Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

Huangqin decoction attenuates spared nerve injury (SNI)-induced neuropathic pain by modulating microglial M1/M2 polarization partially mediated by intestinal nicotinamide metabolism

Sat, 13/04/2024 - 12:00
Phytomedicine. 2024 Apr 7;129:155594. doi: 10.1016/j.phymed.2024.155594. Online ahead of print.ABSTRACTBACKGROUND: The incidence of neuropathic pain is progressively increasing over time. The activation of M1-type microglia plays a crucial role in the initiation and progression of neuropathic pain. Huangqin Decoction (HQD) is traditionally used to alleviate dysentery and abdominal pain. However, it remains unclear whether HQD can effectively mitigate neuropathic pain and the underlying mechanisms.PURPOSE: The present study aims to investigate the impact of HQD on neuropathic pain induced by spared nerve injury (SNI) in mice, and to elucidate whether the analgesic effect of HQD is associated with microglia polarization.METHODS: The analgesic effect of HQD on SNI mice was investigated through assessments of mechanical pain threshold, thermal pain threshold, cold pain threshold, and motor ability. We elucidated the molecular mechanisms of HQD in alleviating SNI-induced neuropathic pain by focusing on microglia polarization and intestinal metabolite abnormalities. The expression levels of markers associated with microglia polarization (Iba-1, CD68, CD206, iNOS) was detected by immunofluorescence and Western blot, and the levels of inflammatory factors (IL-4, IL-10, IL-6, TNF-α) were assessed by ELISA. UPLC-QTOF-MS metabolomics was utilized to identify differential metabolites in the intestines of SNI mice. We screened the differential metabolites related to microglial polarization by correlation analysis, subsequently nicotinamide was selected for validation in LPS-induced BV-2 cells.RESULTS: Our findings demonstrated that HQD (20 g/kg) significantly enhanced the mechanical pain threshold, thermal pain threshold, and cold pain threshold, and protected the injured DRG neurons of SNI mice. Moreover, HQD (20 g/kg) obviously suppressed the expression of microglia M1 polarization markers (Iba-1, CD68, iNOS, IL-6, TNF-α), and promoted the expression of microglia M2 polarization markers (CD206, IL-10, IL-4) in the spinal cord of SNI mice. Additionally, HQD (20 g/kg) prominently ameliorated intestinal barrier damage by upregulating Claudin 1 and Occludin expression in the colon of SNI mice. Furthermore, HQD (20 g/kg) rectified 19 metabolite abnormalities in the intestine. Notably, nicotinamide (100 μM), an amide derivative with anti-inflammatory property, effectively suppresses microglia activation and polarization in LPS-induced BV-2 cells by downregulating IL-6 level and CD68 expression while upregulating IL-4 level and CD206 expression.CONCLUSION: In summary, HQD alleviates neuropathic pain in SNI mice by regulating the activation and polarization of microglia, partially mediated through intestinal nicotinamide metabolism.PMID:38614040 | DOI:10.1016/j.phymed.2024.155594

Assessment of estrogenic potential from exudates of microcystin-producing and non-microcystin-producing Microcystis by metabolomics, machine learning and E-screen assay

Sat, 13/04/2024 - 12:00
J Hazard Mater. 2024 Apr 9;470:134170. doi: 10.1016/j.jhazmat.2024.134170. Online ahead of print.ABSTRACTCyanobacterial blooms, often dominated by Microcystis aeruginosa, are capable of producing estrogenic effects. It is important to identify specific estrogenic compounds produced by cyanobacteria, though this can prove challenging owing to the complexity of exudate mixtures. In this study, we used untargeted metabolomics to compare components of exudates from microcystin-producing and non-microcystin-producing M. aeruginosa strains that differed with respect to their ability to produce microcystins, and across two growth phases. We identified 416 chemicals and found that the two strains produced similar components, mainly organoheterocyclic compounds (20.2%), organic acids and derivatives (17.3%), phenylpropanoids and polyketides (12.7%), benzenoids (12.0%), lipids and lipid-like molecules (11.5%), and organic oxygen compounds (10.1%). We then predicted estrogenic compounds from this group using random forest machine learning. Six compounds (daidzin, biochanin A, phenylethylamine, rhein, o-Cresol, and arbutin) belonging to phenylpropanoids and polyketides (3), benzenoids (2), and organic oxygen compound (1) were tested and exhibited estrogenic potency based upon the E-screen assay. This study confirmed that both Microcystis strains produce exudates that contain compounds with estrogenic properties, a growing concern in cyanobacteria management.PMID:38613957 | DOI:10.1016/j.jhazmat.2024.134170

The microbiota drives diurnal rhythms in tryptophan metabolism in the stressed gut

