PubMed
Fermented <em>Gastrodia elata</em> Bl. Alleviates Cognitive Deficits by Regulating Neurotransmitters and Gut Microbiota in D-Gal/AlCl<sub>3</sub>-Induced Alzheimer's Disease-like Mice
Foods. 2024 Jul 8;13(13):2154. doi: 10.3390/foods13132154.ABSTRACTAlzheimer's disease (AD) is a common neurological disease with recognition ability loss symptoms and a major contributor to dementia cases worldwide. Gastrodia elata Bl. (GE), a food of medicine-food homology, has been reported to have a mitigating effect on memory and learning ability decline. However, the effect of GE fermented by Lactobacillus plantarum, Acetobacter pasteurianus, and Saccharomyces (FGE) on alleviating cognitive deficits in AD was not studied. Mice were randomly divided into six groups, control, model, donepezil, low, medium, and high doses of FGE, and D-Galactose/Aluminum chloride (D-Gal/AlCl3) was used to establish an AD-like mouse model. The results indicated that FGE could improve the production of neurotransmitters and relieve oxidative stress damage in AD-like mice, which was evidenced by the declined levels of amyloid-β (Aβ), Tau, P-Tau, acetylcholinesterase (AchE), and malondialdehyde (MDA), and increased acetylcholine (Ach), choline acetyltransferase (ChAT), and superoxide dismutase (SOD) levels in brain tissue. Notably, FGE could enhance the richness of the gut microbiota, especially for beneficial bacteria such as Lachnospira and Lactobacillus. Non-target metabolomics results indicated that FGE could affect neurotransmitter levels by regulating amino acid metabolic pathways to improve AD symptoms. The FGE possessed an ameliorative effect on AD by regulating neurotransmitters, oxidative stress levels, and gut microbiota and could be considered a good candidate for ameliorating AD.PMID:38998659 | DOI:10.3390/foods13132154
Sulfated Polysaccharides from Sea Cucumber Cooking Liquid Prevents Obesity by Modulating Gut Microbiome, Transcriptome, and Metabolite Profiles in Mice Fed a High-Fat Diet
Foods. 2024 Jun 26;13(13):2017. doi: 10.3390/foods13132017.ABSTRACTWe aimed to explore the anti-obesity mechanism from the microbiome, metabolome, and transcriptome viewpoints, focusing on the sulfated polysaccharides found in the cooking liquid of Apostichopus japonicus (CLSPAJ) to explore the potential mediators of the anti-obesity effects in mice fed a high-fat diet (HFD). The mice treated with CLSPAJ showed a decrease in obesity and blood lipid levels. Gut microbiome dysbiosis caused by the HFD was reversed after CLSPAJ supplementation, along with increased levels of indole-3-ethanol, N-2-succinyl-L-glutamic acid 5-semialdehyde, and urocanic acid. These increases were positively related to the increased Akkermansia, Lactobacillus, Roseburia, and Phascolarctobacterium. Transcriptome analysis showed that B cell receptor signaling and cytochrome P450 xenobiotic metabolism were the main contributors to the improvement in obesity. Metabolome-transcriptome analysis revealed that CLSPAJ reversal of obesity was mainly due to amino acid metabolism. These findings suggest that CLSPAJ could be a valuable prebiotic preparation for preventing obesity-related diseases.PMID:38998524 | DOI:10.3390/foods13132017
Harnessing Bacillus amyloliquefaciens for Amazake Production: Comparison with Aspergillus oryzae Amazake for Metabolomic Characteristics, Microbial Diversity, and Sensory Profile
Foods. 2024 Jun 26;13(13):2012. doi: 10.3390/foods13132012.ABSTRACTAmazake is a traditional, sweet, non-alcoholic Japanese beverage typically produced through koji fermentation by the fungus Aspergillus oryzae. However, alternative microorganisms such as Bacillus amyloliquefaciens offer potential advantages and novel possibilities for producing similar fermented beverages. This study aimed to replicate the ancestral beverage of amazake by replacing A. oryzae (W-20) with B. amyloliquefaciens (NCIMB 12077) and comparing their fermentation processes and resulting products. Our results show that the production of amazake with B. amyloliquefaciens (ABA) is not only possible but also results in a beverage that is otherwise distinct from traditional amazake (AAO). Saccharification was achievable in ABA at higher temperatures than in AAO, albeit with lower reducing sugar and enzymatic activity values. Amino acids and organic acids were more abundant in AAO, with cysteine being uniquely present in AAO and shikimic acid only being present in ABA. The volatile aroma compound profiles differed between the two beverages, with AAO exhibiting a greater abundance of aldehydes, and ABA a greater abundance of ketones and alcohols. Interestingly, despite these compositional differences, the two beverages showed similar consumer panel acceptance rates. An analysis of their microbial communities revealed pronounced differences between the amazakes, as well as temporal changes in ABA but not in AAO. This study provides promising insights into harnessing the potential of B. amyloliquefaciens as the primary microorganism in the fermentation process of amazake-like beverages, marking an important advancement in the field of fermented low-alcohol beverage production, with possible applications in other fermented foods.PMID:38998518 | DOI:10.3390/foods13132012
Widely Targeted Metabolomics Provides New Insights into Nutritional Profiling and Reveals the Flavonoid Pathway of Pea (Pisum sativum L.)
