PubMed
To analyze the relationship between gut microbiota, metabolites and migraine: a two-sample Mendelian randomization study
Front Microbiol. 2024 Apr 16;15:1325047. doi: 10.3389/fmicb.2024.1325047. eCollection 2024.ABSTRACTBACKGROUND: It has been suggested in several observational studies that migraines are associated with the gut microbiota. It remains unclear, however, how the gut microbiota and migraines are causally related.METHODS: We performed a bidirectional two-sample mendelian randomization study. Genome-wide association study (GWAS) summary statistics for the gut microbiota were obtained from the MiBioGen consortium (n = 18,340) and the Dutch Microbiota Project (n = 7,738). Pooled GWAS data for plasma metabolites were obtained from four different human metabolomics studies. GWAS summary data for migraine (cases = 48,975; controls = 450,381) were sourced from the International Headache Genetics Consortium. We used inverse-variance weighting as the primary analysis. Multiple sensitivity analyses were performed to ensure the robustness of the estimated results. We also conducted reverse mendelian randomization when a causal relationship between exposure and migraine was found.RESULTS: LachnospiraceaeUCG001 (OR = 1.12, 95% CI: 1.05-1.20) was a risk factor for migraine. Blautia (OR = 0.93, 95% CI: 0.88-0.99), Eubacterium (nodatum group; OR = 0.94, 95% CI: 0.90-0.98), and Bacteroides fragilis (OR = 0.97, 95% CI: 0.94-1.00) may have a suggestive association with a lower migraine risk. Functional pathways of methionine synthesis (OR = 0.89, 95% CI: 0.83-0.95) associated with microbiota abundance and plasma hydrocinnamate (OR = 0.85, 95% CI: 0.73-1.00), which are downstream metabolites of Blautia and Bacteroides fragilis, respectively, may also be associated with lower migraine risk. No causal association between migraine and the gut microbiota or metabolites was found in reverse mendelian randomization analysis. Both significant horizontal pleiotropy and significant heterogeneity were not clearly identified.CONCLUSION: This Mendelian randomization analysis showed that LachnospiraceaeUCG001 was associated with an increased risk of migraine, while some bacteria in the gut microbiota may reduce migraine risk. These findings provide a reference for a deeper comprehension of the role of the gut-brain axis in migraine as well as possible targets for treatment interventions.PMID:38690367 | PMC:PMC11058981 | DOI:10.3389/fmicb.2024.1325047
Gallein potentiates isoniazid's ability to suppress <em>Mycobacterium tuberculosis</em> growth
Front Microbiol. 2024 Apr 15;15:1369763. doi: 10.3389/fmicb.2024.1369763. eCollection 2024.ABSTRACTMycobacterium tuberculosis (Mtb), the bacterium that causes tuberculosis (TB), can be difficult to treat because of drug tolerance. Increased intracellular polyphosphate (polyP) in Mtb enhances tolerance to antibiotics, and capsular polyP in Neisseria gonorrhoeae potentiates resistance to antimicrobials. The mechanism by which bacteria utilize polyP to adapt to antimicrobial pressure is not known. In this study, we found that Mtb adapts to the TB frontline antibiotic isoniazid (INH) by enhancing the accumulation of cellular, extracellular, and cell surface polyP. Gallein, a broad-spectrum inhibitor of the polyphosphate kinase that synthesizes polyP, prevents this INH-induced increase in extracellular and cell surface polyP levels. Gallein and INH work synergistically to attenuate Mtb's ability to grow in in vitro culture and within human macrophages. Mtb when exposed to INH, and in the presence of INH, gallein inhibits cell envelope formation in most but not all Mtb cells. Metabolomics indicated that INH or gallein have a modest impact on levels of Mtb metabolites, but when used in combination, they significantly reduce levels of metabolites involved in cell envelope synthesis and amino acid, carbohydrate, and nucleoside metabolism, revealing a synergistic effect. These data suggest that gallein represents a promising avenue to potentiate the treatment of TB.PMID:38690363 | PMC:PMC11060752 | DOI:10.3389/fmicb.2024.1369763
Crude protein content in diets associated with intestinal microbiome and metabolome alteration in Huanjiang mini-pigs during different growth stages
Front Microbiol. 2024 Apr 16;15:1398919. doi: 10.3389/fmicb.2024.1398919. eCollection 2024.ABSTRACTINTRODUCTION: Adequate crude protein (CP) content in diets plays a crucial role in the intestinal health of the animal. This study investigated the impacts of CP content in diets on the intestinal microbiome and metabolome profiles in growing Huanjiang mini-pigs.METHODS: A total of 360 pigs with similar body weight (BW) were allocated for three independent feeding trials based on three different BW stages, including (i) 5-10 kg BW, diets consisting of 14, 16, 18, 20, and 22% CP content; (ii) 10-20 kg BW, diets consisting of 12, 14, 16, 18, and 20% CP content; and (iii) 20-30 kg BW, diets consisting of 10, 12, 14, 16, and 18% CP content. These experiments lasted 28, 28, and 26 days, respectively.RESULTS: The results showed that the Shannon and Simpson indices were decreased (p < 0.05) in the ileum of pigs in response to the 14-18% CP compared with the 20% CP content at 5-10 kg BW