Sat, 13/04/2024 - 12:00
Cell Rep. 2024 Apr 11;43(4):114079. doi: 10.1016/j.celrep.2024.114079. Online ahead of print.ABSTRACTChronic stress disrupts microbiota-gut-brain axis function and is associated with altered tryptophan metabolism, impaired gut barrier function, and disrupted diurnal rhythms. However, little is known about the effects of acute stress on the gut and how it is influenced by diurnal physiology. Here, we used germ-free and antibiotic-depleted mice to understand how microbiota-dependent oscillations in tryptophan metabolism would alter gut barrier function at baseline and in response to an acute stressor. Cecal metabolomics identified tryptophan metabolism as most responsive to a 15-min acute stressor, while shotgun metagenomics revealed that most bacterial species exhibiting rhythmicity metabolize tryptophan. Our findings highlight that the gastrointestinal response to acute stress is dependent on the time of day and the microbiome, with a signature of stress-induced functional alterations in the ileum and altered tryptophan metabolism in the colon.PMID:38613781 | DOI:10.1016/j.celrep.2024.114079

A Free Amino Acid Diet Alleviates Colorectal Tumorigenesis through Modulating Gut Microbiota and Metabolites

Sat, 13/04/2024 - 12:00
Nutrients. 2024 Apr 3;16(7):1040. doi: 10.3390/nu16071040.ABSTRACTColorectal cancer (CRC), a major global health concern, may be influenced by dietary protein digestibility impacting gut microbiota and metabolites, which is crucial for cancer therapy effectiveness. This study explored the effects of a casein protein diet (CTL) versus a free amino acid (FAA)-based diet on CRC progression, gut microbiota, and metabolites using carcinogen-induced (AOM/DSS) and spontaneous genetically induced (ApcMin/+ mice) CRC mouse models. Comprehensive approaches including 16s rRNA gene sequencing, transcriptomics, metabolomics, and immunohistochemistry were utilized. We found that the FAA significantly attenuated CRC progression, evidenced by reduced colonic shortening and histopathological alterations compared to the CTL diet. Notably, the FAA enriched beneficial gut bacteria like Akkermansia and Bacteroides and reversed CRC-associated dysbiosis. Metabolomic analysis highlighted an increase in ornithine cycle metabolites and specific fatty acids, such as Docosapentaenoic acid (DPA), in FAA-fed mice. Transcriptomic analysis revealed that FAA up-regulated Egl-9 family hypoxia inducible factor 3 (Egln 3) and downregulated several cancer-associated pathways including Hippo, mTOR, and Wnt signaling. Additionally, DPA was found to significantly induce EGLN 3 expression in CRC cell lines. These results suggest that FAA modulate gut microbial composition, enhance protective metabolites, improve gut barrier functions, and inhibit carcinogenic pathways.PMID:38613073 | DOI:10.3390/nu16071040

Gut-Liver Axis Dysregulation in Portal Hypertension: Emerging Frontiers

Sat, 13/04/2024 - 12:00
Nutrients. 2024 Apr 1;16(7):1025. doi: 10.3390/nu16071025.ABSTRACTPortal hypertension (PH) is a complex clinical challenge with severe complications, including variceal bleeding, ascites, hepatic encephalopathy, and hepatorenal syndrome. The gut microbiota (GM) and its interconnectedness with human health have emerged as a captivating field of research. This review explores the intricate connections between the gut and the liver, aiming to elucidate how alterations in GM, intestinal barrier function, and gut-derived molecules impact the development and progression of PH. A systematic literature search, following PRISMA guidelines, identified 12 original articles that suggest a relationship between GM, the gut-liver axis, and PH. Mechanisms such as dysbiosis, bacterial translocation, altered microbial structure, and inflammation appear to orchestrate this relationship. One notable study highlights the pivotal role of the farnesoid X receptor axis in regulating the interplay between the gut and liver and proposes it as a promising therapeutic target. Fecal transplantation experiments further emphasize the pathogenic significance of the GM in modulating liver maladies, including PH. Recent advancements in metagenomics and metabolomics have expanded our understanding of the GM's role in human ailments. The review suggests that addressing the unmet need of identifying gut-liver axis-related metabolic and molecular pathways holds potential for elucidating pathogenesis and directing novel therapeutic interventions.PMID:38613058 | DOI:10.3390/nu16071025

Plasma-Induced Changes in the Metabolome Following Vistula Tart Cherry Consumption

