PubMed
The combination of deep learning and pseudo-MS image improves the applicability of metabolomics to congenital heart defect prenatal screening
Talanta. 2024 Apr 17;275:126109. doi: 10.1016/j.talanta.2024.126109. Online ahead of print.ABSTRACTTo investigate the metabolic alterations in maternal individuals with fetal congenital heart disease (FCHD), establish the FCHD diagnostic models, and assess the performance of these models, we recruited two batches of pregnant women. By metabolomics analysis using Ultra High-performance Liquid Chromatography-Mass/Mass (UPLC-MS/MS), a total of 36 significantly altered metabolites (VIP >1.0) were identified between FCHD and non-FCHD groups. Two logistic regression models and four support vector machine (SVM) models exhibited strong performance and clinical utility in the training set (area under the curve (AUC) = 1.00). The convolutional neural network (CNN) model also demonstrated commendable performance and clinical utility (AUC = 0.89 in the training set). Notably, in the validation set, the performance of the CNN model (AUC = 0.66, precision = 0.714) exhibited better robustness than the six models above (AUC≤0.50). In conclusion, the CNN model based on pseudo-MS images holds promise for real-world and clinical applications due to its better repeatability.PMID:38648686 | DOI:10.1016/j.talanta.2024.126109
Targeting of Antifungal Metabolites from Grapevine Byproducts by UPLC-HRMS/MS Approaches Using Bioactivity-Based Molecular Networking
J Agric Food Chem. 2024 Apr 22. doi: 10.1021/acs.jafc.3c09531. Online ahead of print.ABSTRACTThis study focuses on countering Fusarium graminearum, a harmful fungal pathogen impacting cereal crops and human health through mycotoxin production. These mycotoxins, categorized as type B trichothecenes, pose significant health risks. Research explores natural alternatives to synthetic fungicides, particularly investigating phenolics in grapevine byproducts. Thirteen eco-extracts from five French grape varieties (Merlot, Cabernet Sauvignon, Sauvignon blanc, Tannat, and Artaban) exhibited substantial antifungal properties, with ten extracts displaying remarkable effects. Extracts from grapevine stems and roots notably reduced fungal growth by over 91% after five days. Through UHPLC-HRMS/MS analysis and metabolomics, the study identified potent antifungal compounds such as ampelopsin A and cyphostemmin B, among other oligomeric stilbenes. Interestingly, this approach showed that flavan-3-ols have been identified as markers for extracts that induce fungal growth. Root extracts from rootstocks, rich in oligostilbenes, demonstrated the highest antifungal activity. This research underscores grapevine byproducts' potential both as a sustainable approach to control F. graminearum and mycotoxin contamination in cereal crops and the presence of different metabolites from the cultivars of grapevine, suggesting different activities.PMID:38648422 | DOI:10.1021/acs.jafc.3c09531
Inhibiting the cGAS-STING Pathway in Ulcerative Colitis with Programmable Micelles
ACS Nano. 2024 Apr 22. doi: 10.1021/acsnano.3c11257. Online ahead of print.ABSTRACTUlcerative colitis is a chronic condition in which a dysregulated immune response contributes to the acute intestinal inflammation of the colon. Current clinical therapies often exhibit limited efficacy and undesirable side effects. Here, programmable nanomicelles were designed for colitis treatment and loaded with RU.521, an inhibitor of the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway. STING-inhibiting micelles (SIMs) comprise hyaluronic acid-stearic acid conjugates and include a reactive oxygen species (ROS)-responsive thioketal linker. SIMs were designed to selectively accumulate at the site of inflammation and trigger drug release in the presence of ROS. Our in vitro studies in macrophages and in vivo studies in a murine model of colitis demonstrated that SIMs leverage HA-CD44 binding to target sites of inflammation. Oral delivery of SIMs to mice in both preventive and delayed therapeutic models ameliorated colitis's severity by reducing STING expression, suppressing the secretion of proinflammatory cytokines, enabling bodyweight recovery, protecting mice from colon shortening, and restoring colonic epithelium. In vivo end points combined with metabolomics identified key metabolites with a therapeutic role in reducing intestinal and mucosal inflammation. Our findings highlight the significance of programmable delivery platforms that downregulate inflammatory pathways at the intestinal mucosa for managing inflammatory bowel diseases.PMID:38648373 | DOI:10.1021/acsnano.3c11257
Collider bias correction for multiple covariates in GWAS using robust multivariable Mendelian randomization