Foods. 2024 Jun 21;13(13):1970. doi: 10.3390/foods13131970.ABSTRACTTo learn more about the nutritional composition and health benefits for human consumers of peas, we used a widely targeted metabolomics-based approach to reveal the metabolite components from three main varieties, and a total of 1095 metabolites were identified. A comparison of 487 differentially accumulated metabolites shared among three varieties of fresh and dried peas found most of the amino acids and derivatives were downregulated and most of the lipids and flavonoids were upregulated in dried peas. Furthermore, comparing the main nutrient profiles exclusively showed that there were few differences in free fatty acids, sugars, vitamins, and alkaloids between dried and fresh peas. Peas are especially enriched with B-group vitamins. Through detailed identification and classification, the flavonoid pathway of peas was revealed; a variety of glycosylated derivatives from kaempferol, quercetin, and luteolin were confirmed to be abundant in peas. It was also found that isoflavones are richer in peas than in many other plants, and putatively the isoflavone synthesis pathway originates from liquiritigenin and naringenin. Our study not only offers guidance for understanding the nutritional components of peas, but also provides the basis for healthy diet analysis of the edible value and health benefits of peas.PMID:38998476 | DOI:10.3390/foods13131970
Comparative (1)H NMR-Based Metabolomics of Traditional Landrace and Disease-Resistant Chili Peppers (Capsicum annuum L.)
Foods. 2024 Jun 21;13(13):1966. doi: 10.3390/foods13131966.ABSTRACTChili peppers (Capsicum annuum L.) are economically valuable crops belonging to the Solanaceae family and are popular worldwide because of their unique spiciness and flavor. In this study, differences in the metabolomes of landrace (Subicho) and disease-resistant pepper cultivars (Bulkala and Kaltanbaksa) widely grown in Korea are investigated using a 1H NMR-based metabolomics approach. Specific metabolites were abundant in the pericarp (GABA, fructose, and glutamine) and placenta (glucose, asparagine, arginine, and capsaicin), highlighting the distinct physiological and functional roles of these components. Both the pericarp and placenta of disease-resistant pepper cultivars contained higher levels of sucrose and hexoses and lower levels of alanine, proline, and threonine than the traditional landrace cultivar. These metabolic differences are linked to enhanced stress tolerance and the activation of defense pathways, imbuing these cultivars with improved resistance characteristics. The present study provides fundamental insights into the metabolic basis of disease resistance in chili peppers, emphasizing the importance of multi-resistant varieties to ensure sustainable agriculture and food security. These resistant varieties ensure a stable supply of high-quality peppers, contributing to safer and more sustainable food production systems.PMID:38998472 | DOI:10.3390/foods13131966
Untargeted Metabolomic Analysis Reveals Plasma Differences between Mares with Endometritis and Healthy Ones
Animals (Basel). 2024 Jun 29;14(13):1933. doi: 10.3390/ani14131933.ABSTRACTThe aim of this study was to explore alterations in plasma metabolites among mares afflicted with endometritis. Mares were divided into two groups, namely, the equine endometritis group (n = 8) and the healthy control group (n = 8), which included four pregnant and four non-pregnant mares, using a combination of clinical assessment and laboratory confirmation. Plasma samples from both groups of mares were analyzed through untargeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) metabolomics. A total of 28 differentially abundant metabolites were identified by screening and identifying differentially abundant metabolites and analyzing the pathway enrichment of differentially. Ten metabolites were identified as potential biomarkers for the diagnosis of endometritis in mares. Among them, seven exhibited a decrease in the endometritis groups, including hexadecanedioic acid, oleoyl ethanolamide (OEA), [fahydroxy(18:0)]12_13-dihydroxy-9z-octa (12,13-diHOME), deoxycholic acid 3-glucuronide (DCA-3G), 2-oxindole, and (+/-)9-HPODE, and 13(S)-HOTRE. On the other hand, three metabolites, adenosine 5'-monophosphate (AMP), 5-hydroxy-dl-tryptophan (5-HTP), and l-formylkynurenine, demonstrated an increase. These substances primarily participate in the metabolism of tryptophan and linolenic acid, as well as fat and energy. In conclusion, metabolomics revealed differentially abundant metabolite changes in patients with mare endometritis. These specific metabolites can be used as potential biomarkers for the non-invasive diagnosis of mare endometritis.PMID:38998045 | DOI:10.3390/ani14131933