Sat, 13/04/2024 - 12:00
Nutrients. 2024 Apr 1;16(7):1023. doi: 10.3390/nu16071023.ABSTRACTEvidence suggests that tart cherry (TC) supplementation has beneficial effects on health indices and recovery following strenuous exercise. However, little is known about the mechanisms and how TC might modulate the human metabolome. The aim of this study was to evaluate the influence of an acute high- and low-dose of Vistula TC supplementation on the metabolomic profile in humans. In a randomised, double-blind, placebo controlled, cross-over design, 12 healthy participants (nine male and three female; mean ± SD age, stature, and mass were 29 ± 7 years old, 1.75 ± 0.1 m, and 77.3 ± 10.5 kg, respectively) visited the laboratory on three separate occasions (high dose; HI, low dose; LO, or placebo), separated by at least seven days. After an overnight fast, a baseline venous blood sample was taken, followed by consumption of a standardised breakfast and dose conditions (HI, LO, or placebo). Subsequent blood draws were taken 1, 2, 3, 5, and 8 h post consumption. Following sample preparation, an untargeted metabolomics approach was adopted, and the extracts analysed by LCMS/MS. When all time points were collated, a principal component analysis showed a significant difference between the conditions (p < 0.05), such that the placebo trial had homogeneity, and HI showed greater heterogeneity. In a sub-group analysis, cyanidine-3-O-glucoside (C3G), cyanidine-3-O-rutinoside (C3R), and vanillic acid (VA) were detected in plasma and showed significant differences (p < 0.05) following acute consumption of Vistula TC, compared to the placebo group. These results provide evidence that phenolics are bioavailable in plasma and induce shifts in the metabolome following acute Vistula TC consumption. These data could be used to inform future intervention studies where changes in physiological outcomes could be influenced by metabolomic shifts following acute supplementation.PMID:38613057 | DOI:10.3390/nu16071023

The Anti-Microbial Peptide Citrocin Controls <em>Pseudomonas aeruginosa</em> Biofilms by Breaking Down Extracellular Polysaccharide

Sat, 13/04/2024 - 12:00
Int J Mol Sci. 2024 Apr 8;25(7):4122. doi: 10.3390/ijms25074122.ABSTRACTCitrocin is an anti-microbial peptide that holds great potential in animal feed. This study evaluates the anti-microbial and anti-biofilm properties of Citrocin and explores the mechanism of action of Citrocin on the biofilm of P. aeruginosa. The results showed that Citrocin had a significant inhibitory effect on the growth of P. aeruginosa with a minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of 0.3 mg/mL. All five concentrations (1/4MIC, 1/2MIC, MIC, 2MIC, and 4MIC) of Citrocin inhibited P. aeruginosa biofilm formation. Citrocin at the MIC, 2MIC and 4MIC removed 42.7%, 76.0% and 83.2% of mature biofilms, respectively, and suppressed the swarming motility, biofilm metabolic activity and extracellular polysaccharide production of P. aeruginosa. Metabolomics analysis indicated that 0.3 mg/mL of Citrocin up- regulated 26 and down-regulated 83 metabolites, mainly comprising amino acids, fatty acids, organic acids and sugars. Glucose and amino acid metabolic pathways, including starch and sucrose metabolism as well as arginine and proline metabolism, were highly enriched by Citrocin. In summary, our research reveals the anti-biofilm mechanism of Citrocin at the metabolic level, which provides theoretical support for the development of novel anti-biofilm strategies for combatting P. aeruginosa.PMID:38612931 | DOI:10.3390/ijms25074122

Biological Basis of Breast Cancer-Related Disparities in Precision Oncology Era

Sat, 13/04/2024 - 12:00
Int J Mol Sci. 2024 Apr 8;25(7):4113. doi: 10.3390/ijms25074113.ABSTRACTPrecision oncology is based on deep knowledge of the molecular profile of tumors, allowing for more accurate and personalized therapy for specific groups of patients who are different in disease susceptibility as well as treatment response. Thus, onco-breastomics is able to discover novel biomarkers that have been found to have racial and ethnic differences, among other types of disparities such as chronological or biological age-, sex/gender- or environmental-related ones. Usually, evidence suggests that breast cancer (BC) disparities are due to ethnicity, aging rate, socioeconomic position, environmental or chemical exposures, psycho-social stressors, comorbidities, Western lifestyle, poverty and rurality, or organizational and health care system factors or access. The aim of this review was to deepen the understanding of BC-related disparities, mainly from a biomedical perspective, which includes genomic-based differences, disparities in breast tumor biology and developmental biology, differences in breast tumors' immune and metabolic landscapes, ecological factors involved in these disparities as well as microbiomics- and metagenomics-based disparities in BC. We can conclude that onco-breastomics, in principle, based on genomics, proteomics, epigenomics, hormonomics, metabolomics and exposomics data, is able to characterize the multiple biological processes and molecular pathways involved in BC disparities, clarifying the differences in incidence, mortality and treatment response for different groups of BC patients.PMID:38612922 | DOI:10.3390/ijms25074113

