Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

Dietary Acculturation Is Associated With Altered Gut Microbiome, Circulating Metabolites, and Cardiovascular Disease Risk in US Hispanics and Latinos: Results From HCHS/SOL

Mon, 15/07/2024 - 12:00
Circulation. 2024 Jul 16;150(3):215-229. doi: 10.1161/CIRCULATIONAHA.124.069824. Epub 2024 Jun 19.ABSTRACTBACKGROUND: Dietary acculturation, or adoption of dominant culture diet by migrant groups, influences human health. We aimed to examine dietary acculturation and its relationships with cardiovascular disease (CVD), gut microbiota, and blood metabolites among US Hispanic and Latino adults.METHODS: In the HCHS/SOL (Hispanic Community Health Study/Study of Latinos), US exposure was defined by years in the United States (50 states and Washington, DC) and US nativity. A dietary acculturation pattern was derived from 14 172 participants with two 24-hour dietary recalls at baseline (2008-2011) using least absolute shrinkage and selection operator regression, with food groups as predictors of US exposure. We evaluated associations of dietary acculturation with incident CVD across ≈7 years of follow-up (n=211/14 172 cases/total) and gut microbiota (n=2349; visit 2, 2014 to 2017). Serum metabolites associated with both dietary acculturation-related gut microbiota (n=694) and incident CVD (n=108/5256 cases/total) were used as proxy measures to assess the association of diet-related gut microbiome with incident CVD.RESULTS: We identified an empirical US-oriented dietary acculturation score that increased with US exposure. Higher dietary acculturation score was associated with higher risk of incident CVD (hazard ratio per SD, 1.33 [95% CI, 1.13-1.57]), adjusted for sociodemographic, lifestyle, and clinical factors. Sixty-nine microbial species (17 enriched from diverse species, 52 depleted mainly from fiber-utilizing Clostridia and Prevotella species) were associated with dietary acculturation, driven by lower intakes of whole grains, beans, and fruits and higher intakes of refined grains. Twenty-five metabolites, involved predominantly in fatty acid and glycerophospholipid metabolism (eg, branched-chain 14:0 dicarboxylic acid** and glycerophosphoethanolamine), were associated with both diet acculturation-related gut microbiota and incident CVD. Proxy association analysis based on these metabolites suggested a positive relationship between diet acculturation-related microbiome and risk of CVD (r=0.70, P<0.001).CONCLUSIONS: Among US Hispanic and Latino adults, greater dietary acculturation was associated with elevated CVD risk, possibly through alterations in gut microbiota and related metabolites. Diet and microbiota-targeted interventions may offer opportunities to mitigate CVD burdens of dietary acculturation.PMID:39008559 | DOI:10.1161/CIRCULATIONAHA.124.069824

Macropinocytosis inhibits alkaliptosis in pancreatic cancer cells through fatty acid uptake

Mon, 15/07/2024 - 12:00
Carcinogenesis. 2024 Jul 15:bgae045. doi: 10.1093/carcin/bgae045. Online ahead of print.ABSTRACTAlkaliptosis, a form of regulated cell death, is characterized by lysosomal dysfunction and intracellular pH alkalinization. The pharmacological induction of alkaliptosis using the small molecule compound JTC801 has emerged as a promising anticancer strategy in various types of cancers, particularly pancreatic ductal adenocarcinoma (PDAC). In this study, we investigate a novel mechanism by which macropinocytosis, an endocytic process involving the uptake of extracellular material, promotes resistance to alkaliptosis in human PDAC cells. Through lipid metabolomics analysis and functional studies, we demonstrate that the inhibition of alkaliptosis by fatty acids, such as oleic acid, is not dependent on endogenous synthetic pathways but rather on exogenous uptake facilitated by macropinocytosis. Consequently, targeting macropinocytosis through pharmacological approaches (e.g., using EIPA or EHoP-016) or genetic interventions (e.g., RAC1 knockdown) effectively enhances JTC801-induced alkaliptosis in human PDAC cells. These findings provide compelling evidence that the modulation of macropinocytosis can increase the sensitivity of cancer cells to alkaliptosis inducers.PMID:39008332 | DOI:10.1093/carcin/bgae045

Methods for Cultivation of Bacteroides thetaiotaomicron and Analysis of Heme Metabolism by Mass Spectrometry and Spectroscopic Approaches