Metabolic Response to Small Molecule Therapy in Colorectal Cancer Tracked with Raman Spectroscopy and Metabolomics
Angew Chem Int Ed Engl. 2024 Jul 12:e202410919. doi: 10.1002/anie.202410919. Online ahead of print.ABSTRACTDespite numerous screening tools for colorectal cancer (CRC), 25% of patients are diagnosed with advanced disease. Novel diagnostic technologies that are early, accurate, and rapid are imperative to assess the therapeutic efficacy of clinical drugs and identify new biomarkers of treatment response. Here Raman spectroscopy (RS) was used to track metabolic reprogramming in KRAS-mutant HCT116 and SW837 cells, and KRAS wild-type CC cells. RS combined with multivariate analysis methods distinguished nonresponsive, partially responsive, and responsive cells treated with cetuximab, a monoclonal antibody for EGFR inhibition, sotorasib, a clinically approved KRAS inhibitor, and various doses of trametinib, an inhibitor of the MAPK pathway. Cells treated with a combination of subtoxic doses of trametinib and BKM120, an inhibitor of the PI3K pathway, showed a synergistic response between the two pathways. Using a supervised machine learning regression model, we established a scoring methodology trained to a priori predict therapeutic response to new treatment combinations. RS metabolites were verified with mass spectrometry, and enrichment pathways were identified, including amino acid, purine, and nicotinate and nicotinamide metabolism that differentiated monotherapy from combination therapy. Our approach may ultimately be applicable to patient-derived primary cells and cultures of patient tumors to predict effective drugs for individualized care.PMID:38995663 | DOI:10.1002/anie.202410919
PhosphoLipidome Alteration Induced by <em>Clostridioides difficile</em> Toxin B in Enteric Glial Cells
Cells. 2024 Jun 26;13(13):1103. doi: 10.3390/cells13131103.ABSTRACTClostridioides difficile (C. difficile) is responsible for a spectrum of nosocomial/antibiotic-associated gastrointestinal diseases that are increasing in global incidence and mortality rates. The C. difficile pathogenesis is due to toxin A and B (TcdA/TcdB), both causing cytopathic and cytotoxic effects and inflammation. Recently, we demonstrated that TcdB induces cytopathic and cytotoxic (apoptosis and necrosis) effects in enteric glial cells (EGCs) in a dose/time-dependent manner and described the underlying signaling. Despite the role played by lipids in host processes activated by pathogens, to counter infection and/or induce cell death, to date no studies have investigated lipid changes induced by TcdB/TcdA. Here, we evaluated the modification of lipid composition in our in vitro model of TcdB infection. Apoptosis, cell cycle, cell viability, and lipidomic profiles were evaluated in EGCs treated for 24 h with two concentrations of TcdB (0.1 ng/mL; 10 ng/mL). In EGCs treated with the highest concentration of TcdB, not only an increased content of total lipids was observed, but also lipidome changes, allowing the separation of TcdB-treated cells and controls into different clusters. The statistical analyses also allowed us to ascertain which lipid classes and lipid molecular species determine the clusterization. Changes in lipid species containing inositol as polar head and plasmalogen phosphatidylethanolamine emerged as key indicators of altered lipid metabolism in TcdB-treated EGCs. These results not only provide a picture of the phospholipid profile changes but also give information regarding the lipid metabolism pathways altered by TcdB, and this might represent an important step for developing strategies against C. difficile infection.PMID:38994956 | DOI:10.3390/cells13131103
Regulatory Peptide Encoded by the Primary Transcript of miR396a Influences Gene Expression and Root Development in <em>Solanum lycopersicum</em>
J Agric Food Chem. 2024 Jul 12. doi: 10.1021/acs.jafc.4c03588. Online ahead of print.ABSTRACTMicroRNAs (miRNAs) are the processing products of primary miRNAs (pri-miRNAs) that regulate the expression of target genes. Recent studies have demonstrated that some pri-miRNAs can encode small peptides (miPEPs) that perform significant biological functions. The function of miPEPs in tomatoes, an important model horticultural crop, remains to be investigated. Here, we characterized the primary sequence of tomato miR396a using 5' RACE and confirmed the presence of miPEP396a in tomato by verifying the translational activity of the start codon. It primarily resides in the nucleus to exert its function and additionally regulates the expression of pri-miR396a, miR396a, and its target genes. Transcriptomic and metabolomic analyses showed that in vitro synthesis of miPEP396a significantly increased the expression of genes related to phenylpropanoid biosynthesis and hormones in tomato. Meanwhile, our in vitro application of miPEP396a in tomato significantly inhibited the elongation of tomato primary roots. In conclusion, our results indicate that miPEP396a regulates root growth in tomato by specifically promoting miR396a expression, provide insight into the function of miPEPs in tomato and potential applications.PMID:38994823 | DOI:10.1021/acs.jafc.4c03588