stage, while diets containing 12 and 14% CP had higher Chao1 (p < 0.05) and Shannon (p = 0.054) indices compared with 18% CP at 20-30 kg BW stage. Compared with the 20% CP, the diet containing 16% CP displayed an increasing trend (p = 0.089) of Firmicutes abundance but had decreased (p = 0.056) Actinobacteria abundance in the jejunum at 5-10 kg BW stage. In addition, a diet containing 16% CP had higher Lactobacillus abundance in the jejunum and ileum compared with the 18, 20, and 22% CP, while had lower Sphingomonas and Pelomonas abundances in the jejunum and Streptococcus abundance in the ileum compared with the diet containing 22% CP (p < 0.05). Diets containing lower CP content altered differential metabolites in the small intestine at the early stage, while higher CP content had less impact.CONCLUSION: These findings suggest that a diet containing lower CP content (16% CP) may be an appropriate dietary CP content for 5-10 kg Huanjiang mini-pigs, as 16% CP content in diet has shown beneficial impacts on the intestinal microbiome and metabolome profiles at the early growth stage of pigs.PMID:38690359 | PMC:PMC11058986 | DOI:10.3389/fmicb.2024.1398919
Hypoxia-inducible factor-1α in myocardial infarction
World J Cardiol. 2024 Apr 26;16(4):181-185. doi: 10.4330/wjc.v16.i4.181.ABSTRACTHypoxia-inducible factor 1 (HIF1) has a crucial function in the regulation of oxygen levels in mammalian cells, especially under hypoxic conditions. Its importance in cardiovascular diseases, particularly in cardiac ischemia, is because of its ability to alleviate cardiac dysfunction. The oxygen-responsive subunit, HIF1α, plays a crucial role in this process, as it has been shown to have cardioprotective effects in myocardial infarction through regulating the expression of genes affecting cellular survival, angiogenesis, and metabolism. Furthermore, HIF1α expression induced reperfusion in the ischemic skeletal muscle, and hypoxic skin wounds in diabetic animal models showed reduced HIF1α expression. Increased expression of HIF1α has been shown to reduce apoptosis and oxidative stress in cardiomyocytes during acute myocardial infarction. Genetic variations in HIF1α have also been found to correlate with altered responses to ischemic cardiovascular disease. In addition, a link has been established between the circadian rhythm and hypoxic molecular signaling pathways, with HIF1α functioning as an oxygen sensor and circadian genes such as period circadian regulator 2 responding to changes in light. This editorial analyzes the relationship between HIF1α and the circadian rhythm and highlights its significance in myocardial adaptation to hypoxia. Understanding the changes in molecular signaling pathways associated with diseases, specifically cardiovascular diseases, provides the opportunity for innovative therapeutic interventions, especially in low-oxygen environments such as myocardial infarction.PMID:38690212 | PMC:PMC11056874 | DOI:10.4330/wjc.v16.i4.181
Metabolomic profiling of Medicago sativa-derived fungal endophytes and evaluation of their biological activities
RSC Adv. 2024 Apr 30;14(20):14296-14302. doi: 10.1039/d4ra00790e. eCollection 2024 Apr 25.ABSTRACTThis study aimed to discover the potential of Medicago sativa-derived fungal endophytes as a prospective source of bioactive metabolites. In the present study, three different strains of fungal endophyte Aspergillus terreus were isolated from leaves L, roots T and stems St of Medicago sativa to explore their biological and chemical diversity. These isolated fungi were exposed to different fermentation conditions by adding various chemical elicitors to their solid fermentation media. According to LC-HRESIMS-based metabolomics and multivariate analysis, each chemical treatment had a different effect on the chemical profiles of the fungi. Orthogonal Projections to Latent Structures Discriminant Analysis (OPLS-DA) proposed several compounds with anticancer action against MCF-7 (a human breast cancer cell line) and MDA-MB-231 (a human epithelial breast cancer cell line).PMID:38690109 | PMC:PMC11059938 | DOI:10.1039/d4ra00790e
Preterm birth, a consequence of immune deviation mediated hyperinflammation
Heliyon. 2024 Mar 24;10(7):e28483. doi: 10.1016/j.heliyon.2024.e28483. eCollection 2024 Apr 15.ABSTRACTPreterm birth represents a multifaceted syndrome with intricacies still present in our comprehension of its etiology. In the context of a semi-allograft, the prosperity from implantation to pregnancy to delivery hinges on the establishment of a favorable maternal-fetal immune microenvironment and a successful trilogy of immune activation, immune tolerance and then immune activation transitions. The occurrence of spontaneous preterm birth could be related to abnormalities within the immune trilogy, stemming from deviation in maternal and fetal immunity. These immune deviations, characterized by insufficient immune tolerance and early immune activation, ultimately culminated in an unsustainable pregnancy. In this review, we accentuated the role of both innate and adaptive immune reason in promoting spontaneous preterm birth, reviewed the risk of preterm birth from vaginal microbiome mediated by immune changes and the potential of vaginal microbiomes and metabolites as a new predictive marker, and discuss the changes in the role of progesterone and its interaction with immune cells in a preterm birth population. Our objective was to contribute to the growing body of knowledge in the field, shedding light on the immunologic reason of spontaneous preterm birth and effective biomarkers for early prediction, providing a roadmap for forthcoming investigations.PMID:38689990 | PMC:PMC11059518 | DOI:10.1016/j.heliyon.2024.e28483