PLoS Genet. 2024 Apr 22;20(4):e1011246. doi: 10.1371/journal.pgen.1011246. Online ahead of print.ABSTRACTGenome-wide association studies (GWAS) have identified many genetic loci associated with complex traits and diseases in the past 20 years. Multiple heritable covariates may be added into GWAS regression models to estimate direct effects of genetic variants on a focal trait, or to improve the power by accounting for environmental effects and other sources of trait variations. When one or more covariates are causally affected by both genetic variants and hidden confounders, adjusting for them in GWAS will produce biased estimation of SNP effects, known as collider bias. Several approaches have been developed to correct collider bias through estimating the bias by Mendelian randomization (MR). However, these methods work for only one covariate, some of which utilize MR methods with relatively strong assumptions, both of which may not hold in practice. In this paper, we extend the bias-correction approaches in two aspects: first we derive an analytical expression for the collider bias in the presence of multiple covariates, then we propose estimating the bias using a robust multivariable MR (MVMR) method based on constrained maximum likelihood (called MVMR-cML), allowing the presence of invalid instrumental variables (IVs) and correlated pleiotropy. We also established the estimation consistency and asymptotic normality of the new bias-corrected estimator. We conducted simulations to show that all methods mitigated collider bias under various scenarios. In real data analyses, we applied the methods to two GWAS examples, the first a GWAS of waist-hip ratio with adjustment for only one covariate, body-mass index (BMI), and the second a GWAS of BMI adjusting metabolomic principle components as multiple covariates, illustrating the effectiveness of bias correction.PMID:38648211 | DOI:10.1371/journal.pgen.1011246
Unraveling the Mechanisms of Efficient Phosphorus Utilization in Popcorn (<em>Zea mays</em> L. var. <em>everta</em>): Insights from Proteomic and Metabolite Analysis
J Proteome Res. 2024 Apr 22. doi: 10.1021/acs.jproteome.3c00772. Online ahead of print.ABSTRACTThe expansion of agriculture and the need for sustainable practices drives breeders to develop plant varieties better adapted to abiotic stress such as nutrient deficiency, which negatively impacts yields. Phosphorus (P) is crucial for photosynthesis and plant growth, but its availability in the soil is often limited, hampering crop development. In this study, we examined the response of two popcorn inbred lines, L80 and P7, which have been characterized previously as P-use inefficient and P-use efficient, respectively, under low (stress) and high P (control) availability. Physiological measurements, proteomic analysis, and metabolite assays were performed to unravel the physiological and molecular responses associated with the efficient use of P in popcorn. We observed significant differences in protein abundances in response to the P supply between the two inbred lines. A total of 421 differentially expressed proteins (DEPs) were observed in L80 and 436 DEPs in P7. These proteins were involved in photosynthesis, protein biosynthesis, biosynthesis of secondary metabolites, and energy metabolism. In addition, flavonoids accumulated in higher abundance in P7. Our results help us understand the major components of P utilization in popcorn, providing new insights for popcorn molecular breeding programs.PMID:38648199 | DOI:10.1021/acs.jproteome.3c00772
Metabolic mechanism of astaxanthin biosynthesis in Xanthophyllomyces dendrorhous in response to sodium citrate treatment
Bioresour Bioprocess. 2023 Apr 26;10(1):29. doi: 10.1186/s40643-023-00650-7.ABSTRACTAstaxanthin is an important ketocarotenoid widely used in industries. However, its application is limited because of its low yield. Sodium citrate (Na-citrate), one of the major carbon sources for microorganisms, can promote cell growth and product accumulation. The basidiomycetous red yeast Xanthophyllomyces dendrorhous was thus used to study the effect of Na-citrate on cell growth and astaxanthin synthesis. The highest biomass and astaxanthin yield (6.0 g/L and 22.5 mg/L) were obtained in shake-flask when 3 g/L Na-citrate was added at 24 h and were 1.8 and 2.0 times higher than those of the control group, respectively. Furthermore, metabolomics and real-time reverse transcription PCR (qRT-PCR) analysis were conducted to study the metabolic pathways of X. dendrorhous in response to Na-citrate. The qRT-PCR assay revealed that Na-citrate facilitated glucose consumption, promoted the metabolic flux from glycolysis, and regulated the tricarboxylic acid (TCA) cycle, providing more energy and substrates for the synthesis of astaxanthin. The gene analysis revealed that adding Na-citrate significantly upregulated the expression of six key genes (ICL, HMGS, crtE, crtYB, crtI, and crtS) involved in pathways related to astaxanthin biosynthesis. These results suggest that exogenous Na-citrate treatment is a potentially valuable strategy to stimulate astaxanthin production in X. dendrorhous.PMID:38647925 | PMC:PMC10992204 | DOI:10.1186/s40643-023-00650-7