Integrative Metabolomic and Transcriptomic Analyses Reveal the Mechanism of Petal Blotch Formation in Rosa persica

Sat, 13/04/2024 - 12:00
Int J Mol Sci. 2024 Apr 4;25(7):4030. doi: 10.3390/ijms25074030.ABSTRACTPetal blotch is a specific flower color pattern commonly found in angiosperm families. In particular, Rosa persica is characterized by dark red blotches at the base of yellow petals. Modern rose cultivars with blotches inherited the blotch trait from R. persica. Therefore, understanding the mechanism for blotch formation is crucial for breeding rose cultivars with various color patterns. In this study, the metabolites and genes responsible for the blotch formation in R. persica were identified for the first time through metabolomic and transcriptomic analyses using LC-MS/MS and RNA-seq. A total of 157 flavonoids were identified, with 7 anthocyanins as the major flavonoids, namely, cyanidin 3-O-(6″-O-malonyl) glucoside 5-O-glucoside, cyanidin-3-O-glucoside, cyanidin 3-O-galactoside, cyanidin O-rutinoside-O-malonylglucoside, pelargonidin 3-O-glucoside, pelargonidin 3,5-O-diglucoside, and peonidin O-rutinoside-O-malonylglucoside, contributing to pigmentation and color darkening in the blotch parts of R. persica, whereas carotenoids predominantly influenced the color formation of non-blotch parts. Zeaxanthin and antheraxanthin mainly contributed to the yellow color formation of petals at the semi-open and full bloom stages. The expression levels of two 4-coumarate: CoA ligase genes (Rbe014123 and Rbe028518), the dihydroflavonol 4-reductase gene (Rbe013916), the anthocyanidin synthase gene (Rbe016466), and UDP-flavonoid glucosyltransferase gene (Rbe026328) indicated that they might be the key structural genes affecting the formation and color of petal blotch. Correlation analysis combined with weighted gene co-expression network analysis (WGCNA) further characterized 10 transcription factors (TFs). These TFs might participate in the regulation of anthocyanin accumulation in the blotch parts of petals by modulating one or more structural genes. Our results elucidate the compounds and molecular mechanisms underlying petal blotch formation in R. persica and provide valuable candidate genes for the future genetic improvement of rose cultivars with novel flower color patterns.PMID:38612838 | DOI:10.3390/ijms25074030

The Plight of the Metabolite: Oxidative Stress and Tear Film Destabilisation Evident in Ocular Allergy Sufferers across Seasons in Victoria, Australia

Sat, 13/04/2024 - 12:00
Int J Mol Sci. 2024 Apr 4;25(7):4019. doi: 10.3390/ijms25074019.ABSTRACTOcular allergy (OA) is characterised by ocular surface itchiness, redness, and inflammation in response to allergen exposure. The primary aim of this study was to assess differences in the human tear metabolome and lipidome between OA and healthy controls (HCs) across peak allergy (spring-summer) and off-peak (autumn-winter) seasons in Victoria, Australia. A total of 19 participants (14 OA, 5 HCs) aged 18-45 were recruited and grouped by allergy questionnaire score. Metabolites and lipids from tear samples were analysed using mass spectrometry. Data were analysed using TraceFinder and Metaboanalyst. Metabolomics analysis showed 12 differentially expressed (DE) metabolites between those with OA and the HCs during the peak allergy season, and 24 DE metabolites were found in the off-peak season. The expression of niacinamide was upregulated in OA sufferers vs. HCs across both seasons (p ≤ 0.05). A total of 6 DE lipids were DE between those with OA and the HCs during the peak season, and 24 were DE in the off-peak season. Dysregulated metabolites affected oxidative stress, inflammation, and homeostasis across seasons, suggesting a link between OA-associated itch and ocular surface damage via eye rubbing. Tear lipidome changes were minimal between but suggested tear film destabilisation and thinning. Such metabolipodome findings may pave new and exciting ways for effective diagnostics and therapeutics for OA sufferers in the future.PMID:38612830 | DOI:10.3390/ijms25074019

Characterization of Secondary Metabolites of Leaf Buds from Some Species and Hybrids of <em>Populus</em> by Gas Chromatography Coupled with Mass Detection and Two-Dimensional High-Performance Thin-Layer Chromatography Methods with Assessment of Their...