Raising root zone temperature improves plant productivity and metabolites in hydroponic lettuce production
Front Plant Sci. 2024 Apr 16;15:1352331. doi: 10.3389/fpls.2024.1352331. eCollection 2024.ABSTRACTWhile it is commonly understood that air temperature can greatly affect the process of photosynthesis and the growth of higher plants, the impact of root zone temperature (RZT) on plant growth, metabolism, essential elements, as well as key metabolites like chlorophyll and carotenoids, remains an area that necessitates extensive research. Therefore, this study aimed to investigate the impact of raising the RZT on the growth, metabolites, elements, and proteins of red leaf lettuce. Lettuce was hydroponically grown in a plant factory with artificial light at four different air temperatures (17, 22, 27, and 30°C) and two treatments with different RZTs. The RZT was raised 3°C above the air temperature in one group, while it was not in the other group. Increasing the RZT 3°C above the air temperature improved plant growth and metabolites, including carotenoids, ascorbic acids, and chlorophyll, in all four air temperature treatments. Moreover, raising the RZT increased Mg, K, Fe, Cu, Se, Rb, amino acids, and total soluble proteins in the leaf tissue at all four air temperatures. These results showed that raising the RZT by 3°C improved plant productivity and the metabolites of the hydroponic lettuce by enhancing nutrient uptake and activating the metabolism in the roots at all four air temperatures. Overall, this research demonstrates that plant growth and metabolites can be improved simultaneously with an increased RZT relative to air temperature. This study serves as a foundation for future research on optimizing RZT in relation to air temperature. Further recommended studies include investigating the differential effects of multiple RZT variations relative to air temperature for increased optimization, examining the effects of RZT during nighttime versus daytime, and exploring the impact of stem heating. This research has the potential to make a valuable contribution to the ongoing growth and progress of the plant factory industry and fundamental advancements in root zone physiology. Overall, this research demonstrates that plant growth and metabolites can be improved simultaneously with an increased RZT relative to air temperature. This study serves as a foundation for future research on optimizing RZT in relation to air temperature. Further recommended studies include investigating the differential effects of multiple RZT variations relative to air temperature for increased optimization, examining the effects of RZT during nighttime versus daytime, and exploring the impact of stem heating. This research has the potential to make a valuable contribution to the ongoing growth and progress of the plant factory industry and fundamental advancements in root zone physiology.PMID:38689844 | PMC:PMC11058216 | DOI:10.3389/fpls.2024.1352331
Reduction of flavonoid content in honeysuckle via <em>Erysiphe lonicerae</em>-mediated inhibition of three essential genes in flavonoid biosynthesis pathways
Front Plant Sci. 2024 Apr 16;15:1381368. doi: 10.3389/fpls.2024.1381368. eCollection 2024.ABSTRACTHoneysuckle, valued for its wide-ranging uses in medicine, cuisine, and aesthetics, faces a significant challenge in cultivation due to powdery mildew, primarily caused by the Erysiphe lonicerae pathogen. The interaction between honeysuckle and E. lonicerae, especially concerning disease progression, remains insufficiently understood. Our study, conducted in three different locations, found that honeysuckle naturally infected with E. lonicerae showed notable decreases in total flavonoid content, with reductions of 34.7%, 53.5%, and 53.8% observed in each respective site. Controlled experiments supported these findings, indicating that artificial inoculation with E. lonicerae led to a 20.9% reduction in flavonoid levels over 21 days, worsening to a 54.8% decrease by day 42. Additionally, there was a significant drop in the plant's total antioxidant capacity, reaching an 81.7% reduction 56 days after inoculation. Metabolomic analysis also revealed substantial reductions in essential medicinal components such as chlorogenic acid, luteolin, quercetin, isoquercetin, and rutin. Investigating gene expression revealed a marked decrease in the relative expression of the LjPAL1 gene, starting as early as day 7 post-inoculation and falling to a minimal level (fold change = 0.29) by day 35. This trend was mirrored by a consistent reduction in phenylalanine ammonia-lyase activity in honeysuckle through the entire process, which decreased by 72.3% by day 56. Further analysis showed significant and sustained repression of downstream genes LjFNHO1 and LjFNGT1, closely linked to LjPAL1. We identified the mechanism by which E. lonicerae inhibits this pathway and suggest that E. lonicerae may strategically weaken the honeysuckle's disease resistance by targeting key biosynthetic pathways, thereby facilitating further pathogen invasion. Based on our findings, we recommend two primary strategies: first, monitoring medicinal constituent levels in honeysuckle from E. lonicerae-affected areas to ensure its therapeutic effectiveness; and second, emphasizing early prevention and control measures against honeysuckle powdery mildew due to the persistent decline in crucial active compounds.PMID:38689843 | PMC:PMC11059088 | DOI:10.3389/fpls.2024.1381368