Mon, 15/07/2024 - 12:00
Methods Mol Biol. 2024;2839:113-130. doi: 10.1007/978-1-0716-4043-2_7.ABSTRACTTraditional studies of cellular metabolism have relied on the use of radioisotopes. These have clear disadvantages associated with safety and waste generation. Furthermore, detection of the labeled species by scintillation counting provides only a quantification of its presence or absence. The use of stable isotopes, by contrast, allows the application of powerful, orthogonal spectroscopic approaches such as nuclear magnetic resonance spectroscopy (NMR) and various mass spectrometric methods. Using stable isotope labeling to study heme metabolism requires integrating methods for (a) generating the heme in labeled forms, (b) cultivating and quantifying the organism of choice in chemically defined media, to which labeled compounds can be added, (c) recovering cellular components and/or spent growth media, and (d) analyzing these materials for the labeled species using spectroscopic and mass spectrometric methods. These methods are summarized here in the context of Bacteroides thetaiotaomicron, a generally nonpathogenic anaerobe and heme auxotroph.PMID:39008251 | DOI:10.1007/978-1-0716-4043-2_7

Exploiting Differential Signal Filtering (DSF) and Image Structure Filtering (ISF) Methods for Untargeted Mass Spectrometry Imaging of Bacterial Metabolites

Mon, 15/07/2024 - 12:00
J Am Soc Mass Spectrom. 2024 Jul 15. doi: 10.1021/jasms.4c00129. Online ahead of print.ABSTRACTMatrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) is a label-free technique, producing images where pixels contain mass spectra. The technique allows the visualization of the spatial distribution of (bio)molecules from metabolites to proteins, on surfaces such as tissues sections or bacteria culture media. One particularly exciting example of MALDI-MSI use rests on its potential to localize ionized compounds produced during microbial interactions and chemical communication, offering a molecular snapshot of metabolomes at a given time. The huge size and the complexity of generated MSI data make the processing of the data challenging, which requires the use of computational methods. Despite recent advances, currently available commercial software relies mainly on statistical tools to identify patterns, similarities, and differences within data sets. However, grouping m/z values unique to a given data set according to microbiological contexts, such as coculture experiments, still requires tedious manual analysis. Here we propose a nontargeted method exploiting the differential signals between negative controls and tested experimental conditions, i.e., differential signal filtering (DSF), and a scoring of the ion images using image structure filtering (ISF) coupled with a fold change score between the controls and the conditions of interest. These methods were first applied to coculture experiments involving Escherichia coli and Streptomyces coelicolor, revealing specific MS signals during bacterial interaction. Two case studies were also investigated: (i) cellobiose-mediated induction for the pathogenicity of Streptomyces scabiei, the causative agent of common scab on root and tuber crops, and (ii) iron-repressed production of siderophores of S. scabiei. This report proposes guidelines for MALDI-MSI data treatment applied in the case of microbiology contexts, with enhanced ion peak annotation in specific culture conditions. The strengths and weaknesses of the methods are discussed.PMID:39007645 | DOI:10.1021/jasms.4c00129

DeepIDA-GRU: a deep learning pipeline for integrative discriminant analysis of cross-sectional and longitudinal multiview data with applications to inflammatory bowel disease classification

Mon, 15/07/2024 - 12:00
Brief Bioinform. 2024 May 23;25(4):bbae339. doi: 10.1093/bib/bbae339.ABSTRACTBiomedical research now commonly integrates diverse data types or views from the same individuals to better understand the pathobiology of complex diseases, but the challenge lies in meaningfully integrating these diverse views. Existing methods often require the same type of data from all views (cross-sectional data only or longitudinal data only) or do not consider any class outcome in the integration method, which presents limitations. To overcome these limitations, we have developed a pipeline that harnesses the power of statistical and deep learning methods to integrate cross-sectional and longitudinal data from multiple sources. In addition, it identifies key variables that contribute to the association between views and the separation between classes, providing deeper biological insights. This pipeline includes variable selection/ranking using linear and nonlinear methods, feature extraction using functional principal component analysis and Euler characteristics, and joint integration and classification using dense feed-forward networks for cross-sectional data and recurrent neural networks for longitudinal data. We applied this pipeline to cross-sectional and longitudinal multiomics data (metagenomics, transcriptomics and metabolomics) from an inflammatory bowel disease (IBD) study and identified microbial pathways, metabolites and genes that discriminate by IBD status, providing information on the etiology of IBD. We conducted simulations to compare the two feature extraction methods.PMID:39007595 | DOI:10.1093/bib/bbae339

Modifying Levels of Maternal Dietary Folic Acid or Choline to Study the Impact of Deficiencies on Offspring Health Outcomes

Mon, 15/07/2024 - 12:00
J Vis Exp. 2024 Jun 28;(208). doi: 10.3791/66827.ABSTRACTMaternal nutrition during pregnancy and lactation plays an important role in the neurodevelopment of offspring. One-carbon (1C) metabolism, which centers around folic acid and choline, as well as other B vitamins, plays a key role during the closure of the neural tube of the developing fetus. However, the impact of these maternal nutritional deficiencies during pregnancy on offspring health outcomes after birth remains relatively undefined. Furthermore, maternal dietary deficiencies in folic acid or choline may impact other health outcomes in offspring - making this a valuable model. This protocol aims to outline the procedure for inducing a deficiency in 1C metabolism in female mice through dietary modifications. Females are placed on diets at weaning, up to 2 months of age, for 4-6 weeks prior to mating and remain on diet throughout pregnancy and lactation. Offspring from these females can be evaluated for health outcomes. Females can be used multiple times to generate offspring, and tissues from females can be collected to measure for 1C metabolite measurements. This protocol provides an overview of how to induce maternal dietary deficiencies in folic acid or choline to study offspring health outcomes.PMID:39007568 | DOI:10.3791/66827