Sat, 13/04/2024 - 12:00
Int J Mol Sci. 2024 Apr 3;25(7):3971. doi: 10.3390/ijms25073971.ABSTRACTPoplars provide medicinal raw plant materials used in pharmacy. Leaf buds are one of the herbal medicinal products collected from poplars, having anti-inflammatory and antiseptic properties, but there are no quality standards for their production and there is a need to determine their botanical sources. Therefore, the chemical compositions of the leaf buds from four species and varieties of poplars, Populus balsamifera, P. × berolinensis, P. × canadensis 'Marilandica', and P. wilsonii were investigated and compared using gas chromatography coupled with mass detection (GC-MS) and two-dimensional high-performance thin-layer chromatography (2D-HPTLC) in order to search for taxa characterized by a high content of biologically active compounds and with a diverse chemical composition that determines their therapeutic effects. The presence of 163 compounds belonging to the groups of flavonoids, phenolic acids derivatives, glycerides, and sesquiterpenes was revealed. Moreover, the conditions for the separation and identification of biologically active compounds occurring in analyzed leaf buds using 2D-HPTLC were optimized and used for metabolomic profiling of the studied poplars, enabling their fast and simple botanical identification. The total phenolic (TPC) and flavonoid (TFC) contents of examined extracts were determined and their antioxidant capacities were estimated by spectrophotometric DPPH, ABTS, and FRAP assays. Based on the analysis of phytochemicals and antioxidant activity, P. × berolinensis buds were selected as the raw plant material for medicinal purposes with the highest content of active compounds and the strongest antioxidant activity.PMID:38612781 | DOI:10.3390/ijms25073971

Metabolic Profiling as an Approach to Differentiate T-Cell Acute Lymphoblastic Leukemia Cell Lines Belonging to the Same Genetic Subgroup

Sat, 13/04/2024 - 12:00
Int J Mol Sci. 2024 Mar 31;25(7):3921. doi: 10.3390/ijms25073921.ABSTRACTT-cell acute lymphoblastic leukemia (T-ALL) is an aggressive tumor mainly affecting children and adolescents. It is driven by multiple genetic mutations that together define the leukemic phenotype. Interestingly, based on genetic alterations and/or deregulated expression, at least six genetic subgroups have been recognized. The TAL/LMO subgroup is one of the most represented genetic subgroups, characterizing 30-45% of pediatric T-ALL cases. The study of lipid and metabolic profiles is increasingly recognized as a valuable tool for comprehending the development and progression of tumors. In this study, metabolic and lipidomic analysis via LC/MS have been carried out on four T-ALL cell lines belonging to the TAL/LMO subgroup (Jurkat, Molt-4, Molt-16, and CCRF-CEM) to identify new potential metabolic biomarkers and to provide a subclassification of T-ALL cell lines belonging to the same subgroup. A total of 343 metabolites were annotated, including 126 polar metabolites and 217 lipid molecules. The statistical analysis, for both metabolic and lipid profiles, shows significant differences and similarities among the four cell lines. The Molt-4 cell line is the most distant cell line and CCRF-CEM shows a high activity in specific pathways when compared to the other cell lines, while Molt-16 and Jurkat show a similar metabolic profile. Additionally, this study highlighted the pathways that differ in each cell line and the possible enzymes involved using bioinformatic tools, capable of predicting the pathways involved by studying the differences in the metabolic profiles. This experiment offers an approach to differentiate T-ALL cell lines and could open the way to verify and confirm the obtained results directly in patients.PMID:38612731 | DOI:10.3390/ijms25073921

Multi-Omics Analysis Reveals the Distinct Features of Metabolism Pathways Supporting the Fruit Size and Color Variation of Giant Pumpkin

Sat, 13/04/2024 - 12:00
Int J Mol Sci. 2024 Mar 29;25(7):3864. doi: 10.3390/ijms25073864.ABSTRACTPumpkin (Cucurbita maxima) is an important vegetable crop of the Cucurbitaceae plant family. The fruits of pumpkin are often used as directly edible food or raw material for a number of processed foods. In nature, mature pumpkin fruits differ in size, shape, and color. The Atlantic Giant (AG) cultivar has the world's largest fruits and is described as the giant pumpkin. AG is well-known for its large and bright-colored fruits with high ornamental and economic value. At present, there are insufficient studies that have focused on the formation factors of the AG cultivar. To address these knowledge gaps, we performed comparative transcriptome, proteome, and metabolome analysis of fruits from the AG cultivar and a pumpkin with relatively small fruit (Hubbard). The results indicate that up-regulation of gene-encoded expansins contributed to fruit cell expansion, and the increased presence of photoassimilates (stachyose and D-glucose) and jasmonic acid (JA) accumulation worked together in terms of the formation of large fruit in the AG cultivar. Notably, perhaps due to the rapid transport of photoassimilates, abundant stachyose that was not converted into glucose in time was detected in giant pumpkin fruits, implying that a unique mode of assimilate unloading is in existence in the AG cultivar. The potential molecular regulatory network of photoassimilate metabolism closely related to pumpkin fruit expansion was also investigated, finding that three MYB transcription factors, namely CmaCh02G015900, CmaCh01G018100, and CmaCh06G011110, may be involved in metabolic regulation. In addition, neoxanthin (a type of carotenoid) exhibited decreased accumulation that was attributed to the down-regulation of carotenoid biosynthesis genes in AG fruits, which may lead to pigmentation differences between the two pumpkin cultivars. Our current work will provide new insights into the potential formation factors of giant pumpkins for further systematic elucidation.PMID:38612673 | DOI:10.3390/ijms25073864

