number of chronic respiratory illnesses. However, it is vital to clarify how the microbiome, through the release of microbial metabolites, impacts lung health and oncogenesis.METHODS: In order to discover the powerful correlations between microbial metabolites and disease, we collected, under electronic bronchoscopy examinations, samples of paired bronchoalveolar lavage fluids (BALFs) from tumor-burden lung segments and ipsilateral non-tumor sites from 28 lung cancer participants, further performing metagenomic sequencing, short-chain fatty acid (SCFA) metabolomics, and multiomics analysis to uncover the potential correlations of the microbiome and SCFAs in lung cancer.RESULTS: In comparison to BALFs from normal lung segments of the same participant, those from lung cancer burden lung segments had slightly decreased microbial diversity in the lower respiratory tract. With 18 differentially prevalent microbial species, including the well-known carcinogens Campylobacter jejuni and Nesseria polysaccharea, the relative species abundance in the lower respiratory tract microbiome did not significantly differ between the two groups. Additionally, a collection of commonly recognized probiotic metabolites called short-chain fatty acids showed little significance in either group independently but revealed a strong predictive value when using an integrated model by machine learning. Multiomics also discovered particular species related to SCFAs, showing a positive correlation with Brachyspira hydrosenteriae and a negative one with Pseudomonas at the genus level, despite limited detection in lower airways. Of note, these distinct microbiota and metabolites corresponded with clinical traits that still required confirmation.CONCLUSIONS: Further analysis of metagenome functional capacity revealed that genes encoding environmental information processing and metabolism pathways were enriched in the lower respiratory tract metagenomes of lung cancer patients, further supporting the oncogenesis function of various microbial species by different metabolites. These findings point to a potent relationship between particular components of the integrated microbiota-metabolites network and lung cancer, with implications for screening and diagnosis in clinical settings.PMID:37915846 | PMC:PMC10617678 | DOI:10.3389/fcimb.2023.1261284

Capturing heart valve development with Gene Ontology

Thu, 02/11/2023 - 11:00
Front Genet. 2023 Oct 17;14:1251902. doi: 10.3389/fgene.2023.1251902. eCollection 2023.ABSTRACTIntroduction: The normal development of all heart valves requires highly coordinated signaling pathways and downstream mediators. While genomic variants can be responsible for congenital valve disease, environmental factors can also play a role. Later in life valve calcification is a leading cause of aortic valve stenosis, a progressive disease that may lead to heart failure. Current research into the causes of both congenital valve diseases and valve calcification is using a variety of high-throughput methodologies, including transcriptomics, proteomics and genomics. High quality genetic data from biological knowledge bases are essential to facilitate analyses and interpretation of these high-throughput datasets. The Gene Ontology (GO, http://geneontology.org/) is a major bioinformatics resource used to interpret these datasets, as it provides structured, computable knowledge describing the role of gene products across all organisms. The UCL Functional Gene Annotation team focuses on GO annotation of human gene products. Having identified that the GO annotations included in transcriptomic, proteomic and genomic data did not provide sufficient descriptive information about heart valve development, we initiated a focused project to address this issue. Methods: This project prioritized 138 proteins for GO annotation, which led to the curation of 100 peer-reviewed articles and the creation of 400 heart valve development-relevant GO annotations. Results: While the focus of this project was heart valve development, around 600 of the 1000 annotations created described the broader cellular role of these proteins, including those describing aortic valve morphogenesis, BMP signaling and endocardial cushion development. Our functional enrichment analysis of the 28 proteins known to have a role in bicuspid aortic valve disease confirmed that this annotation project has led to an improved interpretation of a heart valve genetic dataset. Discussion: To address the needs of the heart valve research community this project has provided GO annotations to describe the specific roles of key proteins involved in heart valve development. The breadth of GO annotations created by this project will benefit many of those seeking to interpret a wide range of cardiovascular genomic, transcriptomic, proteomic and metabolomic datasets.PMID:37915827 | PMC:PMC10616796 | DOI:10.3389/fgene.2023.1251902

