PubMed
Metabolomic kinetics investigation of Camellia sinensis kombucha using mass spectrometry and bioinformatics approaches
Heliyon. 2024 Apr 2;10(7):e28937. doi: 10.1016/j.heliyon.2024.e28937. eCollection 2024 Apr 15.ABSTRACTKombucha is created through the fermentation of Camellia sinensis tea leaves, along with sucrose, utilizing a symbiotic consortium of bacteria and yeast cultures. Nonetheless, there exists a dearth of comprehensive information regarding the spectrum of metabolites that constitute this beverage. To explore this intricate system, metabolomics was used to investigate fermentation kinetics of Kombucha. For that, an experimental framework was devised to assess the impact of varying sucrose concentrations and fermentation temperatures over a ten-day period of kombucha fermentation. Following fermentation, samples were analyzed using an LC-QTOF-MS system and a distinctive metabolomic profile was observed. Principal component analysis was used to discriminate between metabolite profiles. Moreover, the identified compounds were subjected to classification using the GNPS platform. The findings underscore notable differences in compound class concentrations attributable to distinct fermentation conditions. Furthermore, distinct metabolic pathways were identified, specially some related to the biotransformation of flavonoids. This comprehensive investigation offers valuable insights into the pivotal role of SCOBY in driving metabolite production and underscores the potential bioactivity harbored within Kombucha.PMID:38601539 | PMC:PMC11004822 | DOI:10.1016/j.heliyon.2024.e28937
Multiple omics revealed the growth-promoting mechanism of <em>Bacillus velezensis</em> strains on ramie
Front Plant Sci. 2024 Mar 27;15:1367862. doi: 10.3389/fpls.2024.1367862. eCollection 2024.ABSTRACTBeneficial bacteria that promote plant growth can shield plants from negative effects. Yet, the specific biological processes that drive the relationships between soil microbes and plant metabolism are still not fully understood. To investigate this further, we utilized a combination of microbiology and non-targeted metabolomics techniques to analyze the impact of plant growth-promoting bacteria on both the soil microbial communities and the metabolic functions within ramie (Boehmeria nivea) tissues. The findings indicated that the yield and traits of ramie plants are enhanced after treatment with Bacillus velezensis (B. velezensis). These B. velezensis strains exhibit a range of plant growth-promoting properties, including phosphate solubilization and ammonia production. Furthermore, strain YS1 also demonstrates characteristics of IAA production. The presence of B. velezensis resulted in a decrease in soil bacteria diversity, resulting in significant changes in the overall structure and composition of soil bacteria communities. Metabolomics showed that B. velezensis significantly altered the ramie metabolite spectrum, and the differential metabolites were notably enriched (P < 0.05) in five main metabolic pathways: lipid metabolism, nucleotide metabolism, amino acid metabolism, plant secondary metabolites biosynthesis, and plant hormones biosynthesis. Seven common differential metabolites were identified. Correlation analysis showed that the microorganisms were closely related to metabolite accumulation and yield index. In the B. velezensis YS1 and B. velezensis Y4-6-1 treatment groups, the relative abundances of BIrii41 and Bauldia were significantly positively correlated with sphingosine, 9,10,13-TriHOME, fresh weight, and root weight, indicating that these microorganisms regulate the formation of various metabolites, promoting the growth and development of ramie. Conclusively, B. velezensis (particularly YS1) played an important role in regulating soil microbial structure and promoting plant metabolism, growth, and development. The application of the four types of bacteria in promoting ramie growth provides a good basis for future application of biological fertilizers and bio-accelerators.PMID:38601307 | PMC:PMC11004232 | DOI:10.3389/fpls.2024.1367862
Review: Mechanisms of TIMP-3 accumulation and pathogenesis in Sorsby fundus dystrophy
Mol Vis. 2024 Mar 3;30:74-91. eCollection 2024.ABSTRACTSorsby fundus dystrophy (SFD) is a rare, inherited form of macular degeneration caused by mutations in the gene encoding tissue inhibitor of metalloproteinases 3 (TIMP-3). There are 21 mutations currently associated with SFD, with some variants (e.g., Ser179Cys, Tyr191Cys, and Ser204Cys) having been studied much more than others. We review what is currently known about the identified SFD variants in terms of their dimerization, metalloproteinase inhibition, and impact on angiogenesis, with a focus on disparities between reports and areas requiring further study. We also explore the potential molecular mechanisms leading to the accumulation of extracellular TIMP-3 in SFD and consider how accumulated TIMP-3 causes macular damage. Recent reports have identified extraocular pathologies in a small number of SFD patients. We discuss these intriguing findings and consider the apparent discrepancy between the widespread expression of TIMP-3 and the primarily retinal manifestations of SFD. The potential benefits of novel experimental approaches (e.g., metabolomics and stem cell models) in terms of investigating SFD pathology are presented. The review thus highlights gaps in our current molecular understanding of SFD and suggests ways to support the development of novel therapies.PMID:38601018 | PMC:PMC11006011