Integrated transcriptomic and metabolomic data reveal the cold stress responses molecular mechanisms of two coconut varieties
Front Plant Sci. 2024 Apr 16;15:1353352. doi: 10.3389/fpls.2024.1353352. eCollection 2024.ABSTRACTAmong tropical fruit trees, coconut holds significant edible and economic importance. The natural growth of coconuts faces a challenge in the form of low temperatures, which is a crucial factor among adverse environmental stresses impacting their geographical distribution. Hence, it is essential to enhance our comprehension of the molecular mechanisms through which cold stress influences various coconut varieties. We employed analyses of leaf growth morphology and physiological traits to examine how coconuts respond to low temperatures over 2-hour, 8-hour, 2-day, and 7-day intervals. Additionally, we performed transcriptome and metabolome analyses to identify the molecular and physiological shifts in two coconut varieties displaying distinct sensitivities to the cold stress. As the length of cold stress extended, there was a prominent escalation within the soluble protein (SP), proline (Pro) concentrations, the activity of peroxidase (POD) and superoxide dismutase (SOD) in the leaves. Contrariwise, the activity of glutathione peroxidase (GSH) underwent a substantial reduction during this period. The widespread analysis of metabolome and transcriptome disclosed a nexus of genes and metabolites intricately cold stress were chiefly involved in pathways centered around amino acid, flavonoid, carbohydrate and lipid metabolism. We perceived several stress-responsive metabolites, such as flavonoids, carbohydrates, lipids, and amino acids, which unveiled considerably, lower in the genotype subtle to cold stress. Furthermore, we uncovered pivotal genes in the amino acid biosynthesis, antioxidant system and flavonoid biosynthesis pathway that presented down-regulation in coconut varieties sensitive to cold stress. This study broadly enriches our contemporary perception of the molecular machinery that contributes to altering levels of cold stress tolerance amid coconut genotypes. It also unlocks several unique prospects for exploration in the areas of breeding or engineering, aiming to identifying tolerant and/or sensitive coconut varieties encompassing multi-omics layers in response to cold stress conditions.PMID:38689842 | PMC:PMC11058665 | DOI:10.3389/fpls.2024.1353352
Expression and clinical significance of short-chain fatty acids in patients with intrahepatic cholestasis of pregnancy
World J Hepatol. 2024 Apr 27;16(4):601-611. doi: 10.4254/wjh.v16.i4.601.ABSTRACTBACKGROUND: Intrahepatic cholestasis of pregnancy (ICP) is a pregnancy-specific liver condition that typically arises in the middle and late stages of pregnancy. Short-chain fatty acids (SCFAs), prominent metabolites of the gut microbiota, have significant connections with various pregnancy complications, and some SCFAs hold potential for treating such complications. However, the metabolic profile of SCFAs in patients with ICP remains unclear.AIM: To investigate the metabolic profiles and differences in SCFAs present in the maternal and cord blood of patients with ICP and determine the clinical significance of these findings.METHODS: Maternal serum and cord blood samples were collected from both patients with ICP (ICP group) and normal pregnant women (NP group). Targeted metabolomics was used to assess the SCFA levels in these samples.RESULTS: Significant differences in maternal SCFAs were observed between the ICP and NP groups. Most SCFAs exhibited a consistent declining trend in cord blood samples from the ICP group, mirroring the pattern seen in maternal serum. Correlation analysis revealed a positive correlation between maternal serum SCFAs and cord blood SCFAs [r (Pearson) = 0.88, P = 7.93e-95]. In both maternal serum and cord blood, acetic and caproic acids were identified as key metabolites contributing to the differences in SCFAs between the two groups (variable importance for the projection > 1). Receiver operating characteristic analysis demonstrated that multiple SCFAs in maternal blood have excellent diagnostic capabilities for ICP, with caproic acid exhibiting the highest diagnostic efficacy (area under the curve = 0.97).CONCLUSION: Compared with the NP group, significant alterations were observed in the SCFAs of maternal serum and cord blood in the ICP group, although they displayed distinct patterns of change. Furthermore, the SCFA levels in maternal serum and cord blood were significantly positively correlated. Notably, certain maternal serum SCFAs, specifically caproic and acetic acids, demonstrated excellent diagnostic efficiency for ICP.PMID:38689740 | PMC:PMC11056904 | DOI:10.4254/wjh.v16.i4.601