A cross-omics data analysis strategy for metabolite-microbe pair identification
Proteomics. 2024 Jul 12:e2400035. doi: 10.1002/pmic.202400035. Online ahead of print.ABSTRACTGiven the pivotal roles of metabolomics and microbiomics, numerous data mining approaches aim to uncover their intricate connections. However, the complex many-to-many associations between metabolome-microbiome profiles yield numerous statistically significant but biologically unvalidated candidates. To address these challenges, we introduce BiOFI, a strategic framework for identifying metabolome-microbiome correlation pairs (Bi-Omics). BiOFI employs a comprehensive scoring system, incorporating intergroup differences, effects on feature correlation networks, and organism abundance. Meanwhile, it establishes a built-in database of metabolite-microbe-KEGG functional pathway linking relationships. Furthermore, BiOFI can rank related feature pairs by combining importance scores and correlation strength. Validation on a dataset of cesarean-section infants confirms the strategy's validity and interpretability. The BiOFI R package is freely accessible at https://github.com/chentianlu/BiOFI.PMID:38994817 | DOI:10.1002/pmic.202400035
Updating and profiling the natural product-likeness of Latin American compound libraries
Mol Inform. 2024 Jul;43(7):e202400052. doi: 10.1002/minf.202400052. Epub 2024 Jun 21.ABSTRACTCompound databases of natural products play a crucial role in drug discovery and development projects and have implications in other areas, such as food chemical research, ecology and metabolomics. Recently, we put together the first version of the Latin American Natural Product database (LANaPDB) as a collective effort of researchers from six countries to ensemble a public and representative library of natural products in a geographical region with a large biodiversity. The present work aims to conduct a comparative and extensive profiling of the natural product-likeness of an updated version of LANaPDB and the individual ten compound databases that form part of LANaPDB. The natural product-likeness profile of the Latin American compound databases is contrasted with the profile of other major natural product databases in the public domain and a set of small-molecule drugs approved for clinical use. As part of the extensive characterization, we employed several chemoinformatics metrics of natural product likeness. The results of this study will capture the attention of the global community engaged in natural product databases, not only in Latin America but across the world.PMID:38994633 | DOI:10.1002/minf.202400052
Integrating Data Mining with Metabolomics to Analyze the Mechanism of the "Pearl-Borneol" Pair in Promoting Healing of Diabetic Wounds
Endocr Metab Immune Disord Drug Targets. 2024 Jul 11. doi: 10.2174/0118715303295707240614060314. Online ahead of print.ABSTRACTINTRODUCTION: Chronic diabetic wounds pose a significant threat to the health of diabetic patients, representing severe and enduring complications. Globally, an estimated 2.5% to 15% of the annual health budget is associated with diabetes, with diabetic wounds accounting for a substantial share. Exploring new therapeutic agents and approaches to address delayed and impaired wound healing in diabetes becomes imperative. Traditional Chinese medicine (TCM) has a long history and remarkable efficacy in treating chronic wound healing. In this study, all topically applied proprietary Chinese medicines (pCMs) for wound healing officially approved by the National Medical Products Administration (NMPA) were collected from the NMPA TCM database. Data mining was employed to obtain a high-frequency TCM ingredients pair, Pearl-Borneol (1:1).METHOD: This study investigated the effect and molecular mechanism of the Pearl-Borneol pair on the healing of diabetic wounds by animal experiments and metabolomics. The results from animal experiments showed that the Pearl-Borneol pair significantly accelerated diabetic wound healing, exhibiting a more potent effect than the Pearl or Borneol treatment alone. Meanwhile, the metabolomics analysis identified significant differences in metabolic profiles in wounds between the model and normal groups, indicating that diabetic wounds