Optimization of fungicidal and acaricidal metabolite production by endophytic fungus Aspergillus sp. SPH2
Bioresour Bioprocess. 2024 Mar 5;11(1):28. doi: 10.1186/s40643-024-00745-9.ABSTRACTThe endophytic fungus Aspergillus sp. SPH2 was isolated from the stems of the endemic plant Bethencourtia palmensis and its extracts were found to have strong fungicidal effects against Botrytis cinerea and ixodicidal effects against Hyalomma lusitanicum at different fermentation times. In this study, the fungus was grown using three different culture media and two methodologies, Microparticulate Enhancement Cultivation (MPEC) and Semi-Solid-State Fermentation (Semi-SSF), to increase the production of secondary metabolites during submerged fermentation. The addition of an inert support to the culture medium (Semi-SSF) resulted in a significant increase in the extract production. However, when talcum powder was added to different culture media, unexpected results were observed, with a decrease in the production of the biocompounds of interest. Metabolomic analyses showed that the production of aspergillic, neoaspergillic, and neohydroxyaspergillic acids peaked in the first few days of fermentation, with notable differences observed among the methodologies and culture media. Mellein production was particularly affected by the addition of an inert support to the culture medium. These results highlight the importance of surface properties and morphology of spores and mycelia during fermentation by this fungal species.PMID:38647905 | PMC:PMC10992823 | DOI:10.1186/s40643-024-00745-9
Overexpression of glutathione synthetase gene improving redox homeostasis and chicken infectious bursal disease virus propagation in chicken embryo fibroblast DF-1
Bioresour Bioprocess. 2023 Sep 9;10(1):60. doi: 10.1186/s40643-023-00665-0.ABSTRACTInfectious bursal disease (IBD) of chickens is an acute, high-contact, lytic infectious disease caused by infectious bursal disease virus (IBDV). The attenuated inactivated vaccine produced by DF-1 cells is an effective control method, but the epidemic protection demands from the world poultry industry remain unfulfilled. To improve the IBDV vaccine production capacity and reduce the economic losses caused by IBDV in chicken, cellular metabolic engineering is performed on host cells. In this study, when analyzing the metabolomic after IBDV infection of DF-1 cells and the exogenous addition of reduced glutathione (GSH), we found that glutathione metabolism had an important role in the propagation of IBDV in DF-1 cells, and the glutathione synthetase gene (gss) could be a limiting regulator in glutathione metabolism. Therefore, three stable recombinant cell lines GSS-L, GSS-M, and GSS-H (gss gene overexpression with low, medium, and high mRNA levels) were screened. We found that the recombinant GSS-M cell line had the optimal regulatory effect with a 7.19 ± 0.93-fold increase in IBDV titer. We performed oxidative stress and redox status analysis on different recombinant cell lines, and found that the overexpression of gss gene significantly enhanced the ability of host cells to resist oxidative stress caused by IBDV infection. This study established a high-efficiency DF-1 cells system for IBDV vaccine production by regulating glutathione metabolism, and underscored the importance of moderate gene expression regulation on the virus reproduction providing a way for rational and precise cell engineering.PMID:38647813 | PMC:PMC10992565 | DOI:10.1186/s40643-023-00665-0
Transcriptomic and metabolomic profiling provide insight into the role of sugars and hormones in leaf senescence of Pinellia ternata
Plant Cell Rep. 2024 Apr 22;43(5):125. doi: 10.1007/s00299-024-03222-x.ABSTRACTThe interaction network and pathway map uncover the potential crosstalk between sugar and hormone metabolisms as a possible reason for leaf senescence in P. ternata. Pinellia ternata, an environmentally sensitive medicinal plant, undergoes leaf senescence twice a year, affecting its development and yield. Understanding the potential mechanism that delays leaf senescence could theoretically decrease yield losses. In this study, a typical senescent population model was constructed, and an integrated analysis of transcriptomic and metabolomic profiles of P. ternata was conducted using two early leaf senescence populations and two stay-green populations. The result showed that two key gene modules were associated with leaf