Integrated widely targeted metabolomics and network pharmacology revealed quality disparities between Guizhou and conventional producing areas of Codonopsis Radix

Thu, 02/11/2023 - 11:00
Front Nutr. 2023 Oct 17;10:1271817. doi: 10.3389/fnut.2023.1271817. eCollection 2023.ABSTRACTINTRODUCTION: With the internationalization of traditional Chinese medicine, the demand for medicinal and edible Codonopsis Radix (CR) has increased, and its medicinal resources have attracted attention. CR is a well-known traditional Chinese medicine with a long pharmaceutical and edible history. The Guizhou province in China has abundant CR resources, but in the absence of systematic studies on species identification and chemical compositions, the capacity of the capacity of the province to CR resource has not been fully utilized.METHODOLOGY: We used plant morphology and DNA barcoding techniques to identify Luodang (LD) and Weidang (WD) species. To investigate the differences in metabolites between LD and WD, as well as three Chinese Pharmacopeia CRs, and to predict pharmacological mechanisms of action for the dominant differential metabolites, we utilized widely targeted metabolomics and network pharmacology. The results also revealed the material basis for the excellent food properties of both LD and WD.RESULTS: The plant traits and DNA barcoding molecular identification results indicated that Luodang and Weidang from Guizhou were Codonopsis tangshen and Codonopsis pilosula, respectively. Widely targeted metabolomics analysis revealed that a total of 1,116 metabolites from 14 categories, including phenolic acids, lipids, flavonoids, were found in five CRs and shared 1,054 (94.4%) metabolites. LD and WD each contained 3 and 10 dominant differential metabolites, respectively, which were primarily flavonoids and amino acids. Amino acids, phenolic acids, and organic acids play important roles in their excellent food attributes. In CR, eight dominant differential metabolites were discovered for the first time, including isoorientin-7-O-(6″-feruloyl) glucoside, N-formyl-L-methionine, and cyclo (Phe-Glu), among others. Network pharmacology analyses showed that, in LD, dominant differential metabolites were closely related to anti-tumor, cardiovascular disease improvement, nervous system protection, and metabolic disease treatment, whereas in WD, they were closely related to nervous system protection and cardiovascular disease improvement.CONCLUSION: The species of LD and WD were included in the Chinese Pharmacopeia, and their metabolite profiles were remarkably similar to CR from traditional producing areas. Therefore, LD and WD can be used and promoted medicinally as CR, and they have potential value for new drug development. This study enriched the database of CR compounds and provided a reference for quality control, resource development, and new drug development of CR.PMID:37915621 | PMC:PMC10616484 | DOI:10.3389/fnut.2023.1271817

Global metabolic profile and multiple phytometabolites in the different varieties of <em>Gastrodia elata</em> Blume

Thu, 02/11/2023 - 11:00
Front Plant Sci. 2023 Oct 17;14:1249456. doi: 10.3389/fpls.2023.1249456. eCollection 2023.ABSTRACTGastrodia elata Blume (Tianma in Chinese), a myco-heterotrophic orchid, is widely distributed in China. Tubers derived from this orchid are traditionally used as both medicinal and edible materials. At present, five primary varieties of G. elata are recorded in the "Flora of China." Among them, the three main varieties currently in artificial cultivation are G. elata f. elata (GR, red stem), G. elata f. glauca (GB, black stem), and G. elata f. viridis (GG, green stem). In our study, the metabolic profiles and chemical composition of these three varieties were determined via UPLC-MS/MS and HPLC-UV. In total, 11,132 metabolites were detected, from which multiple phytometabolites were identified as aromatic compounds, heteroatomic compounds, furans, carbohydrates, organic acids, and their derivatives. A number of differentially expressed metabolites (DEMs) were annotated as bioactive ingredients. Overall, parishins, vanilloloside, and gastrodin A/B in the GB group were markedly higher, whereas gastrodin, gastrol, and syringic acid were more enriched in the GG or GR groups. Moreover, HPLC fingerprint analysis also found six metabolites used as markers for the identification of Gastrodiae Rhizoma in the Chinese Pharmacopoeia, which were also typical DEMs in metabolomics. Of these, gastrodin, 4-hydroxybenzyl alcohol, citric acid, and adenosine were quantitatively detected, showing a similar result with the metabolomic data. In summary, our findings provide novel insights into the phytochemical ingredients of different G. elata varieties, highlighting diverse biological activities and healthcare value.PMID:37915510 | PMC:PMC10616830 | DOI:10.3389/fpls.2023.1249456