had distinct metabolic characteristics from normal wounds. Moreover, Vaseline-treated wounds exhibited similar metabolic profiles to the wounds from the model group, suggesting that Vaseline might have a negligible impact on diabetic wound metabolism. In addition, wounds treated with Pearl, Borneol, and Pearl-Borneol pair displayed significantly different metabolic profiles from Vaseline-treated wounds, signifying the influence of these treatments on wound metabolism. Subsequent enrichment analysis of the metabolic pathway highlighted the involvement of the arginine metabolic pathway, closely associated with diabetic wounds, in the healing process under Pearl- Borneol pair treatment. Further analysis revealed elevated levels of arginine and citrulline, coupled with reduced nitric oxide (NO) in both the model and Vaseline-treated wounds compared to normal wounds, pointing to impaired arginine utilization in diabetic wounds. Interestingly, treatment with Pearl and Pearl-Borneol pair lowered arginine and citrulline levels while increasing NO content, suggesting that these treatments may promote the catabolism of arginine to generate NO, thereby facilitating faster wound closure. Additionally, borneol alone significantly elevated NO content in wounds, potentially due to its ability to directly reduce nitrates/nitrites to NO. Oxidative stress is a defining characteristic of impaired metabolism in diabetic wounds.RESULTS: The result showed that both Pearl and Pearl-Borneol pair decreased the oxidative stress biomarker methionine sulfoxide level in diabetic wounds compared to those treated with Vaseline, indicating that Pearl alone or combined with Borneol may enhance the oxidative stress microenvironment in diabetic wounds.CONCLUSION: In summary, the findings validate the effectiveness of the Pearl-Borneol pair in accelerating the healing of diabetic wounds, with effects on reducing oxidative stress, enhancing arginine metabolism, and increasing NO generation, providing a mechanistic basis for this therapeutic approach.PMID:38994612 | DOI:10.2174/0118715303295707240614060314
The impact of surgical treatment for deep endometriosis: metabolic profile, quality of life and psychological aspects
Rev Bras Ginecol Obstet. 2024 Jun 27;46:e-rbgo42. doi: 10.61622/rbgo/2024rbgo42. eCollection 2024.ABSTRACTOBJECTIVE: To evaluate the effects of surgical treatment of deep endometriosis on the metabolic profile, quality of life and psychological aspects.METHODS: Prospective observational study, carried out with women of reproductive age diagnosed with deep endometriosis, treated in a specialized outpatient clinic, from October/2020 to September/2022, at a University Hospital in Fortaleza - Brazil. Standardized questionnaires were applied to collect data on quality of life and mental health, in addition to laboratory tests to evaluate dyslipidemia and dysglycemia, at two moments, preoperatively and six months after surgery. The results were presented using tables, averages and percentages.RESULTS: Thirty women with an average age of 38.5 years were evaluated. Seven quality of life domains showed improved scores: pain, control and impotence, well-being, social support, self-image, work life and sexual relations after surgery (ES ≥ 0.80). There was an improvement in mental health status with a significant reduction in anxiety and depression postoperatively. With the metabolic profile, all average levels were lower after surgery: total cholesterol 8.2% lower, LDL 12.8% lower, triglycerides 10.9% lower, and fasting blood glucose 7.3% lower (p < 0.001).CONCLUSION: Surgical treatment of deep endometriosis improved the quality of life and psychological aspects of patients. The lipid profile of patients after laparoscopy was favorable when compared to the preoperative lipid profile.PMID:38994463 | PMC:PMC11239215 | DOI:10.61622/rbgo/2024rbgo42
Metabolome profiling and transcriptome analysis unveiling the crucial role of magnesium transport system for magnesium homeostasis in tea plants
Hortic Res. 2024 Jun 3;11(7):uhae152. doi: 10.1093/hr/uhae152. eCollection 2024 Jul.ABSTRACTMagnesium (Mg2+) is a crucial nutrient for the growth and development of Camellia sinensis and is closely related to the quality of tea. However, the underlying mechanisms responding to low-Mg 2+ stress in tea plants remain largely unknown. In this study, photosynthetic parameters, metabolomics, and transcriptomics were utilized to explore the potential effects of low Mg2+ on the growth and metabolism of C. sinensis. Low-Mg2+ treatment increased the ratio of shoot dry weight to root dry weight but decreased the photosynthesis of C. sinensis. Forty and thirty metabolites were impacted by Mg2+ shortage in C. sinensis shoots and