Tea-Derived Polyphenols Enhance Drought Resistance of Tea Plants (<em>Camellia sinensis</em>) by Alleviating Jasmonate-Isoleucine Pathway and Flavonoid Metabolism Flow

Sat, 13/04/2024 - 12:00
Int J Mol Sci. 2024 Mar 29;25(7):3817. doi: 10.3390/ijms25073817.ABSTRACTExtreme drought weather has occurred frequently in recent years, resulting in serious yield loss in tea plantations. The study of drought in tea plantations is becoming more and more intensive, but there are fewer studies on drought-resistant measures applied in actual production. Therefore, in this study, we investigated the effect of exogenous tea polyphenols on the drought resistance of tea plant by pouring 100 mg·L-1 of exogenous tea polyphenols into the root under drought. The exogenous tea polyphenols were able to promote the closure of stomata and reduce water loss from leaves under drought stress. Drought-induced malondialdehyde (MDA) accumulation in tea leaves and roots was also significantly reduced by exogenous tea polyphenols. Combined transcriptomic and metabolomic analyses showed that exogenous tea polyphenols regulated the abnormal responses of photosynthetic and energy metabolism in leaves under drought conditions and alleviated sphingolipid metabolism, arginine metabolism, and glutathione metabolism in the root system, which enhanced the drought resistance of tea seedlings. Exogenous tea polyphenols induced jasmonic acid-isoleucine (JA-ILE) accumulation in the root system, and the jasmonic acid-isoleucine synthetase gene (TEA028623), jasmonic acid ZIM structural domain proteins (JAMs) synthesis genes (novel.22237, TEA001821), and the transcription factor MYC2 (TEA014288, TEA005840) were significantly up-regulated. Meanwhile, the flavonoid metabolic flow was significantly altered in the root; for example, the content of EGCG, ECG, and EGC was significantly increased. Thus, exogenous tea polyphenols enhance the drought resistance of tea plants through multiple pathways.PMID:38612625 | DOI:10.3390/ijms25073817

Collagen Lattice Model, Populated with Heterogeneous Cancer-Associated Fibroblasts, Facilitates Advanced Reconstruction of Pancreatic Cancer Microenvironment

Sat, 13/04/2024 - 12:00
Int J Mol Sci. 2024 Mar 27;25(7):3740. doi: 10.3390/ijms25073740.ABSTRACTPancreatic ductal adenocarcinoma (PDAC) is a solid-tumor malignancy. To enhance the treatment landscape of PDAC, a 3D model optimized for rigorous drug screening is essential. Within the PDAC tumor microenvironment, a dense stroma comprising a large extracellular matrix and cancer-associated fibroblasts (CAFs) is well-known for its vital role in modulating tumor growth, cellular heterogeneity, bidirectional paracrine signaling, and chemoresistance. In this study, we employed a fibroblast-populated collagen lattice (FPCL) modeling approach that has the ability to replicate fibroblast contractility in the collagenous matrix to build dense stroma. This FPCL model allows CAF differentiation by facilitating multifaceted cell-cell interactions between cancer cells and CAFs, with the differentiation further influenced by mechanical forces and hypoxia carried within the 3D structure. Our FPCL models displayed hallmark features, including ductal gland structures and differentiated CAFs with spindle shapes. Through morphological explorations alongside in-depth transcriptomic and metabolomic profiling, we identified substantial molecular shifts from the nascent to mature model stages and potential metabolic biomarkers, such as proline. The initial pharmacological assays highlighted the effectiveness of our FPCL model in screening for improved therapeutic strategies. In conclusion, our PDAC modeling platform mirrors complex tumor microenvironmental dynamics and offers an unparalleled perspective for therapeutic exploration.PMID:38612551 | DOI:10.3390/ijms25073740

Dietary Methionine Restriction Improves Gut Health and Alters the Plasma Metabolomic Profile in Rats by Modulating the Composition of the Gut Microbiota