Insight into the negative effect and lipid profile alterations in liver of mice exposed to methylimidazolium ionic liquids, a novel "green" solvent

Thu, 02/11/2023 - 11:00
Toxicol Res (Camb). 2023 Sep 19;12(5):884-894. doi: 10.1093/toxres/tfad079. eCollection 2023 Oct.ABSTRACTBACKGROUND: Ionic liquids (ILs) have been recognized as potential environmentally friendly solvents; however, their potential toxicity to living organisms warrants thorough investigation, particularly for novel-generation ILs in mammalian models.METHODS: In this study, we examined the hepatic effects and disruption of lipid metabolism in mice exposed to 1-heptyl-3-methylimidazolium chloride (C7[MIM]Cl), a novel ILs. After four weeks of oral administration at different dosages (2.38, 5.95, and 11.9 mg/kg b.w.), we conducted clinical chemistry analysis and histopathological examination of the liver to assess biochemical and structural changes.RESULTS: The low-dose C7[MIM]Cl group exhibited a significant increase in alanine aminotransferase (ALT) levels, while aspartate aminotransferase (AST) levels were elevated in both low-dose and high-dose groups without statistical significance. Histopathological examination showed inflammatory cell infiltration and red blood cell aggregation in the livers of mice exposed to C7[MIM]Cl, particularly in the high-dose group. Oxidative stress levels showed moderate changes in response to C7[MIM]Cl exposure. Notably, hepatic biochemical parameters revealed a dose-dependent increase in triglycerides (TG) levels with statistically significant differences compared to the control group (P ≤ 0.01). Targeted lipidomic analysis revealed notable alterations in liver lipids of mice exposed to C7[MIM]Cl, with lysophosphatidylethanolamine (18:0), phosphatidylcholines (18:0), and phosphatidylcholines (19:0) identified as critical lipids associated with C7[MIM]Cl exposure. Furthermore, metabolic pathway analyses demonstrated significant disturbances in the glycerophospholipid metabolic pathway.CONCLUSION: These findings provide valuable insights into the hepatic effects of C7[MIM]Cl exposure and novel perspectives on the disruption of lipid metabolism underlying ILs toxicity.PMID:37915492 | PMC:PMC10615802 | DOI:10.1093/toxres/tfad079

<em>Longbie</em> capsules reduce bone loss in the subchondral bone of rats with comorbid osteoporosis and osteoarthritis by regulating metabolite alterations