roots, respectively. Integrated transcriptome and metabolome analyses revealed the possible reasons for the decreased contents of chlorophyll and catechins and the increased theanine content in C. sinensis roots. Weighted gene co-expression network analysis indicated that the Mg2+ transport system was essential in the regulation of Mg2+ homeostasis in C. sinensis, in which CsMGT5 was identified to be the key regulator according to CsMGT5-overexpressing and complementary assays in Arabidopsis thaliana. Moreover, silencing of CsMGT5 in vivo reduced the content of chlorophyll in C. sinensis shoots. In addition, CsMGT5 might collaborate with ammonium transporters to keep the amino acid content steady, suggesting its potential application for tea quality improvement. All these findings demonstrate the key roles of CsMGTs for Mg2+ homeostasis in C. sinensis, providing a theoretical basis for Mg2+ efficient utilization in plants.PMID:38994447 | PMC:PMC11237192 | DOI:10.1093/hr/uhae152
The mammosphere-derived epithelial cell secretome modulates neutrophil functions in the bovine model
Front Immunol. 2024 Jun 27;15:1367432. doi: 10.3389/fimmu.2024.1367432. eCollection 2024.ABSTRACTBACKGROUND: Innovative therapies against bacterial infections are needed. One approach is to focus on host-directed immunotherapy (HDT), with treatments that exploit natural processes of the host immune system. The goals of this type of therapy are to stimulate protective immunity while minimizing inflammation-induced tissue damage. We use non-traditional large animal models to explore the potential of the mammosphere-derived epithelial cell (MDEC) secretome, consisting of all bioactive factors released by the cells, to modulate host immune functions. MDEC cultures are enriched for mammary stem and progenitor cells and can be generated from virtually any mammal. We previously demonstrated that the bovine MDEC secretome, collected and delivered as conditioned medium (CM), inhibits the growth of bacteria in vitro and stimulates functions related to tissue repair in cultured endothelial and epithelial cells.METHODS: The immunomodulatory effects of the bovine MDEC secretome on bovine neutrophils, an innate immune cell type critical for resolving bacterial infections, were determined in vitro using functional assays. The effects of MDEC CM on neutrophil molecular pathways were explored by evaluating the production of specific cytokines by neutrophils and examining global gene expression patterns in MDEC CM-treated neutrophils. Enzyme linked immunosorbent assays were used to determine the concentrations of select proteins in MDEC CM and siRNAs were used to reduce the expression of specific MDEC-secreted proteins, allowing for the identification of bioactive factors modulating neutrophil functions.RESULTS: Neutrophils exposed to MDEC secretome exhibited increased chemotaxis and phagocytosis and decreased intracellular reactive oxygen species and extracellular trap formation, when compared to neutrophils exposed to control medium. C-X-C motif chemokine 6, superoxide dismutase, peroxiredoxin-2, and catalase, each present in the bovine MDEC secretome, were found to modulate neutrophil functions.CONCLUSION: The MDEC secretome administered to treat bacterial infections may increase neutrophil recruitment to the site of infection, stimulate pathogen phagocytosis by neutrophils, and reduce neutrophil-produced ROS accumulation. As a result, pathogen clearance might be improved and local inflammation and tissue damage reduced.PMID:38994364 | PMC:PMC11236729 | DOI:10.3389/fimmu.2024.1367432
Analysis of metabolic characteristics of metabolic syndrome in elderly patients with gastric cancer by non-targeted metabolomics
World J Gastrointest Oncol. 2024 Jun 15;16(6):2419-2428. doi: 10.4251/wjgo.v16.i6.2419.ABSTRACTBACKGROUND: The relationship between metabolic syndrome (MetS) and gastric cancer (GC), which is a common metabolic disease, has attracted much attention. However, the specific metabolic characteristics of MetS in elderly patients with GC remain unclear.AIM: To investigate the differentially abundant metabolites and metabolic pathways between preoperative frailty and MetS in elderly patients with GC based on nontargeted metabolomics techniques.METHODS: In this study, 125 patients with nonfrail nonmeal GC were selected as the control group, and 50 patients with GC in the frail group were selected as the frail group. Sixty-five patients with GC combined with MetS alone were included in the MetS group, and 50 patients with GC combined with MetS were included in the MetS group. Nontargeted metabolomics techniques were used to measure plasma metabolite levels by ultrahigh-performance liquid chromatography-mass spectrometry. Multivariate