Metabolomic changes in Cryptocaryon irritans from Larimichthys crocea after exposure to copper plate

Mon, 15/07/2024 - 12:00
Front Cell Infect Microbiol. 2024 Jun 28;14:1424669. doi: 10.3389/fcimb.2024.1424669. eCollection 2024.ABSTRACTCryptocaryon irritans is a highly detrimental parasite in mariculture, causing significant economic losses to the aquaculture industry of Larimichthys crocea. In recent years, copper and copper alloy materials have been used to kill parasites. In this study, the effect of copper plates on the tomont period of C. irritans was explored. The findings indicated that copper plates effectively eradicated tomonts, resulting in a hatching rate of 0. The metabolomic analysis revealed that a total of 2,663 differentially expressed metabolites (1,032 up-regulated and 1,631 down-regulated) were screened in the positive ion mode, and 2,199 differentially expressed metabolites (840 up-regulated and 1,359 down-regulated) were screened in the negative ion mode. L-arginine and L-aspartic acid could be used as potential biomarkers. Copper plate treatment affected 25 metabolic pathways in the tomont, most notably influencing histidine metabolism, retinol metabolism, the biosynthesis of phenylalanine, tyrosine, and tryptophan, as well as arginine and proline metabolism. It was shown that high concentrations of copper ions caused a certain degree of disruption to the metabolome of tomonts in C. irritans, thereby impacting their metabolic processes. Consequently, this disturbance ultimately leads to the rapid demise of tomonts upon exposure to copper plates. The metabolomic changes observed in this study elucidate the lethal impact of copper on C. irritans tomonts, providing valuable reference data for the prevention and control of C. irritans in aquaculture.PMID:39006747 | PMC:PMC11239337 | DOI:10.3389/fcimb.2024.1424669

Interpretation of the effects of rumen acidosis on the gut microbiota and serum metabolites in calves based on 16S rDNA sequencing and non-target metabolomics

Mon, 15/07/2024 - 12:00
Front Cell Infect Microbiol. 2024 Jun 28;14:1427763. doi: 10.3389/fcimb.2024.1427763. eCollection 2024.ABSTRACTINTRODUCTION: Rumen acidosis is one of the most common diseases in beef cattle. It severely affects the normal development of calves and poses a significant threat to the farming industry. However, the influence of rumen acidosis on the gut microbiota and serum metabolites of calves is currently unclear.OBJECTIVE: The aim of this study is to investigate the changes in the gut microbiota and serum metabolites in calves after rumen acidosis and analyse the correlation.METHODS: Eight calves were selected as the rumen acidosis group, and eight health calves were selected as the healthy group. The faecal gut microbiota and serum metabolites of calves were detected respectively using 16S rDNA high-throughput sequencing and non-target metabolomics. The correlation between gut microbiota and serum metabolites was analyzed by Spearman correlation analysis.RESULTS: Differential analysis of the diversity and composition of gut microbiota between eight male healthy (Health) and eight male rumen acidosis (Disease) calves revealed that rumen acidosis increased the abundance of the gut microbiota in calves. At the phylum level, compared to the Healthy group, the relative abundance of Proteobacteria in the Disease group significantly decreased (P<0.05), while the relative abundance of Desulfobacterota significantly increased in the Disease group (P<0.05). At the genus level, compared to the Disease group, the relative abundance of Alloprevotella, Muribaculaceae, Succinivibrio, Prevotella, Agathobacter and Parabacteroides significantly increased in the Healthy group (P<0.05), while the relative abundance of Christensenellaceae_R-7 and Monoglobus significantly decreased in the Healthy group (P<0.05). Differential analysis results showed the Healthy group had 23 genera with higher abundance, while the Disease group had 47 genera with higher abundance. Serum metabolomics results revealed the differential metabolites associated with rumen acidosis, including nicotinamide, niacin, L-glutamic acid and carnosine, were mainly enriched in the nicotinate and nicotinamide pathway and the histidine pathway.CONCLUSION: The occurrence of rumen acidosis can induce changes in the gut microbiota of calves, with a significant increase of the Christensenellaceae_R-7 genus and a significant decrease of Prevotella and Succinivibrio genera. In addition, the occurrence of rumen acidosis can also induce changes in serum metabolites including niacin, niacinamide, L-glutamine, and carnosine, which may serve as the diagnostic biomarkers of rumen acidosis of calves.PMID:39006744 | PMC:PMC11239342 | DOI:10.3389/fcimb.2024.1427763