Chromosome-scale genome, together with transcriptome and metabolome, provides insights into the evolution and anthocyanin biosynthesis of Rubus rosaefolius Sm. (Rosaceae)
Hortic Res. 2024 Mar 2;11(4):uhae064. doi: 10.1093/hr/uhae064. eCollection 2024 Apr.ABSTRACTRubus rosaefolius is a kind of red raspberry possessing high nutritional and pharmaceutical value. Here we present a chromosome-level draft genome of R. rosaefolius. Of the total 131 assembled scaffolds, 70 with a total size of 219.02 Mb, accounting for 99.33% of the estimated genome size, were anchored to seven pseudochromosomes. We traced a whole-genome duplication (WGD) event shared among members of the Rosaceae family, from which were derived 5090 currently detectable duplicated gene pairs (dgps). Of the WGD-dgps 75.09% underwent purifying selection, and approximately three-quarters of informative WGD-dgps expressed their two paralogs with significant differences. We detected a wide variety of anthocyanins in the berries of R. rosaefolius, and their total concentration remained relatively stable during berry development but increased rapidly during the ripening stage, mainly because of the contributions of pelargonidin-3-O-glucoside and pelargonidin-3-O-(6″-O-malonyl)glucoside. We identified many structural genes that encode enzymes, such as RrDFR, RrF3H, RrANS, and RrBZ1, and play key roles in anthocyanin biosynthesis. The expression of some of these genes significantly increased or decreased with the accumulation of pelargonidin-3-O-glucoside and pelargonidin-3-O-(6″-O-malonyl)glucoside. We also identified some transcription factors and specific methylase-encoding genes that may play a role in regulating anthocyanin biosynthesis by targeting structural genes. In conclusion, our findings provide deeper insights into the genomic evolution and molecular mechanisms underlying anthocyanin biosynthesis in berries of R. rosaefolius. This knowledge may significantly contribute to the targeted domestication and breeding of Rubus species.PMID:38689697 | PMC:PMC11060340 | DOI:10.1093/hr/uhae064
Metabolomic analysis of dietary-restriction-induced attenuation of sarcopenia in prematurely aging DNA repair-deficient mice
J Cachexia Sarcopenia Muscle. 2024 Apr 30. doi: 10.1002/jcsm.13433. Online ahead of print.ABSTRACTBACKGROUND: Sarcopenia is characterized by loss of skeletal muscle mass and function, and is a major risk factor for disability and independence in the elderly. Effective medication is not available. Dietary restriction (DR) has been found to attenuate aging and aging-related diseases, including sarcopenia, but the mechanism of both DR and sarcopenia are incompletely understood.METHODS: In this study, mice body weight, fore and all limb grip strength, and motor learning and coordination performance were first analysed to evaluate the DR effects on muscle functioning. Liquid chromatography-mass spectrometry (LC-MS) was utilized for the metabolomics study of the DR effects on sarcopenia in progeroid DNA repair-deficient Ercc1∆/- and Xpg-/- mice, to identify potential biomarkers for attenuation of sarcopenia.RESULTS: Muscle mass was significantly (P < 0.05) decreased (13-20%) by DR; however, the muscle quality was improved with retained fore limbs and all limbs grip strength in Ercc1∆/- and Xpg-/- mice. The LC-MS results revealed that metabolites and pathways related to oxidative-stress, that is, GSSG/GSH (P < 0.01); inflammation, that is, 9-HODE, 11-HETE (P < 0.05), PGE2, PGD2, and TXB2 (P < 0.01); and muscle growth (PGF2α) (P < 0.01) and regeneration stimulation (PGE2) (P < 0.05) are significantly downregulated by DR. On the other hand, anti-inflammatory indicator and several related metabolites, that is, β-hydroxybutyrate (P < 0.01), 14,15-DiHETE (P < 0.0001), 8,9-EET, 12,13-DiHODE, and PGF1 (P < 0.05); consumption of sources of energy (i.e., muscle and liver glycogen); and energy production pathways, that is, glycolysis (glucose, glucose-6-P, fructose-6-P) (P < 0.01), tricarboxylic acid cycle (succinyl-CoA, malate) (P < 0.001), and gluconeogenesis-related metabolite, alanine (P < 0.01), are significantly upregulated by DR. The notably (P < 0.01) down-modulated muscle growth (PGF2α) and regeneration (PGE2) stimulation metabolite and the increased consumption of glycogen in muscle and liver may be related to the significantly (P < 0.01) lower body weight and muscle mass by DR. The downregulated oxidative stress, pro-inflammatory mediators, and upregulated anti-inflammatory metabolites resulted in a lower energy expenditure, which contributed to enhanced muscle quality together with upregulated energy production pathways by DR. The improved muscle quality may explain why grip strength is maintained and motor coordination and learning performance are improved by DR in Ercc1∆/- and Xpg-/- mice.CONCLUSIONS: This study provides fundamental supporting information on biomarkers and pathways related to the attenuation of sarcopenia, which might facilitate its diagnosis, prevention, and clinical therapy.PMID:38689513 | DOI:10.1002/jcsm.13433