senescence which were mainly enriched in sugar and hormone signaling pathways, respectively. A network constructed by unigenes and metabolisms related to the obtained two pathways revealed that several compounds such as D-arabitol and 2MeScZR have a higher significance ranking. In addition, a total of 130 hub genes in this network were categorized into 3 classes based on connectivity. Among them, 34 hub genes were further analyzed through a pathway map, the potential crosstalk between sugar and hormone metabolisms might be an underlying reason of leaf senescence in P. ternata. These findings address the knowledge gap regarding leaf senescence in P. ternata, providing candidate germplasms for molecular breeding and laying theoretical basis for the realization of finely regulated cultivation in future.PMID:38647720 | DOI:10.1007/s00299-024-03222-x
Non-adherence to cardiometabolic medication as assessed by LC-MS/MS in urine and its association with kidney and cardiovascular outcomes in type 2 diabetes mellitus
Diabetologia. 2024 Apr 22. doi: 10.1007/s00125-024-06149-w. Online ahead of print.ABSTRACTAIMS/HYPOTHESIS: Non-adherence to medication is a frequent barrier in the treatment of patients with type 2 diabetes mellitus, potentially limiting the effectiveness of evidence-based treatments. Previous studies have mostly relied on indirect adherence measures to analyse outcomes based on adherence. The aim of this study was to use LC-MS/MS in urine-a non-invasive, direct and objective measure-to assess non-adherence to cardiometabolic drugs and analyse its association with kidney and cardiovascular outcomes.METHODS: This cohort study includes 1125 participants from the PROVALID study, which follows patients with type 2 diabetes mellitus at the primary care level. Baseline urine samples were tested for 79 cardiometabolic drugs and metabolites thereof via LC-MS/MS. An individual was classified as totally adherent if markers for all drugs were detected, partially non-adherent when at least one marker for one drug was detected, and totally non-adherent if no markers for any drugs were detected. Non-adherence was then analysed in the context of cardiovascular (composite of myocardial infarction, stroke and cardiovascular death) and kidney (composite of sustained 40% decline in eGFR, sustained progression of albuminuria, kidney replacement therapy and death from kidney failure) outcomes.RESULTS: Of the participants, 56.3% were totally adherent, 42.0% were partially non-adherent, and 1.7% were totally non-adherent to screened cardiometabolic drugs. Adherence was highest to antiplatelet and glucose-lowering agents and lowest to lipid-lowering agents. Over a median (IQR) follow-up time of 5.10 (4.12-6.12) years, worse cardiovascular outcomes were observed with non-adherence to antiplatelet drugs (HR 10.13 [95% CI 3.06, 33.56]) and worse kidney outcomes were observed with non-adherence to antihypertensive drugs (HR 1.98 [95% CI 1.37, 2.86]).CONCLUSIONS/INTERPRETATION: This analysis shows that non-adherence to cardiometabolic drug regimens is common in type 2 diabetes mellitus and negatively affects kidney and cardiovascular outcomes.PMID:38647650 | DOI:10.1007/s00125-024-06149-w
Both viable <em>Bifidobacterium longum</em> subsp. <em>infantis</em> B8762 and heat-killed cells alleviate the intestinal inflammation of DSS-induced IBD rats
Microbiol Spectr. 2024 Apr 22:e0350923. doi: 10.1128/spectrum.03509-23. Online ahead of print.ABSTRACTIn view of the safety concerns of probiotics, more and more attention is paid to the beneficial effects of dead probiotics cells. Herein, we investigated and compared the alleviation effects of viable Bifidobacterium longum subsp. infantis B8762 (B. infantis B8762) and its heat-killed cells on dextran sodium sulfate (DSS)-induced inflammatory bowel disease (IBD) rats. Four groups of rats (n = 12 per group) were included: normal control, DSS-induced colitis rats without bacterial administration (DSS), DSS-induced colitis rats with viable B. infantis B8762 administration (VB8762), and DSS-induced colitis rats with dead B. infantis B8762 administration (DB8762). Our results showed that both VB8762 and DB8762 administration exerted significant protective effects on DSS-induced IBD rats, as evidenced by a reduction in mortality, disease activity index score, body weight loss, as well as decreased histology score, which were companied by a significant decrease in serum pro-inflammatory factors compared with DSS group, and a stronger effect on modulating the fecal microbiota alpha-diversity and beta-diversity compared with DSS group. Additionally, the fecal metabolome results showed that both VB8762 and DB8762 interventions indeed altered the fecal metabolome profile and related metabolic pathways of DSS-induced IBD rats. Therefore, given