PFHpA alters lipid metabolism and increases the risk of metabolic dysfunction-associated steatotic liver disease in youth-a translational research framework

Mon, 15/07/2024 - 12:00
medRxiv [Preprint]. 2024 Jul 3:2024.07.01.24309775. doi: 10.1101/2024.07.01.24309775.ABSTRACTTo address the growing epidemic of liver disease, particularly in pediatric populations, it is crucial to identify modifiable risk factors for the development and progression of metabolic dysfunction-associated steatotic liver disease (MASLD). Per- and polyfluoroalkyl substances (PFAS) are persistent ubiquitous chemicals and have emerged as potential risk factors for liver damage. However, their impact on the etiology and severity of MASLD remains largely unexplored in humans. This study aims to bridge the gap between human and in vitro studies to understand how exposure to perfluoroheptanoic acid (PFHpA), one of the emerging PFAS replacements which accumulates in high concentrations in the liver, contributes to MASLD risk and progression. First, we showed that PFHpA plasma concentrations were significantly associated with increased risk of MASLD in obese adolescents. Further, we examined the impact of PFHpA on hepatic metabolism using 3D human liver spheroids and single-cell transcriptomics to identify major hepatic pathways affected by PFHpA. Next, we integrated the in vivo and in vitro multi-omics datasets with a novel statistical approach which identified signatures of proteins and metabolites associated with MASLD development triggered by PFHpA exposure. In addition to characterizing the contribution of PFHpA to MASLD progression, our study provides a novel strategy to identify individuals at high risk of PFHpA-induced MASLD and develop early intervention strategies. Notably, our analysis revealed that the proteomic signature exhibited a stronger correlation between both PFHpA exposure and MASLD risk compared to the metabolomic signature. While establishing a clear connection between PFHpA exposure and MASLD progression in humans, our study delved into the molecular mechanisms through which PFHpA disrupts liver metabolism. Our in vitro findings revealed that PFHpA primarily impacts lipid metabolism, leading to a notable increase of lipid accumulation in human hepatocytes after PFHpA exposure. Among the pathways involved in lipid metabolism in hepatocytes, regulation of lipid metabolism by PPAR-a showed a remarkable activation. Moreover, the translational research framework we developed by integrating human and in vitro data provided us biomarkers to identify individuals at a high risk of MASLD due to PFHpA exposure. Our framework can inform policies on PFAS-induced liver disease and identify potential targets for prevention and treatment strategies.PMID:39006440 | PMC:PMC11245066 | DOI:10.1101/2024.07.01.24309775

Huangtu decoction alleviates chronic diarrhea of spleen-yang deficiency in mice by altering host metabolome and intestinal microbiota composition

Mon, 15/07/2024 - 12:00
Am J Transl Res. 2024 Jun 15;16(6):2248-2262. doi: 10.62347/IHNX2675. eCollection 2024.ABSTRACTBACKGROUND: Huangtu decoction (HTD), a traditional Chinese medicine recipe, warms the spleen, nourishes the blood, and stops bleeding. It has been used to treat dysentery, gastrointestinal bleeding, diarrhea, and other symptoms caused by spleen-yang deficiency for more than 2,000 years in China. However, the mechanism underlying the treatment of chronic diarrhea due to spleen-yang deficiency (CDSD) using HTD remains unclear.AIMS: This study investigated whether HTD could mediate intestinal flora and serum metabolites to improve CDSD symptoms using a mouse model.METHODS: A CDSD mouse model induced by senna and an abnormal diet was constructed. The regulatory effects of HTD at 12.5, 25.0, and 50.0 g/kg/d on CDSD mice were assessed by measuring their bodyweight, diarrhea rate, loose stool rate, and histopathology. Changes in the intestinal flora of CDSD mice were analyzed by 16S rRNA gene sequencing. Untargeted serum metabolomic analysis was performed using ultra-high performance liquid chromatography-mass spectrometry/mass spectrometry (UHPLC-MS/MS).RESULTS: HTD had a modulating effect on CDSD by reducing the weight loss, diarrhea rate, loose stool rate, and pathologic damage. Intestinal flora analysis showed that HTD altered the community composition by decreasing the abundance of Allobaculum, Lactobacillus, and Ruminococcus. Serum metabolomics revealed that ascorbate and aldarate metabolism, aldosterone synthesis and secretion, platelet activation, hypoxia-inducible factor 1 signaling pathway, inositol phosphate metabolism, phosphatidylinositol signaling, galactose metabolism, and alpha-linolenic acid metabolism were modulated after HTD treatment.CONCLUSION: HTD may alleviate CDSD symptoms by reducing weight loss, diarrhea rate, loose stool rate, and pathologic damage caused by modeling and regulating intestinal flora and serum metabolites in CDSD mice.PMID:39006272 | PMC:PMC11236646 | DOI:10.62347/IHNX2675