Sat, 13/04/2024 - 12:00
Int J Mol Sci. 2024 Mar 25;25(7):3657. doi: 10.3390/ijms25073657.ABSTRACTDietary methionine restriction (MetR) offers an integrated set of beneficial health effects, including delaying aging, extending health span, preventing fat accumulation, and reducing oxidative stress. This study aimed to investigate whether MetR exerts entero-protective effects by modulating intestinal flora, and the effect of MetR on plasma metabolites in rats. Rats were fed diets containing 0.86% methionine (CON group) and 0.17% methionine (MetR group) for 6 weeks. Several indicators of inflammation, gut microbiota, plasma metabolites, and intestinal barrier function were measured. 16S rRNA gene sequencing was used to analyze the cecal microbiota. The MetR diet reduced the plasma and colonic inflammatory factor levels. The MetR diet significantly improved intestinal barrier function by increasing the mRNA expression of tight junction proteins, such as zonula occludens (ZO)-1, claudin-3, and claudin-5. In addition, MetR significantly increased the levels of short-chain fatty acids (SCFAs) by increasing the abundance of SCFAs-producing Erysipclotxichaceae and Clostridium_sensu_stricto_1 and decreasing the abundance of pro-inflammatory bacteria Proteobacteria and Escherichia-Shigella. Furthermore, MetR reduced the plasma levels of taurochenodeoxycholate-7-sulfate, taurocholic acid, and tauro-ursodeoxycholic acid. Correlation analysis identified that colonic acetate, total colonic SCFAs, 8-acetylegelolide, collettiside I, 6-methyladenine, and cholic acid glucuronide showed a significant positive correlation with Clostridium_sensu_stricto_1 abundance but a significant negative correlation with Escherichia-Shigella and Enterococcus abundance. MetR improved gut health and altered the plasma metabolic profile by regulating the gut microbiota in rats.PMID:38612469 | DOI:10.3390/ijms25073657

Metabolome and Transcriptome Analysis Revealed the Pivotal Role of Exogenous Melatonin in Enhancing Salt Tolerance in Vitis vinifera L

Sat, 13/04/2024 - 12:00
Int J Mol Sci. 2024 Mar 25;25(7):3651. doi: 10.3390/ijms25073651.ABSTRACTVitis vinifera L. possesses high economic value, but its growth and yield are seriously affected by salt stress. Though melatonin (MT) has been widely reported to enhance tolerance towards abiotic stresses in plants, the regulatory role melatonin plays in resisting salt tolerance in grapevines has scarcely been studied. Here, we observed the phenotypes under the treatment of different melatonin concentrations, and then transcriptome and metabolome analyses were performed. A total of 457 metabolites were detected in CK- and MT-treated cell cultures at 1 WAT (week after treatment) and 4 WATs. Exogenous melatonin treatment significantly increased the endogenous melatonin content while down-regulating the flavonoid content. To be specific, the melatonin content was obviously up-regulated, while the contents of more than a dozen flavonoids were down-regulated. Auxin response genes and melatonin synthesis-related genes were regulated by the exogenous melatonin treatment. WGCNA (weighted gene coexpression network analysis) identified key salt-responsive genes; they were directly or indirectly involved in melatonin synthesis and auxin response. The synergistic effect of salt and melatonin treatment was investigated by transcriptome analysis, providing additional evidence for the stress-alleviating properties of melatonin through auxin-related pathways. The present study explored the impact of exogenous melatonin on grapevines' ability to adapt to salt stress and provided novel insights into enhancing their tolerance to salt stress.PMID:38612463 | DOI:10.3390/ijms25073651

Anti-Melanoma Effects of Miconazole: Investigating the Mitochondria Involvement

Sat, 13/04/2024 - 12:00
Int J Mol Sci. 2024 Mar 22;25(7):3589. doi: 10.3390/ijms25073589.ABSTRACTMiconazole is an antimycotic drug showing anti-cancer effects in several cancers. However, little is known on its effects in melanoma. A375 and SK-MEL-28 human melanoma cell lines were exposed to miconazole and clotrimazole (up to 100 mM). Proliferation, viability with MTT assay and vascular mimicry were assayed at 24 h treatment. Molecular effects were measured at 6 h, namely, ATP-, ROS-release and mitochondria-related cytofluorescence. A metabolomic profile was also investigated at 6 h treatment. Carnitine was one of the most affected metabolites; therefore, the expression of 29 genes involved in carnitine metabolism was investigated in the public platform GEPIA2 on 461 melanoma patients and 558 controls. After 24 h treatments, miconazole and clotrimazole strongly and significantly inhibited proliferation in the presence of 10% serum on either melanoma cell lines; they also strongly reduced viability and vascular mimicry. After 6 h treatment, ATP reduction and ROS increase were observed, as well as a significant reduction in mitochondria-related fluorescence. Further, in A375, miconazole strongly and significantly altered expression of several metabolites including carnitines, phosphatidyl-cholines, all amino acids and several other small molecules, mostly metabolized in mitochondria. The expression of 12 genes involved in carnitine metabolism was found significantly modified in melanoma patients, 6 showing a significant impact on patients' survival. Finally, miconazole antiproliferation activity on A375 was found completely abrogated in the presence of carnitine, supporting a specific role of carnitine in melanoma protection toward miconazole effect, and was significantly reversed in the presence of caspases inhibitors such as ZVAD-FMK and Ac-DEVD-CHO, and a clear pro-apoptotic effect was observed in miconazole-treated cells, by FACS analysis of Annexin V-FITC stained cells. Miconazole strongly affects proliferation and other biological features in two human melanoma cell lines, as well as mitochondria-related functions such as ATP- and ROS-release, and the expression of several metabolites is largely dependent on mitochondria function. Miconazole, likely acting via carnitine and mitochondria-dependent apoptosis, is therefore suggested as a candidate for further investigations in melanoma treatments.PMID:38612401 | DOI:10.3390/ijms25073589