the alleviation effects on colitis, the DB8762 can be confirmed to be a postbiotic. Overall, our findings suggested that VB8762 and DB8762 had similar ability to alleviate IBD although with some differences. Due to the minimal safety concern of postbiotics, we propose that the postbiotic DB8762 could be a promising alternative to probiotics to be applied in the prevention and treatment of IBDs.IMPORTANCEInflammatory bowel disease (IBD) has emerged as a global disease because of the worldwide spread of western diets and lifestyles during industrialization. Up to now, many probiotic strains are used as a modulator of gut microbiota or an enhancer of gut barrier to alleviate or cure IBD. However, there are still many issues of using probiotics, which were needed to be concerned about, for instance, safety issues in certain groups like neonates and vulnerable populations, and the functional differences between viable and dead microorganisms. Therefore, it is of interest to investigate the beneficial effects of dead probiotics cells. The present study proved that both viable Bifidobacterium longum subsp. infantis B8762 and heat-killed cells could alleviate dextran sodium sulfate-induced colitis in rats. The findings help to support that some heat-killed probiotics cells can also exert relevant biological functions and can be used as a postbiotic.PMID:38647334 | DOI:10.1128/spectrum.03509-23
Ling-Gui-Zhu-Gan decoction ameliorates nonalcoholic fatty liver disease via modulating the gut microbiota
Microbiol Spectr. 2024 Apr 22:e0197923. doi: 10.1128/spectrum.01979-23. Online ahead of print.ABSTRACTNumerous studies have supported that nonalcoholic fatty liver disease (NAFLD) is highly associated with gut microbiota dysbiosis. Ling-Gui-Zhu-Gan decoction (LG) has been clinically used to treat NAFLD, but the underlying mechanism remains unknown. This study investigated the therapeutic effect and mechanisms of LG in mice with NAFLD induced by a high-fat diet (HD). An HD-induced NAFLD mice model was established to evaluate the efficacy of LG followed by biochemical and histopathological analysis. Metagenomics, metabolomics, and transcriptomics were used to explore the structure and metabolism of the gut microbiota. LG significantly improved hepatic function and decreased lipid droplet accumulation in HD-induced NAFLD mice. LG reversed the structure of the gut microbiota that is damaged by HD and improved intestinal barrier function. Meanwhile, the LG group showed a lower total blood bile acids (BAs) concentration, a shifted BAs composition, and a higher fecal short-chain fatty acids (SCFAs) concentration. Furthermore, LG could regulate the hepatic expression of genes associated with the primary BAs biosynthesis pathway and peroxisome proliferator-activated receptor (PPAR) signaling pathway. Our study suggested that LG could ameliorate NAFLD by altering the structure and metabolism of gut microbiota, while BAs and SCFAs are considered possible mediating substances.IMPORTANCE: Until now, there has still been no study on the gut microbiota and metabolomics of Ling-Gui-Zhu-Gan decoction (LG) in nonalcoholic fatty liver disease (NAFLD) mouse models. Our study is the first to report on the reshaping of the structure and metabolism of the gut microbiota by LG, as well as explore the potential mechanism underlying the improvement of NAFLD. Specifically, our study demonstrates the potential of gut microbial-derived short-chain fatty acids (SCFAs) and blood bile acids (BAs) as mediators of LG therapy for NAFLD in animal models. Based on the results of transcriptomics, we further verified that LG attenuates NAFLD by restoring the metabolic disorder of BAs via the up-regulation of Fgf15/FXR in the ileum and down-regulation of CYP7A1/FXR in the liver. LG also reduces lipogenesis in NAFLD mice by mediating the peroxisome proliferator-activated receptor (PPAR) signaling pathway, which then contributes to reducing hepatic inflammation and improving intestinal barrier function to treat NAFLD.PMID:38647315 | DOI:10.1128/spectrum.01979-23
Smoking cessation only partially reverses cardiac metabolic and structural remodeling in mice