Integrative analysis of the transcriptome and metabolome provides insights into polysaccharide accumulation in Polygonatum odoratum (Mill.) Druce rhizome

Mon, 15/07/2024 - 12:00
PeerJ. 2024 Jul 9;12:e17699. doi: 10.7717/peerj.17699. eCollection 2024.ABSTRACTBACKGROUND: Polygonatum odoratum (Mill.) Druce is a traditional Chinese herb that is widely cultivated in China. Polysaccharides are the major bioactive components in rhizome of P. odoratum and have many important biological functions.METHODS: To better understand the regulatory mechanisms of polysaccharide accumulation in P. odoratum rhizomes, the rhizomes of two P. odoratum cultivars 'Y10' and 'Y11' with distinct differences in polysaccharide content were used for transcriptome and metabolome analyses, and the differentially expressed genes (DEGs) and differentially accumulated metabolites (DAMs) were identified.RESULTS: A total of 14,194 differentially expressed genes (DEGs) were identified, of which 6,689 DEGs were down-regulated in 'Y10' compared with those in 'Y11'. KEGG enrichment analysis of the down-regulated DEGs revealed a significant enrichment of 'starch and sucrose metabolism', and 'amino sugar and nucleotide sugar metabolism'. Meanwhile, 80 differentially accumulated metabolites (DAMs) were detected, of which 52 were significantly up-regulated in 'Y11' compared to those in 'Y10'. The up-regulated DAMs were significantly enriched in 'tropane, piperidine and pyridine alkaloid biosynthesis', 'pentose phosphate pathway' and 'ABC transporters'. The integrated metabolomic and transcriptomic analysis have revealed that four DAMs, glucose, beta-D-fructose 6-phosphate, maltose and 3-beta-D-galactosyl-sn-glycerol were significantly enriched for polysaccharide accumulation, which may be regulated by 17 DEGs, including UTP-glucose-1-phosphate uridylyltransferase (UGP2), hexokinase (HK), sucrose synthase (SUS), and UDP-glucose 6-dehydrogenase (UGDH). Furthermore, 8 DEGs (sacA, HK, scrK, GPI) were identified as candidate genes for the accumulation of glucose and beta-D-fructose 6-phosphate in the proposed polysaccharide biosynthetic pathways, and these two metabolites were significantly associated with the expression levels of 13 transcription factors including C3H, FAR1, bHLH and ERF. This study provided comprehensive information on polysaccharide accumulation and laid the foundation for elucidating the molecular mechanisms of medicinal quality formation in P. odoratum rhizomes.PMID:39006032 | PMC:PMC11243984 | DOI:10.7717/peerj.17699

The metabolomics analysis of cecal contents elucidates significant metabolites involved in the therapeutic effects of total flavonoids derived from Sonchus arvensis L. in male C57BL/6 mice with ulcerative colitis

Mon, 15/07/2024 - 12:00
Heliyon. 2024 Jun 16;10(12):e32790. doi: 10.1016/j.heliyon.2024.e32790. eCollection 2024 Jun 30.ABSTRACTUlcerative colitis (UC), an inflammatory disease affecting the colon and rectal mucosa, is characterized by chronic and heterogeneous behavior of unknown origin. The primary cause of UC is chronic inflammation, which is closely linked to the development of colorectal cancer. Sonchus arvensis L. (SAL), a plant consumed worldwide for its nutritional and medicinal properties, holds significance in this context. In this study, we employed the total flavone in SAL as a treatment for male C57BL/6 mice with UC. The cecal contents metabolic profile of C57BL/6 mice in different groups, including UC (group ML; n = 5), UC treated with aspirin (group AN; n = 5), UC treated with the total flavone in SAL (group FE; n = 5), and healthy male C57BL/6 mice (group CL; n = 5), was examined using UHPLC-Triple-TOF-MS. Through the identification of variations in key metabolites associated with UC and the exploration of their underlying biological mechanisms, our understanding of the pathological processes underlying this condition has been enhanced. This study identified a total of seventy-three metabolites that have a significant impact on UC. Notably, the composition of total flavone in SAL, a medication used for UC treatment, differs from that of aspirin due to the presence of four distinct metabolites (13,14-Dihydro-15-keto-PGE2, Prostaglandin I2 (PGI2), (20R,22R)-20,22-dihydroxycholesterol, and PS (18:1(9Z)/0:0)). These metabolites possess unique characteristics that set them apart. Moreover, the study identified a total of eleven pathways that were significantly enriched in mice with UC, including Aminoacyl-tRNA biosynthesis, Valine, leucine and isoleucine biosynthesis, Linoleic acid metabolism, PPAR signaling pathway, mTOR signaling pathway, Valine, leucine and isoleucine degradation, Lysine degradation, VEGF signaling pathway, Melanogenesis, Endocrine and other factor-regulated calcium reabsorption, and Cocaine addiction. These findings contribute to a better understanding of the metabolic variations in UC following total flavonoids of SAL therapy and provide valuable insights for the treatment of UC.Keywords: Ulcerative colitis; Total flavonoids of Sonchus arvensis L.; Key metabolites; Metabonomics; Cecal contents of male C57BL/6 mice.PMID:39005925 | PMC:PMC11239596 | DOI:10.1016/j.heliyon.2024.e32790