Signaling ligand heterogeneities in the peduncle complex of the cephalopod mollusc Octopus bimaculoides
Brain Behav Evol. 2024 Apr 30. doi: 10.1159/000539128. Online ahead of print.ABSTRACTINTRODUCTION: The octopus peduncle complex is an agglomeration of neural structures with remarkably diverse functional roles. The complex rests on the optic tract, between the optic lobe and the central brain, and comprises the peduncle lobe proper, the olfactory lobe, and the optic gland. The peduncle lobe regulates visuomotor behaviors, the optic glands control sexual maturation and maternal death, and the olfactory lobe is thought to receive input from the olfactory organ. Recent transcriptomic and metabolomic studies have identified candidate peptide and steroid ligands in the Octopus bimaculoides optic gland.METHODS: With gene expression for these ligands and their biosynthetic enzymes, we show that optic gland neurochemistry extends beyond the traditional optic gland secretory tissue and into lobular territories.RESULTS: A key finding is that the classically defined olfactory lobe is itself a heterogenous territory and includes steroidogenic territories that overlap with cells expressing molluscan neuropeptides and the synthetic enzyme dopamine beta-hydroxylase.CONCLUSION: Our study reveals the neurochemical landscape of the octopus peduncle complex, highlighting the unexpected overlap between traditionally defined regions.PMID:38688255 | DOI:10.1159/000539128
Metabolic responses of Euglena gracilis under photoheterotrophic and heterotrophic conditions
Protist. 2024 Apr 18;175(3):126035. doi: 10.1016/j.protis.2024.126035. Online ahead of print.ABSTRACTThe protist Euglena gracilis has various trophic modes including heterotrophy and photoheterotrophy. To investigate how cultivation mode influences metabolic regulation, the chemical composition of cellular metabolites of Euglena gracilis grown under heterotrophic and photoheterotrophic conditions was monitored from the early exponential phase to the mid-stationary phase using two different techniques, i.e, nuclear magnetic resonance (NMR) spectroscopy and high-resolution mass spectrometry (HRMS). The combined metabolomics approach allowed an in-depth understanding of the mechanism of photoheterotrophic and heterotrophic growth for biomolecule production. Heterotrophic conditions promoted the production of polar amino and oxygenated compounds such as proteins and polyphenol compounds, especially at the end of the exponential phase while photoheterotrophic cells enhanced the production of organoheterocyclic compounds, carbohydrates, and alkaloids.PMID:38688055 | DOI:10.1016/j.protis.2024.126035
The application of omics technologies for understanding tropical plants-based bioactive compounds in ruminants: a review
J Anim Sci Biotechnol. 2024 May 1;15(1):58. doi: 10.1186/s40104-024-01017-4.ABSTRACTFinding out how diet impacts health and metabolism while concentrating on the functional qualities and bioactive components of food is the crucial scientific objective of nutritional research. The complex relationship between metabolism and nutrition could be investigated with cutting-edge "omics" and bioinformatics techniques. This review paper provides an overview of the use of omics technologies in nutritional research, with a particular emphasis on the new applications of transcriptomics, proteomics, metabolomics, and genomes in functional and biological activity research on ruminant livestock and products in the tropical regions. A wealth of knowledge has been uncovered regarding the regulation and use of numerous physiological and pathological processes by gene, mRNA, protein, and metabolite expressions under various physiological situations and guidelines. In particular, the components of meat and milk were assessed using omics research utilizing the various methods of transcriptomics, proteomics, metabolomics, and genomes. The goal of this review is to use omics technologies-which have been steadily gaining popularity as technological tools-to develop new nutritional, genetic, and leadership strategies to improve animal products and their quality control. We also present an overview of the new applications of omics technologies in cattle production and employ nutriomics and foodomics technologies to investigate the microbes in the rumen ecology. Thus, the application of state-of-the-art omics technology may aid in our understanding of how species and/or breeds adapt, and the sustainability of tropical animal production, in the long run, is becoming increasingly important as a means of mitigating the consequences of climate change.PMID:38689368 | DOI:10.1186/s40104-024-01017-4
Anticancer properties and metabolomic profiling of Shorea roxburghii extracts toward gastrointestinal cancer cell lines