Acta Physiol (Oxf). 2024 Apr 22:e14145. doi: 10.1111/apha.14145. Online ahead of print.ABSTRACTAIMS: Active cigarette smoking is a major risk factor for chronic obstructive pulmonary disease that remains elevated after cessation. Skeletal muscle dysfunction has been well documented after smoking, but little is known about cardiac adaptations to cigarette smoking. The underlying cellular and molecular cardiac adaptations, independent of confounding lifestyle factors, and time course of reversibility by smoking cessation remain unclear. We hypothesized that smoking negatively affects cardiac metabolism and induces local inflammation in mice, which do not readily reverse upon 2-week smoking cessation.METHODS: Mice were exposed to air or cigarette smoke for 14 weeks with or without 1- or 2-week smoke cessation. We measured cardiac mitochondrial respiration by high-resolution respirometry, cardiac mitochondrial density, abundance of mitochondrial supercomplexes by electrophoresis, and capillarization, fibrosis, and macrophage infiltration by immunohistology, and performed cardiac metabolome and lipidome analysis by mass spectrometry.RESULTS: Mitochondrial protein, supercomplex content, and respiration (all p < 0.03) were lower after smoking, which were largely reversed within 2-week smoking cessation. Metabolome and lipidome analyses revealed alterations in mitochondrial metabolism, a shift from fatty acid to glucose metabolism, which did not revert to control upon smoking cessation. Capillary density was not different after smoking but increased after smoking cessation (p = 0.02). Macrophage infiltration and fibrosis (p < 0.04) were higher after smoking but did not revert to control upon smoking cessation.CONCLUSIONS: While cigarette-impaired smoking-induced cardiac mitochondrial function was reversed by smoking cessation, the remaining fibrosis and macrophage infiltration may contribute to the increased risk of cardiovascular events after smoking cessation.PMID:38647279 | DOI:10.1111/apha.14145
Metabolic characterization of sphere-derived prostate cancer stem cells reveals aberrant urea cycle in stemness maintenance
Int J Cancer. 2024 Apr 22. doi: 10.1002/ijc.34967. Online ahead of print.ABSTRACTAlteration of cell metabolism is one of the essential characteristics of tumor growth. Cancer stem cells (CSCs) are the initiating cells of tumorigenesis, proliferation, recurrence, and other processes, and play an important role in therapeutic resistance and metastasis. Thus, identification of the metabolic profiles in prostate cancer stem cells (PCSCs) is critical to understanding prostate cancer progression. Using untargeted metabolomics and lipidomics methods, we show distinct metabolic differences between prostate cancer cells and PCSCs. Urea cycle is the most significantly altered metabolic pathway in PCSCs, the key metabolites arginine and proline are evidently elevated. Proline promotes cancer stem-like characteristics via the JAK2/STAT3 signaling pathway. Meanwhile, the enzyme pyrroline-5-carboxylate reductase 1 (PYCR1), which catalyzes the conversion of pyrroline-5-carboxylic acid to proline, is highly expressed in PCSCs, and the inhibition of PYCR1 suppresses the stem-like characteristics of prostate cancer cells and tumor growth. In addition, carnitine and free fatty acid levels are significantly increased, indicating reprogramming of fatty acid metabolism in PCSCs. Reduced sphingolipid levels and increased triglyceride levels are also observed. Collectively, our data illustrate the comprehensive landscape of the metabolic reprogramming of PCSCs and provide potential therapeutic strategies for prostate cancer.PMID:38647131 | DOI:10.1002/ijc.34967
Antiaging Effects of Human Fecal Transplants with Different Combinations of <em>Bifidobacterium bifidum</em> LTBB21J1 and <em>Lactobacillus casei</em> LTL1361 in d-Galactose-Induced Mice
J Agric Food Chem. 2024 Apr 22. doi: 10.1021/acs.jafc.3c09815. Online ahead of print.ABSTRACTThe feces of healthy middle-aged and old people were first transplanted into d-galactose-induced aging mice to construct humanized aging mice with gut microbiota (FMTC) to confirm the antiaging effect of probiotics produced from centenarians. The mouse model was then treated with centenarian-derived Bifidobacterium bifidum (FMTL), Lactobacillus casei (FMTB), and their mixtures (FMTM), and young mice were used as the control. Compared with the FMTC group, the results demonstrated that the probiotics and their combinations alleviated neuronal damage, increased antioxidant capacity, decreased inflammation, and enhanced cognitive and memory functions in aging mice. In the gut microbiota, the relative abundance of Lactobacillus, Ligilactobacillus, and Akkermansia increased and that of Desulfovibrio and Colidextribacter decreased in the FMTM group compared with that in the FMTC group. The three probiotic groups displayed significant changes in 15 metabolites compared with the FMTC group, with 4 metabolites showing increased expression and 11 metabolites showing decreased expression. The groups were graded as Control > FMTM > FMTB > FMTL > FMTC using a newly developed comprehensive quantitative scoring system that thoroughly analyzed the various indicators of this study. The beneficial antiaging effects of probiotics derived from centenarians were quantitatively described using a novel perspective in this study; it is confirmed that both probiotics and their combinations exert antiaging effects, with the probiotic complex group exhibiting a larger effect.PMID:38647087 | DOI:10.1021/acs.jafc.3c09815