Urine Metabolomics Reveals Overlapping Metabolic Associations Between Preeclampsia and Gestational Diabetes

Mon, 15/07/2024 - 12:00
Indian J Clin Biochem. 2024 Jul;39(3):356-364. doi: 10.1007/s12291-022-01103-2. Epub 2022 Dec 6.ABSTRACTPregnancy is associated with numerous metabolic adaptations to meet the demands of the growing foetus. These adaptations could be perturbed during pregnancy due to preeclampsia (PE) and gestational diabetes (GDM). As these two obstetric aliments show some overlapping pathophysiology and similar biochemical dysregulation, the present study was undertaken to compare urine metabolome of PE and GDM with normal pregnancy (NT) in all trimesters of gestation using nuclear magnetic resonance spectroscopy-based metabolomics analysis to ascertain and compare metabolome in the study groups. We observed overlapping metabolic perturbations in PE and GDM. Though a study with a small sample size, this is the first report which confirms significantly differential metabolites in urine of both PE and GDM. Dimethylglycine and oxoglutaric acid were decreased while benzoic acid was increased in both the cases in all trimesters. Alanine, aspartate and glutamate metabolism, aminoacyl-tRNA biosynthesis, citrate and butanoate metabolism were the most perturbed pathways in both PE and GDM across pregnancy. These pathways have an association with energy metabolism, glucose homeostasis, insulin sensitivity and oxidative stress which play an important role in the development and progression of PE and GDM. In conclusion, our study showed that urine metabolome could reflect metabolic associations between PE and GDM and also in the identification of biomolecules that could be used as potential biomarker(s) for early detection of the metabolic diseases in pregnancy.SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12291-022-01103-2.PMID:39005861 | PMC:PMC11239642 | DOI:10.1007/s12291-022-01103-2

Effects of slaughter weight on carcass characteristics, meat quality, and metabolomics profiling in the longissimus dorsi muscle of Tianfu finishing pigs

Mon, 15/07/2024 - 12:00
Front Vet Sci. 2024 Jun 28;11:1420634. doi: 10.3389/fvets.2024.1420634. eCollection 2024.ABSTRACTIn order to investigate the effect of slaughter weight (SW) on carcass characteristics and meat quality, we measured the carcass characteristics, meat quality, and amino acid metabolomics characteristics of longissimus dorsi (LD) muscle from Tianfu finishing (TF) pigs. Based on SW, 13 pigs were divided into three groups (100-kg group, 125-kg group, and 150-kg group with 3, 5, 5 pigs in each group, respectively). Raising SW to 125 kg or 150 kg increased average backfat thickness (P < 0.01) and intramuscular fat content (P < 0.01), and decreased shear force (P < 0.01). A total of 231 amino acid metabolome from three amino acid classes identified with metabolomics were analyzed, and 93 differentially expressed metabolites (DEMs) were identified (69 up-regulated DEMs and 24 down-regulated DEMs). The DEMs, including urea, 3-iodo-L-tyrosine, N-glycyl-L-leucine, and N, N-dimethylglycine with amino acid metabolism, were significantly induced (P < 0.01). KEGG pathway analysis showed that these DEMs were significantly enriched (P < 0.01) in 135 metabolism pathways, including pathways related to amino acid metabolism, such as arginine and proline metabolism, glycine, serine and threonine metabolism, alanine, aspartate and glutamate metabolism, tryptophan metabolism, and beta-alanine metabolism. Our research findings provided new insights into the impact of SW on amino acid distribution and theoretical support for genetic breeding of meat quality of TF pigs. However, raising SW to 125 kg, or more, decreased the carcass leanness of live TF pigs and had no benefits to pork quality attributes.PMID:39005725 | PMC:PMC11239573 | DOI:10.3389/fvets.2024.1420634

Citraconate promotes the malignant progression of colorectal cancer by inhibiting ferroptosis