Thu, 02/11/2023 - 11:00
Front Med (Lausanne). 2023 Oct 17;10:1256238. doi: 10.3389/fmed.2023.1256238. eCollection 2023.ABSTRACTBACKGROUND AND OBJECTIVE: With the development of global population aging, comorbidity (≥2 diseases) is a common health problem among elderly people. Osteoarthritis (OA) and osteoporosis (OP) are common in elderly individuals. There is a lack of drug therapy for OA and OP comorbidities. The purpose of this study was to explore the efficacy and mechanism of Longbie capsule (LBJN), which contains various plant herbs, in treating OA and OP comorbidities (OA + OP) in rats using metabolomics techniques.METHODS: We created an OA + OP rat model through bilateral oophorectomy combined with meniscus instability surgery. Thirty SD rats were randomly divided into five groups (six in each group), namely, the sham group, OA group, OA + OP group, LBJN low-dose group (0.625 g/kg, OA + OP+LB-L group) and LBJN high-dose group (1.25 g/kg, OA + OP+LB-H group). After 8 weeks of intervention, we used micro-CT to detect bone microstructure status, ELISA to measure bone metabolism indicators, and UPLC-MS technology for metabolomics analysis. Finally, the screened differentially expressed metabolites were subjected to Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and functional enrichment analysis.RESULTS: The micro-CT results showed that LBJN significantly improved the bone mineral density (BMD) and bone quality of subchondral bone in OA + OP rats, and LBJN regulated the expression of bone alkaline phosphatase (BALP), osteoprotegerin (OPG), and tartrate-resistant acid phosphatase (TRACP) in serum to maintain bone metabolism balance. Metabolomics analysis showed that the metabolic trajectory of OA + OP rats after intervention in the OA + OP+LB-H group showed significant changes, and 107 potential biomarkers could be identified. Among them, 50 metabolites were upregulated (such as zeranol) and 57 were downregulated (such as vanillactic acid). The KEGG functional enrichment results indicated that the differentially expressed metabolites are mainly involved in amino acid metabolism, lipid metabolism, and carbohydrate metabolism. The KEGG pathway enrichment results indicated that LBJN may exert therapeutic effects on OA + OP rats by regulating the cAMP signaling pathway, and the FoxO signaling pathway.CONCLUSION: LBJN can maintain bone metabolism balance by regulating serum lipid metabolism, amino acid metabolism, carbohydrate metabolism, and estrogen, thereby reducing bone loss in subchondral bone, which may be a potential mechanism through which LBJN treats OA + OP.PMID:37915330 | PMC:PMC10616798 | DOI:10.3389/fmed.2023.1256238

Quantification and characterization of biological activities of glansreginin A in black walnuts (Juglans nigra)

Thu, 02/11/2023 - 11:00
Sci Rep. 2023 Nov 1;13(1):18860. doi: 10.1038/s41598-023-46134-8.ABSTRACTGlansreginin A has been reported to be an indicator of the quality of walnuts (Juglans spp.). However, bioactive properties of glansreginin A have not been adequately explored. In the present study, we quantified concentrations of glansreginin A in black walnuts (Juglans nigra) using high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) and performed an array of in vitro bioassays to characterize biological activities (e.g., antibacterial, antioxidant, anticancer capacities) of this compound. Results from HPLC-MS/MS analysis indicated that glansreginin A was presented in all 12 black cultivars examined and its contents were variable among black walnut cultivars, ranged from 6.8 mg/kg (Jackson) to 47.0 mg/kg (Hay). Glansreginin A possessed moderate antibacterial activities against Gram-positive pathogens (Staphylococcus aureus and Bacillus anthracis). This compound exhibited no antioxidant activities, did not induce the activity of antioxidant response element signaling pathways, and exerted no antiproliferative effects on tumorigenic alveolar epithelial cells and non-tumorigenic lung fibroblast cells.PMID:37914763 | DOI:10.1038/s41598-023-46134-8

Genome-wide association analysis of plasma lipidome identifies 495 genetic associations

Wed, 01/11/2023 - 11:00
Nat Commun. 2023 Oct 31;14(1):6934. doi: 10.1038/s41467-023-42532-8.ABSTRACTThe human plasma lipidome captures risk for cardiometabolic diseases. To discover new lipid-associated variants and understand the link between lipid species and cardiometabolic disorders, we perform univariate and multivariate genome-wide analyses of 179 lipid species in 7174 Finnish individuals. We fine-map the associated loci, prioritize genes, and examine their disease links in 377,277 FinnGen participants. We identify 495 genome-trait associations in 56 genetic loci including 8 novel loci, with a considerable boost provided by the multivariate analysis. For 26 loci, fine-mapping identifies variants with a high causal probability, including 14 coding variants indicating likely causal genes. A phenome-wide analysis across 953 disease endpoints reveals disease associations for 40 lipid loci. For 11 coronary artery disease risk variants, we detect strong associations with lipid species. Our study demonstrates the power of multivariate genetic analysis in correlated lipidomics data and reveals genetic links between diseases and lipid species beyond the standard lipids.PMID:37907536 | PMC:PMC10618167 | DOI:10.1038/s41467-023-42532-8