BMC Complement Med Ther. 2024 Apr 30;24(1):178. doi: 10.1186/s12906-024-04479-1.ABSTRACTBACKGROUND: Gastrointestinal cancer (GIC) ranks as the highest cause of cancer-related deaths globally. GIC patients are often diagnosed at advanced stages, limiting effective treatment options. Chemotherapy, the common GIC recommendation, has significant disadvantages such as toxicity and adverse effects. Natural products contain substances with diverse pharmacological characteristics that promise for use in cancer therapeutics. In this study, the flower of renowned Asian medicinal plant, Shorea roxburghii was collected and extracted to investigate its phytochemical contents, antioxidant, and anticancer properties on GIC cells.METHODS: The phytochemical contents of Shorea roxburghii extract were assessed using suitable methods. Phenolic content was determined through the Folin-Ciocalteu method, while flavonoids were quantified using the aluminum chloride (AlCl3) method. Antioxidant activity was evaluated using the FRAP and DPPH assays. Cytotoxicity was assessed in GIC cell lines via the MTT assay. Additionally, intracellular ROS levels and apoptosis were examined through flow cytometry techniques. The correlation between GIC cell viability and phytochemicals, 1H-NMR analysis was conducted.RESULTS: Among the four different solvent extracts, ethyl acetate extract had the highest phenolic and flavonoid contents. Water extract exhibited the strongest reducing power and DPPH scavenging activity following by ethyl acetate. Interestingly, ethyl acetate extract demonstrated the highest inhibitory activity against three GIC cell lines (KKU-213B, HepG2, AGS) with IC50 values of 91.60 µg/ml, 39.38 µg/ml, and 35.59 µg/ml, while showing less toxicity to normal fibroblast cells. Ethyl acetate extract induced reactive oxygen species and apoptosis in GIC cell lines by downregulating anti-apoptotic protein Bcl-2. Metabolic profiling-based screening revealed a positive association between reduced GIC cell viability and phytochemicals like cinnamic acid and its derivatives, ferulic acid and coumaric acid.CONCLUSIONS: This study highlights the potential of natural compounds in Shorea roxburghii in the development of more effective and safer anticancer agents as options for GIC as well as shedding light on new avenues for cancer treatment.PMID:38689275 | DOI:10.1186/s12906-024-04479-1
Social inequalities in pregnancy metabolic profile: findings from the multi-ethnic Born in Bradford cohort study
BMC Pregnancy Childbirth. 2024 Apr 30;24(1):333. doi: 10.1186/s12884-024-06538-4.ABSTRACTBACKGROUND: Lower socioeconomic position (SEP) associates with adverse pregnancy and perinatal outcomes and with less favourable metabolic profile in nonpregnant adults. Socioeconomic differences in pregnancy metabolic profile are unknown. We investigated association between a composite measure of SEP and pregnancy metabolic profile in White European (WE) and South Asian (SA) women.METHODS: We included 3,905 WE and 4,404 SA pregnant women from a population-based UK cohort. Latent class analysis was applied to nineteen individual, household, and area-based SEP indicators (collected by questionnaires or linkage to residential address) to derive a composite SEP latent variable. Targeted nuclear magnetic resonance spectroscopy was used to determine 148 metabolic traits from mid-pregnancy serum samples. Associations between SEP and metabolic traits were examined using linear regressions adjusted for gestational age and weighted by latent class probabilities.RESULTS: Five SEP sub-groups were identified and labelled 'Highest SEP' (48% WE and 52% SA), 'High-Medium SEP' (77% and 23%), 'Medium SEP' (56% and 44%) 'Low-Medium SEP' (21% and 79%), and 'Lowest SEP' (52% and 48%). Lower SEP was associated with more adverse levels of 113 metabolic traits, including lower high-density lipoprotein (HDL) and higher triglycerides and very low-density lipoprotein (VLDL) traits. For example, mean standardized difference (95%CI) in concentration of small VLDL particles (vs. Highest SEP) was 0.12 standard deviation (SD) units (0.05 to 0.20) for 'Medium SEP' and 0.25SD (0.18 to 0.32) for 'Lowest SEP'. There was statistical evidence of ethnic differences in associations of SEP with 31 traits, primarily characterised by stronger associations in WE women e.g., mean difference in HDL cholesterol in WE and SA women respectively (vs. Highest-SEP) was -0.30SD (-0.41 to -0.20) and -0.16SD (-0.27 to -0.05) for 'Medium SEP', and -0.62SD (-0.72 to -0.52) and -0.29SD (-0.40 to -0.20) for 'Lowest SEP'.CONCLUSIONS: We found widespread socioeconomic differences in metabolic traits in pregnant WE and SA women residing in the UK. Further research is needed to understand whether the socioeconomic differences we observe here reflect pre-conception differences or differences in the metabolic pregnancy response. If replicated, it would be important to explore if these differences contribute to socioeconomic differences in pregnancy outcomes.PMID:38689215 | DOI:10.1186/s12884-024-06538-4
Comparison of reversed-phase, hydrophilic interaction, and porous graphitic carbon chromatography columns for an untargeted toxicometabolomics study in pooled human liver microsomes, rat urine, and rat plasma