Mon, 15/07/2024 - 12:00
Am J Cancer Res. 2024 Jun 15;14(6):2790-2804. doi: 10.62347/LWRS3363. eCollection 2024.ABSTRACTMetastasis is a principal factor in the poor prognosis of colorectal cancer. Recent studies have found microbial metabolites regulate colorectal cancer metastasis. By analyzing metabolomics data, we identified an essential fecal metabolite citraconate that potentially promotes colorectal cancer metastasis. Next, we tried to reveal its effect on colorectal cancer and the underlying mechanism. Firstly, the response of colorectal cancer cells (HCT116 and MC38 cells) to citraconate was assessed by Cell Counting Kit-8 assay, clonogenic assay, transwell migration and invasion assay. Moreover, we utilized an intra-splenic injection model to evaluate the effect of citraconate on colorectal cancer liver metastasis in vivo. Then molecular approaches were employed, including RNA sequencing, mass spectrometry-based metabolomics, western blot, quantitative real-time PCR, cell ferrous iron colorimetric assay and intracellular malondialdehyde measurement. In vitro, citraconate promotes the growth of colorectal cancer cells. In vivo, citraconate aggravated liver metastasis of colorectal cancer. Mechanistically, downstream genes of NRF2, NQO1, GCLC, and GCLM high expression induced by citraconate resulted in resistance to ferroptosis of colorectal cancer cells. In summary, citraconate promotes the malignant progression of colorectal cancer through NRF2-mediated ferroptosis resistance in colorectal cancer cells. Furthermore, our study indicates that fecal metabolite may be crucial in colorectal cancer development.PMID:39005662 | PMC:PMC11236773 | DOI:10.62347/LWRS3363

Glycodeoxycholic acid as alternative treatment in 3β-hydroxy-Δ5-C<sub>27</sub>-steroid-oxidoreductase: a case report

Mon, 15/07/2024 - 12:00
Front Pediatr. 2024 Jun 28;12:1418963. doi: 10.3389/fped.2024.1418963. eCollection 2024.ABSTRACTBACKGROUND: 3β-hydroxy-Δ5-C27-steroid-oxidoreductase (3β-HSD) deficiency is a bile acid synthesis disorder that leads to the absence of normal primary bile acids and the accumulation of abnormal bile acids. This results in cholestatic jaundice, fat-soluble vitamin deficiency, acholic or fatty stools and failure to thrive. Bile acid supplementation is used to treat 3β-HSD-deficiency and its symptoms.METHODS: This report details the case of a 28-year-old woman diagnosed with 3β-HSD-deficiency, who was treated with glycine-conjugated deoxycholic acid (gDCA).RESULTS: gDCA treatment successfully restored normal bile acid levels, improved body weight by reducing fat malabsorption, and was well-tolerated with no observed liver problems or side effects.CONCLUSIONS: As a potent FXR ligand, gDCA might exert its action through FXR activation leading to bile acid synthesis regulation.PMID:39005507 | PMC:PMC11239425 | DOI:10.3389/fped.2024.1418963

Joint exome and metabolome analysis in individuals with dyslexia: Evidence for associated dysregulations of olfactory perception and autoimmune functions

Mon, 15/07/2024 - 12:00
bioRxiv [Preprint]. 2024 Jul 2:2024.06.27.600448. doi: 10.1101/2024.06.27.600448.ABSTRACTDyslexia is a learning disability that negatively affects reading, writing, and spelling development at the word level in 5%-9% of children. The phenotype is variable and complex, involving several potential cognitive and physical concomitants such as sensory dysregulation and immunodeficiencies. The biological pathogenesis is not well-understood. Toward a better understanding of the biological drivers of dyslexia, we conducted the first joint exome and metabolome investigation in a pilot sample of 30 participants with dyslexia and 13 controls. In this analysis, eight metabolites of interest emerged (pyridoxine, kynurenic acid, citraconic acid, phosphocreatine, hippuric acid, xylitol, 2-deoxyuridine, and acetylcysteine). A metabolite-metabolite interaction analysis identified Krebs cycle intermediates that may be implicated in the development of dyslexia. Gene ontology analysis based on exome variants resulted in several pathways of interest, including the sensory perception of smell (olfactory) and immune system-related responses. In the joint exome and metabolite analysis, the olfactory transduction pathway emerged as the primary pathway of interest. Although the olfactory transduction and Krebs cycle pathways have not previously been described in dyslexia literature, these pathways have been implicated in other neurodevelopmental disorders including autism spectrum disorder and obsessive-compulsive disorder, suggesting the possibility of these pathways playing a role in dyslexia as well. Immune system response pathways, on the other hand, have been implicated in both dyslexia and other neurodevelopmental disorders.PMID:39005457 | PMC:PMC11244894 | DOI:10.1101/2024.06.27.600448

Ketomimetic Medium Promotes Metastatic Disposition and Chemoresistance in Breast Cancer Cells through Hypersialylation and Lipid Synthesis