statistical analysis was performed by principal component analysis, orthogonal partial least squares, pattern recognition analysis, cluster analysis, and metabolic pathway annotation.RESULTS: A total of 125 different metabolites, including amino acids, glycerophospholipids, sphingolipids, fatty acids, sugars, nucleosides and nucleotides, and acidic compounds, were identified via nontargeted metabolomics techniques. Compared with those in the control group, there were 41, 32, and 52 different metabolites in the MetS group, the debilitated group, and the combined group, respectively. Lipid metabolites were significantly increased in the MetS group. In the weak group, amino acids and most glycerol phospholipid metabolites decreased significantly, and fatty acids and sphingosine increased significantly. The combined group was characterized by significantly increased levels of nucleotide metabolites and acidic compounds. The alanine, aspartic acid, and glutamate metabolic pathways were obviously enriched in the asthenic group, and the glycerol and phospholipid metabolic pathways were obviously enriched in the combined group.CONCLUSION: Elderly GC patients with simple frailty, simple combined MetS, and frailty combined with MetS have different metabolic characteristics, among which amino acid and glycerophospholipid metabolite levels are significantly lower in frail elderly GC patients, and comprehensive supplementation of fat and protein should be considered. Many kinds of metabolites, such as amino acids, lipids, nucleotides, and acidic compounds, are abnormally abundant in patients with MetS combined with fthenia, which may be related to tumor-related metabolic disorders.PMID:38994147 | PMC:PMC11236236 | DOI:10.4251/wjgo.v16.i6.2419
<em>Fusobacterium</em> species are distinctly associated with patients with Lynch syndrome colorectal cancer
iScience. 2024 Jun 4;27(7):110181. doi: 10.1016/j.isci.2024.110181. eCollection 2024 Jul 19.ABSTRACTAccumulating evidence demonstrates clear correlation between the gut microbiota and sporadic colorectal cancer (CRC). Despite this, there is limited understanding of the association between the gut microbiota and CRC in Lynch Syndrome (LS), a hereditary type of CRC. Here, we analyzed fecal shotgun metagenomic and targeted metabolomic of 71 Japanese LS subjects. A previously published Japanese sporadic CRC cohort, which includes non-LS controls, was utilized as a non-LS cohort (n = 437). LS subjects exhibited reduced microbial diversity and low-Faecalibacterium enterotypes compared to non-LS. Patients with LS-CRC had higher levels of Fusobacterium nucleatum and fap2. Differential fecal metabolites and functional genes suggest heightened degradation of lysine and arginine in LS-CRC. A comparison between LS and non-LS subjects prior to adenoma formation revealed distinct fecal metabolites of LS subjects. These findings suggest that the gut microbiota plays a more responsive role in CRC tumorigenesis in patients with LS than those without LS.PMID:38993678 | PMC:PMC11237946 | DOI:10.1016/j.isci.2024.110181
Branch Chain Amino Acid Metabolism Promotes Brain Metastasis of NSCLC through EMT Occurrence by Regulating ALKBH5 activity
Int J Biol Sci. 2024 Jun 29;20(9):3285-3301. doi: 10.7150/ijbs.85672. eCollection 2024.ABSTRACTMetabolic reprogramming is one of the essential features of tumors that may dramatically contribute to cancer metastasis. Employing liquid chromatography-tandem mass spectrometry-based metabolomics, we analyzed the metabolic profile from 12 pairwise serum samples of NSCLC brain metastasis patients before and after CyberKnife Stereotactic Radiotherapy. We evaluated the histopathological architecture of 144 surgically resected NSCLC brain metastases. Differential metabolites were screened and conducted for functional clustering and annotation. Metabolomic profiling identified a pathway that was enriched in the metabolism of branched-chain amino acids (BCAAs). Pathologically, adenocarcinoma with a solid growth pattern has a higher propensity for brain metastasis. Patients with high BCAT1 protein levels in lung adenocarcinoma tissues were associated with a poor prognosis. We found that brain NSCLC cells had elevated catabolism of BCAAs, which led to a depletion of α-KG. This depletion, in turn, reduced the expression and activity of the m6A demethylase ALKBH5. Thus, ALKBH5 inhibition participated in maintaining the m6A methylation of mesenchymal genes and promoted the occurrence of epithelial-mesenchymal transition (EMT) in NSCLC cells and the proliferation of NSCLC cells in the brain. BCAA catabolism plays an essential role in the metastasis of NSCLC cells.PMID:38993559 | PMC:PMC11234221 | DOI:10.7150/ijbs.85672