Coculture of <em>Acinetobacter johnsonii</em> and <em>Shewanella putrefaciens</em> Contributes to the ABC Transporter that Impacts Cold Adaption in the Aquatic Food Storage Environment
J Agric Food Chem. 2024 Apr 22. doi: 10.1021/acs.jafc.4c00885. Online ahead of print.ABSTRACTAcinetobacter johnsonii and Shewanella putrefaciens were identified as specific spoilage organisms in aquatic food. The interactions among specific spoilage organisms under cold stress have a significant impact on the assembly of microbial communities, which play crucial roles in the spoilage and cold adaptation processes. The limited understanding of A. johnsonii and S. putrefaciens interactions in the cold adaptation mechanism hinders the elucidation of their roles in protein and metabolism levels. 4D quantitative proteomic analysis showed that the coculture of A. johnsonii and S. putrefaciens responds to low temperatures through ABC transporter proteins, resulting in phospholipid transport and inner membrane components. SapA and FtsX proteins were significantly upregulated, while LolC, LolD, LolE, PotD, PotA, PotB, and PotC proteins were significantly downregulated. Metabolome assays revealed that metabolites of glutathione and spermidine/putrescin were significantly upregulated, while metabolites of arginine/lysine/ornithine were significantly downregulated and involved in the ABC transporter metabolism. The results of ultramicroscopic analyses showed that the coculture of A. johnsonii and S. putrefaciens surface combined with the presence of the leakage of intracellular contents, suggesting that the bacteria were severely damaged and wrinkled to absorb metabolic nutrients and adapt to cold temperatures.PMID:38647030 | DOI:10.1021/acs.jafc.4c00885
Metabolite signature of human malignant thyroid tissue: A systematic review and meta-analysis
Cancer Med. 2024 Apr;13(8):e7184. doi: 10.1002/cam4.7184.ABSTRACTBACKGROUND: Thyroid cancer (TC) is the predominant malignancy within the endocrine system. However, the standard method for TC diagnosis lacks the capability to identify the pathological condition of all thyroid lesions. The metabolomics approach has the potential to manage this problem by identifying differential metabolites.AIMS: This study conducted a systematic review and meta-analysis of the NMR-based metabolomics studies in order to identify significant altered metabolites associated with TC.METHODS: A systematic search of published literature in any language in three databases including Embase, PubMed, and Scopus was conducted. Out of 353 primary articles, 12 studies met the criteria for inclusion in the systematic review. Among these, five reports belonging to three articles were eligible for meta-analysis. The correlation coefficient of the orthogonal partial least squares discriminant analysis, a popular model in the multivariate statistical analysis of metabolomic data, was chosen for meta-analysis. The altered metabolites were chosen based on the fact that they had been found in at least three studies.RESULTS: In total, 49 compounds were identified, 40 of which were metabolites. The increased metabolites in thyroid lesions compared normal samples included lactate, taurine, alanine, glutamic acid, glutamine, leucine, lysine, phenylalanine, serine, tyrosine, valine, choline, glycine, and isoleucine. Lipids were the decreased compounds in thyroid lesions. Lactate and alanine were increased in malignant versus benign thyroid lesions, while, myo-inositol, scyllo-inositol, citrate, choline, and phosphocholine were found to be decreased. The meta-analysis yielded significant results for three metabolites of lactate, alanine, and citrate in malignant versus benign specimens.DISCUSSION: In this study, we provided a concise summary of 12 included metabolomic studies, making it easier for future researchers to compare their results with the prior findings.CONCLUSION: It appears that the field of TC metabolomics will experience notable advancement, leading to the discovery of trustworthy diagnostic and prognostic biomarkers.PMID:38646957 | PMC:PMC11033922 | DOI:10.1002/cam4.7184
Severe Venous Calcifications in Phlebosclerotic Colitis and Significantly Decreased Expression in Betaine