Mon, 15/07/2024 - 12:00
bioRxiv [Preprint]. 2024 Jul 5:2024.07.03.601966. doi: 10.1101/2024.07.03.601966.ABSTRACTAlthough metastasis accounts for the vast majority of cancer-related fatalities, the triggers for the metastatic transformation of breast cancer (BC) cells remain unknown. Recent evidence suggests that a common feature of invasive and resistant cells could be their metabolic state. However, attempts to control metabolic state via nutrient intake, e.g., ketogenic or low carbohydrate diets, have shown inconsistent results with respect to improving chemotherapy efficacy and curbing metastasis. Aiming to decode the molecular mechanisms that alter cell phenotype upon nutrient alteration, we study how a ketomimetic (ketone body-rich, low glucose) medium affects Doxorubicin (DOX) susceptibility and invasive disposition of BC cells. We quantified glycocalyx sialylation and found an inverse correlation with DOX-induced cytotoxicity and DOX internalization. These measurements were coupled with single-cell metabolic imaging, bulk migration studies, and transcriptomic and metabolomic analyses to map the mechanisms involved in ketone body-driven BC cell metabolic maneuvering. Our findings revealed that a ketomimetic medium enhances chemoresistance and invasive disposition of BC cells via two main oncogenic pathways: hypersialylation and lipid accumulation. We propose that the crosstalk between these pathways leads to synthesis of the glycan precursor UDP-GlcNAc, which leads to advancement of a metastatic phenotype in BC cells under ketomimetic conditions.PMID:39005423 | PMC:PMC11244981 | DOI:10.1101/2024.07.03.601966

Metabolic Profiles of Encapsulated Chondrocytes Exposed to Short-Term Simulated Microgravity

Mon, 15/07/2024 - 12:00
bioRxiv [Preprint]. 2024 Jul 4:2024.07.01.601604. doi: 10.1101/2024.07.01.601604.ABSTRACTThe mechanism by which chondrocytes respond to reduced mechanical loading environments and the subsequent risk of developing osteoarthritis remains unclear. This is of particular concern for astronauts. In space the reduced joint loading forces during prolonged microgravity (10 -6 g ) exposure could lead to osteoarthritis (OA), compromising quality of life post-spaceflight. In this study, we encapsulated human chondrocytes in an agarose gel of similar stiffness to the pericellular matrix to mimic the cartilage microenvironment. We then exposed agarose-chondrocyte constructs to simulated microgravity (SM) using a rotating wall vessel (RWV) bioreactor to better assess the cartilage health risks associated with spaceflight. Global metabolomic profiling detected a total of 1205 metabolite features across all samples, with 497 significant metabolite features identified by ANOVA (FDR-corrected p-value < 0.05). Specific metabolic shifts detected in response to SM exposure resulted in clusters of co-regulated metabolites, as well as key metabolites identified by variable importance in projection scores. Microgravity-induced metabolic shifts in gel constructs and media were indicative of protein synthesis, energy metabolism, nucleotide metabolism, and oxidative catabolism. The microgravity associated-metabolic shifts were consistent with early osteoarthritic metabolomic profiles in human synovial fluid, which suggests that even short-term exposure to microgravity (or other reduced mechanical loading environments) may lead to the development of OA.PMID:39005264 | PMC:PMC11245029 | DOI:10.1101/2024.07.01.601604

Selection for early reproduction leads to accelerated aging and extensive metabolic remodeling in <em>Drosophila melanogaster</em> populations

Mon, 15/07/2024 - 12:00
bioRxiv [Preprint]. 2024 Jul 2:2024.06.28.601037. doi: 10.1101/2024.06.28.601037.ABSTRACTExperimental evolution studies that feature selection on life-history characters are a proven approach for studying the evolution of aging and variation in rates of senescence. Recently, the incorporation of genomic and transcriptomic approaches into this framework has led to the identification of hundreds of genes associated with different aging patterns. However, our understanding of the specific molecular mechanisms underlying these aging patterns remains limited. Here, we incorporated extensive metabolomic profiling into this framework to generate mechanistic insights into aging patterns in Drosophila melanogaster . Specifically, we characterized metabolomic change over time associated with accelerated aging in populations of D. melanogaster under selection for early reproduction compared to their controls. Using this data we: i) evaluated the evolutionary repeatability across the metabolome; ii) evaluated the value of the metabolome as a predictor of "biological age" in this system; and iii) identified specific metabolic pathways associated with accelerated aging. Generally, our findings suggest that the metabolome is a reliable predictor of age and senescence in populations that share a recent evolutionary history. Metabolomic analysis revealed that generations of selection for early reproduction resulted in highly repeatable alterations to the metabolome. Specifically, changes in carbohydrate, amino acid, and TCA cycle-related metabolite abundances over time point to metabolic remodeling that favors rapid early reproduction with long-term consequences for carbohydrate and protein utilization.PMID:39005259 | PMC:PMC11244849 | DOI:10.1101/2024.06.28.601037

Pages