Proteomic and metabolomic profiling of methicillin resistant versus methicillin sensitive Staphylococcus aureus using a simultaneous extraction protocol
Front Microbiol. 2024 Jun 26;15:1402796. doi: 10.3389/fmicb.2024.1402796. eCollection 2024.ABSTRACTBACKGROUND: Understanding the biology of methicillin resistant Staphylococcus aureus (MRSA) is crucial to unlocking insights for new targets in our fight against this antimicrobial resistant priority pathogen. Although proteomics and metabolomic profiling offer the potential to elucidating such biological markers, reports of methodological approaches for carrying this out in S. aureus isolates remain limited. We describe the use of a dual-functionality methanol extraction method for the concurrent extraction of protein and metabolites from S. aureus and report on the comparative analysis of the proteomic and metabolomic profiles of MRSA versus methicillin sensitive S. aureus (MSSA).METHODS: Bacterial reference strains MRSA ATCC43300 and MSSA ATCC25923 were used. The conventional urea methodology was used for protein extraction and a methanol based method was used for concurrent proteins and metabolites extraction. Proteomic and metabolomic profiling was carried out using TimsTOF mass spectrometry. Data processing was carried out using the MaxQuant version 2.1.4.0.RESULTS: This study represents the first report on the utilization of the methanol extraction method for concurrent protein and metabolite extraction in Gram positive bacteria. Our findings demonstrate good performance of the method for the dual extraction of proteins and metabolites from S. aureus with demonstration of reproducibility. Comparison of MRSA and MSSA strains revealed 407 proteins with significantly different expression levels. Enrichment analysis of those proteins revealed distinct pathways involved in fatty acid degradation, metabolism and beta-lactam resistance. Penicillin-binding protein PBP2a, the key determinant of MRSA resistance, exhibited distinct expression patterns in MRSA isolates. Metabolomic analysis identified 146 metabolites with only one exclusive to the MRSA. The enriched pathways identified were related to arginine metabolism and biosynthesis.CONCLUSION: Our findings demonstrate the effectiveness of the methanol-based dual-extraction method, providing simultaneous insights into the proteomic and metabolomic landscapes of S. aureus strains. These findings demonstrate the utility of proteomic and metabolomic profiling for elucidating the biological basis of antimicrobial resistance.PMID:38993491 | PMC:PMC11238212 | DOI:10.3389/fmicb.2024.1402796
Finding the best predictive model for hypertensive depression in older adults based on machine learning and metabolomics research
Front Psychiatry. 2024 Jun 27;15:1370602. doi: 10.3389/fpsyt.2024.1370602. eCollection 2024.ABSTRACTOBJECTIVE: Depression is a common comorbidity in hypertensive older adults, yet depression is more difficult to diagnose correctly. Our goal is to find predictive models of depression in hypertensive patients using a combination of various machine learning (ML) methods and metabolomics.METHODS: Methods We recruited 379 elderly people aged ≥65 years from the Chinese community. Plasma samples were collected and assayed by gas chromatography/liquid chromatography-mass spectrometry (GC/LC-MS). Orthogonal partial least squares discriminant analysis (OPLS-DA), volcano diagrams and thermograms were used to distinguish metabolites. The attribute discriminators CfsSubsetEval combined with search method BestFirst in WEKA software was used to find the best predicted metabolite combinations, and then 24 classification methods with 10-fold cross-validation were used for prediction.RESULTS: 34 individuals were considered hypertensive combined with depression according to our criteria, and 34 subjects with hypertension only were matched according to age and sex. 19 metabolites by GC-MS and 65 metabolites by LC-MS contributed significantly to the differentiation between the depressed and non-depressed cohorts, with a VIP value of more than 1 and a P value of less than 0.05. There were multiple metabolic pathway alterations. The metabolite combinations screened with WEKA for optimal diagnostic value included 12 metabolites. The machine learning methods with AUC values greater than 0.9 were bayesNet and random forests, and their other evaluation measures are also better.CONCLUSION: Altered metabolites and metabolic pathways are present in older adults with hypertension combined with depression. Methods using metabolomics and machine learning performed quite well in predicting depression in hypertensive older adults, contributing to further clinical research.PMID:38993388 | PMC:PMC11236531 | DOI:10.3389/fpsyt.2024.1370602