Potential Regulatory Networks and Heterosis for Flavonoid and Terpenoid Contents in Pak Choi: Metabolomic and Transcriptome Analyses

Sat, 13/04/2024 - 12:00
Int J Mol Sci. 2024 Mar 22;25(7):3587. doi: 10.3390/ijms25073587.ABSTRACTPak choi exhibits a diverse color range and serves as a rich source of flavonoids and terpenoids. However, the mechanisms underlying the heterosis and coordinated regulation of these compounds-particularly isorhamnetin-remain unclear. This study involved three hybrid combinations and the detection of 528 metabolites from all combinations, including 26 flavonoids and 88 terpenoids, through untargeted metabolomics. Analysis of differential metabolites indicated that the heterosis for the flavonoid and terpenoid contents was parent-dependent, and positive heterosis was observed for isorhamnetin in the two hybrid combinations (SZQ, 002 and HMG, ZMG). Moreover, there was a high transcription level of flavone 3'-O-methyltransferase, which is involved in isorhamnetin biosynthesis. The third group was considered the ideal hybrid combination for investigating the heterosis of flavonoid and terpenoid contents. Transcriptome analysis identified a total of 12,652 DEGs (TPM > 1) in various groups that were used for comparison, and DEGs encoding enzymes involved in various categories, including "carotenoid bio-synthesis" and "anthocyanin biosynthesis", were enriched in the hybrid combination (SZQ, 002). Moreover, the category of anthocyanin biosynthesis also was enriched in the hybrid combination (HMG, ZMG). The flavonoid pathway demonstrated more differential metabolites than the terpenoid pathway did. The WGCNA demonstrated notable positive correlations between the dark-green modules and many flavonoids and terpenoids. Moreover, there were 23 ERF genes in the co-expression network (r ≥ 0.90 and p < 0.05). Thus, ERF genes may play a significant role in regulating flavonoid and terpenoid biosynthesis. These findings enhance our understanding of the heterosis and coordinated regulation of flavonoid and terpenoid biosynthesis in pak choi, offering insights for genomics-based breeding improvements.PMID:38612398 | DOI:10.3390/ijms25073587

Identification of Growth-Related Gene <em>BAMBI</em> and Analysis of Gene Structure and Function in the Pacific White Shrimp <em>Litopenaeus vannamei</em>

Sat, 13/04/2024 - 12:00
Animals (Basel). 2024 Apr 1;14(7):1074. doi: 10.3390/ani14071074.ABSTRACTAs one of the most important aquaculture species in the world, the improvement of growth traits of the Pacific white shrimp (Litopenaeus vannamei), has always been a primary focus. In this study, we conducted SNP-specific locus analysis and identified a growth-related gene, BAMBI, in L. vannamei. We analyzed the structure and function of LvBAMBI using genomic, transcriptomic, metabolomic, and RNA interference (RNAi) assays. The LvBAMBI possessed highly conserved structural domains and widely expressed in various tissues. Knockdown of LvBAMBI significantly inhibited the gain of body length and weight of the shrimp, underscoring its role as a growth-promoting factor. Specifically, knockdown of LvBAMBI resulted in a significant downregulation of genes involved in lipid metabolism, protein synthesis, catabolism and transport, and immunity. Conversely, genes related to glucose metabolism exhibited significant upregulations. Analysis of differential metabolites (DMs) in metabolomics further revealed that LvBAMBI knockdown may primarily affect shrimp growth by regulating biological processes related to lipid and glucose metabolism. These results suggested that LvBAMBI plays a crucial role in regulating lipid metabolism, glucose metabolism, and protein transport in shrimp. This study provides valuable insights for future research and utilization of BAMBI genes in shrimp and crustaceans.PMID:38612313 | DOI:10.3390/ani14071074

Pages