The re-emerging role of linoleic acid in paediatric asthma

Wed, 01/11/2023 - 11:00
Eur Respir Rev. 2023 Nov 1;32(170):230063. doi: 10.1183/16000617.0063-2023. Print 2023 Dec 31.ABSTRACTAsthma is the most common chronic disease within the paediatric population. Although it is multifactorial, its onset may be linked to early-life exposures with subsequent impact on immune system development. Microbial and dietary metabolic products have been implicated in the development and exacerbation of paediatric asthma. Linoleic acid is the most common omega-6 polyunsaturated fatty acid in the Western diet. In this review, we summarise the literature regarding the involvement of linoleic acid in the development of and its impact on existing paediatric asthma. First, we summarise the existing knowledge surrounding the relationship between human microbial metabolism and allergic diseases in children. Next, we examine cellular or animal model-based mechanistic studies that investigated the impact of dietary- and microbial-derived linoleic acid metabolites on asthma. Finally, we review the literature investigating the impact of linoleic acid metabolites on the development and exacerbation of childhood asthma. While there is conflicting evidence, there is growing support for a role of linoleic acid in the onset and pathophysiology of asthma. We recommend that additional cellular, animal, and longitudinal studies are performed that target linoleic acid and its metabolites.PMID:37914192 | DOI:10.1183/16000617.0063-2023

Heat-evolved algal symbionts enhance bleaching tolerance of adult corals without trade-off against growth

Wed, 01/11/2023 - 11:00
Glob Chang Biol. 2023 Nov 1. doi: 10.1111/gcb.16987. Online ahead of print.ABSTRACTOcean warming has caused coral mass bleaching and mortality worldwide and the persistence of symbiotic reef-building corals requires rapid acclimation or adaptation. Experimental evolution of the coral's microalgal symbionts followed by their introduction into coral is one potential method to enhance coral thermotolerance. Heat-evolved microalgal symbionts of the generalist species, Cladocopium proliferum (strain SS8), were exposed to elevated temperature (31°C) for ~10 years, and were introduced into four genotypes of chemically bleached adult fragments of the scleractinian coral, Galaxea fascicularis. Two of the four coral genotypes acquired SS8. The new symbionts persisted for the 5 months of the experiment and enhanced adult coral thermotolerance, compared with corals that were inoculated with the wild-type C. proliferum strain. Thermotolerance of SS8-corals was similar to that of coral fragments from the same colony hosting the homologous symbiont, Durusdinium sp., which is naturally heat tolerant. However, SS8-coral fragments exhibited faster growth and recovered cell density and photochemical efficiency more quickly following chemical bleaching and inoculation under ambient temperature relative to Durusdinium-corals. Mass spectrometry imaging suggests that algal pigments involved in photobiology and oxidative stress were the greatest contributors to the thermotolerance differences between coral hosting heat-evolved versus wild-type C. proliferum. These pigments may have increased photoprotection in the heat-evolved symbionts. This is the first laboratory study to show that thermotolerance of adult corals (G. fascicularis) can be enhanced via the uptake of exogenously supplied, heat-evolved symbionts, without a trade-off against growth under ambient temperature. Importantly, heat-evolved C. proliferum remained in the corals in moderate abundance 2 years after first inoculation, suggesting long-term stability of this novel symbiosis and potential long-term benefits to coral thermotolerance.PMID:37913765 | DOI:10.1111/gcb.16987

Pages