Int J Surg Pathol. 2024 Apr 22:10668969241246475. doi: 10.1177/10668969241246475. Online ahead of print.ABSTRACTPhlebosclerotic colitis (PC) is a rare type of chronic ischemic colitis. Its etiology is still unknown, and PC is also known as idiopathic mesenteric phlebosclerosis colitis. Currently, many studies have reported that long-term use of Chinese herbal medicine and drinking history are related to its pathogenesis. In the early stage of the lesion, due to insufficient understanding of PC, it is difficult to distinguish it from inflammatory bowel disease and other nonneoplastic intestinal diseases. We reported a case of severe diffuse total colon calcification with multiple misdiagnosis, summarizing and analyzing the clinical pathological characteristics to increase clinical and pathological physicians' understanding of the disease and reduce misdiagnosis. Moreover, for the first time, we conducted metabolomics sequencing on fresh intestinal specimens of PC, in order to explore the possible mechanism of severe calcification in the patient. We found that betaine was significantly decreased in the intestinal specimens of the patient, which is an amino acid that has been shown to improve vascular risk factors, and may be one of the mechanisms underlying severe calcification in the patient.PMID:38646813 | DOI:10.1177/10668969241246475
Differential metabolic secretion between mdx mouse-derived spindle cell sarcomas and rhabdomyosarcomas drives tumor type development
Am J Physiol Cell Physiol. 2024 Apr 22. doi: 10.1152/ajpcell.00523.2023. Online ahead of print.ABSTRACTThe dystrophin (DMD) gene is recognized for its significance in Duchenne muscular dystrophy (DMD), a lethal and progressive skeletal muscle disease. Some DMD patients, as well as model mice with muscular dystrophy (mdx), spontaneously develop various types of tumors, among which rhabdomyosarcoma (RMS) is the most prominent. By contrast, spindle cell sarcoma (SCS) has rarely been reported in patients or mdx mice. In this study, we aimed to use metabolomics to better understand the rarity of SCS development in mdx mice. Gas chromatography-mass spectrometry was employed to compare the metabolic profiles of spontaneously developed SCS and RMS tumors from mdx mice, and metabolite supplementation assays and silencing experiments were used to assess the effects of metabolic differences in SCS tumor-derived cells. The levels of 75 metabolites exhibited differences between RMS and SCS, 25 of which were significantly altered. Further characterization revealed downregulation of non-essential amino acids, including alanine, in SCS tumors. Alanine supplementation enhanced the growth, epithelial-mesenchymal transition, and invasion of SCS cells. Reduction of intracellular alanine via knockdown of the alanine transporter Slc1a5 reduced the growth of SCS cells. Lower metabolite secretion and reduced proliferation of SCS tumors may explain the lower detection rate of SCS in mdx mice. Targeting of alanine depletion pathways may have potential as a novel treatment strategy.PMID:38646787 | DOI:10.1152/ajpcell.00523.2023
Profiling of serum metabolome of breast cancer: multi-cancer features discriminate between healthy women and patients with breast cancer
Front Oncol. 2024 Apr 4;14:1377373. doi: 10.3389/fonc.2024.1377373. eCollection 2024.ABSTRACTINTRODUCTION: The progression of solid cancers is manifested at the systemic level as molecular changes in the metabolome of body fluids, an emerging source of cancer biomarkers.METHODS: We analyzed quantitatively the serum metabolite profile using high-resolution mass spectrometry. Metabolic profiles were compared between breast cancer patients (n=112) and two groups of healthy women (from Poland and Norway; n=95 and n=112, respectively) with similar age distributions.RESULTS: Despite differences between both cohorts of controls, a set of 43 metabolites and lipids uniformly discriminated against breast cancer patients and healthy women. Moreover, smaller groups of female patients with other types of solid cancers (colorectal, head and neck, and lung cancers) were analyzed, which revealed a set of 42 metabolites and lipids that uniformly differentiated all three cancer types from both cohorts of healthy women. A common part of both sets, which could be called a multi-cancer signature, contained 23 compounds, which included reduced levels of a few amino acids (alanine, aspartate, glutamine, histidine, phenylalanine, and leucine/isoleucine), lysophosphatidylcholines (exemplified by LPC(18:0)), and diglycerides. Interestingly, a reduced concentration of the most abundant cholesteryl ester (CE(18:2)) typical for other cancers was the least significant in the serum of breast cancer patients. Components present in a multi-cancer signature enabled the establishment of a well-performing breast cancer classifier, which predicted cancer with a very high precision in independent groups of women (AUC>0.95).DISCUSSION: In conclusion, metabolites critical for discriminating breast cancer patients from controls included components of hypothetical multi-cancer signature, which indicated wider potential applicability of a general serum metabolome cancer biomarker.PMID:38646441 | PMC:PMC11027565 | DOI:10.3389/fonc.2024.1377373