Metabolomics. 2024 Apr 30;20(3):49. doi: 10.1007/s11306-024-02115-0.ABSTRACTINTRODUCTION: Untargeted metabolomics studies are expected to cover a wide range of compound classes with high chemical diversity and complexity. Thus, optimizing (pre-)analytical parameters such as the analytical liquid chromatography (LC) column is crucial and the selection of the column depends primarily on the study purpose.OBJECTIVES: The current investigation aimed to compare six different analytical columns. First, by comparing the chromatographic resolution of selected compounds. Second, on the outcome of an untargeted toxicometabolomics study using pooled human liver microsomes (pHLM), rat plasma, and rat urine as matrices.METHODS: Separation and analysis were performed using three different reversed-phase (Phenyl-Hexyl, BEH C18, and Gold C18), two hydrophilic interaction chromatography (HILIC) (ammonium-sulfonic acid and sulfobetaine), and one porous graphitic carbon (PGC) columns coupled to high-resolution mass spectrometry (HRMS). Their impact was evaluated based on the column performance and the size of feature count, amongst others.RESULTS: All three reversed-phase columns showed a similar performance, whereas the PGC column was superior to both HILIC columns at least for polar compounds. Comparing the size of feature count across all datasets, most features were detected using the Phenyl-Hexyl or sulfobetaine column. Considering the matrices, most significant features were detected in urine and pHLM after using the sulfobetaine and in plasma after using the ammonium-sulfonic acid column.CONCLUSION: The results underline that the outcome of this untargeted toxicometabolomic study LC-HRMS metabolomic study was highly influenced by the analytical column, with the Phenyl-Hexyl or sulfobetaine column being the most suitable. However, column selection may also depend on the investigated compounds as well as on the investigated matrix.PMID:38689195 | DOI:10.1007/s11306-024-02115-0
The current use of proteomics and metabolomics in glomerulonephritis: a systematic literature review
J Nephrol. 2024 Apr 30. doi: 10.1007/s40620-024-01923-w. Online ahead of print.ABSTRACTBACKGROUND: Glomerulonephritis inherently leads to the development of chronic kidney disease. It is the second most common diagnosis in patients requiring renal replacement therapy in the United Kingdom. Metabolomics and proteomics can characterise, identify and quantify an individual's protein and metabolite make-up. These techniques have been optimised and can be performed on samples including kidney tissue, blood and urine. Utilising omic techniques in nephrology can uncover disease pathophysiology and transform the diagnostics and treatment options for glomerulonephritis.OBJECTIVES: To evaluate the utility of metabolomics and proteomics using mass spectrometry and nuclear magnetic resonance in glomerulonephritis.METHODS: The systematic review was registered on PROSPERO (CRD42023442092). Standard and extensive Cochrane search methods were used. The latest search date was March 2023. Participants were of any age with a histological diagnosis of glomerulonephritis. Descriptive analysis was performed, and data presented in tabular form. An area under the curve or p-value was presented for potential biomarkers discovered.RESULTS: Twenty-seven studies were included (metabolomics (n = 9)), and (proteomics (n = 18)) with 1818 participants. The samples analysed were urine (n = 19) blood (n = 4) and biopsy (n = 6). The typical outcome themes were potential biomarkers, disease phenotype, risk of progression and treatment response.CONCLUSION: This review shows the potential of metabolomic and proteomic analysis to discover new disease biomarkers that may influence diagnostics and disease management. Further larger-scale research is required to establish the validity of the study outcomes, including the several proposed biomarkers.PMID:38689160 | DOI:10.1007/s40620-024-01923-w
Inhibition of mammalian mtDNA transcription acts paradoxically to reverse diet-induced hepatosteatosis and obesity
Nat Metab. 2024 Apr 30. doi: 10.1038/s42255-024-01038-3. Online ahead of print.ABSTRACTThe oxidative phosphorylation system1 in mammalian mitochondria plays a key role in transducing energy from ingested nutrients2. Mitochondrial metabolism is dynamic and can be reprogrammed to support both catabolic and anabolic reactions, depending on physiological demands or disease states. Rewiring of mitochondrial metabolism is intricately linked to metabolic diseases and promotes tumour growth3-5. Here, we demonstrate that oral treatment with an inhibitor of mitochondrial transcription (IMT)6 shifts whole-animal metabolism towards fatty acid oxidation, which, in turn, leads to rapid normalization of body weight, reversal of hepatosteatosis and restoration of normal glucose tolerance in male mice on a high-fat diet. Paradoxically, the IMT treatment causes a severe reduction of oxidative phosphorylation capacity concomitant with marked upregulation of fatty acid oxidation in the liver, as determined by proteomics and metabolomics analyses. The IMT treatment leads to a marked reduction of complex I, the main dehydrogenase feeding electrons into the ubiquinone (Q) pool, whereas the levels of electron transfer flavoprotein dehydrogenase and other dehydrogenases connected to the Q pool are increased. This rewiring of metabolism caused by reduced mtDNA expression in the liver provides a principle for drug treatment of obesity and obesity-related pathology.PMID:38689023 | DOI:10.1038/s42255-024-01038-3