Advancements in CHO metabolomics: techniques, current state and evolving methodologies
Front Bioeng Biotechnol. 2024 Mar 27;12:1347138. doi: 10.3389/fbioe.2024.1347138. eCollection 2024.ABSTRACTBackground: Investigating the metabolic behaviour of different cellular phenotypes, i.e., good/bad grower and/or producer, in production culture is important to identify the key metabolite(s)/pathway(s) that regulate cell growth and/or recombinant protein production to improve the overall yield. Currently, LC-MS, GC-MS and NMR are the most used and advanced technologies for investigating the metabolome. Although contributed significantly in the domain, each technique has its own biasness towards specific metabolites or class of metabolites due to various reasons including variability in the concept of working, sample preparation, metabolite-extraction methods, metabolite identification tools, and databases. As a result, the application of appropriate analytical technique(s) is very critical. Purpose and scope: This review provides a state-of-the-art technological insights and overview of metabolic mechanisms involved in regulation of cell growth and/or recombinant protein production for improving yield from CHO cultures. Summary and conclusion: In this review, the advancements in CHO metabolomics over the last 10 years are traced based on a bibliometric analysis of previous publications and discussed. With the technical advancement in the domain of LC-MS, GC-MS and NMR, metabolites of glycolytic and nucleotide biosynthesis pathway (glucose, fructose, pyruvate and phenylalanine, threonine, tryptophan, arginine, valine, asparagine, and serine, etc.) were observed to be upregulated in exponential-phase thereby potentially associated with cell growth regulation, whereas metabolites/intermediates of TCA, oxidative phosphorylation (aspartate, glutamate, succinate, malate, fumarate and citrate), intracellular NAD+/NADH ratio, and glutathione metabolic pathways were observed to be upregulated in stationary-phase and hence potentially associated with increased cell-specific productivity in CHO bioprocess. Moreover, each of technique has its own bias towards metabolite identification, indicating their complementarity, along with a number of critical gaps in the CHO metabolomics pipeline and hence first time discussed here to identify their potential remedies. This knowledge may help in future study designs to improve the metabolomic coverage facilitating identification of the metabolites/pathways which might get missed otherwise and explore the full potential of metabolomics for improving the CHO bioprocess performances.PMID:38600943 | PMC:PMC11004234 | DOI:10.3389/fbioe.2024.1347138
A comprehensive review of machine learning techniques for multi-omics data integration: challenges and applications in precision oncology
Brief Funct Genomics. 2024 Apr 10:elae013. doi: 10.1093/bfgp/elae013. Online ahead of print.ABSTRACTMulti-omics data play a crucial role in precision medicine, mainly to understand the diverse biological interaction between different omics. Machine learning approaches have been extensively employed in this context over the years. This review aims to comprehensively summarize and categorize these advancements, focusing on the integration of multi-omics data, which includes genomics, transcriptomics, proteomics and metabolomics, alongside clinical data. We discuss various machine learning techniques and computational methodologies used for integrating distinct omics datasets and provide valuable insights into their application. The review emphasizes both the challenges and opportunities present in multi-omics data integration, precision medicine and patient stratification, offering practical recommendations for method selection in various scenarios. Recent advances in deep learning and network-based approaches are also explored, highlighting their potential to harmonize diverse biological information layers. Additionally, we present a roadmap for the integration of multi-omics data in precision oncology, outlining the advantages, challenges and implementation difficulties. Hence this review offers a thorough overview of current literature, providing researchers with insights into machine learning techniques for patient stratification, particularly in precision oncology. Contact: anirban@klyuniv.ac.in.PMID:38600757 | DOI:10.1093/bfgp/elae013
Soybean steroids improve crop abiotic stress tolerance and increase yield
Plant Biotechnol J. 2024 Apr 10. doi: 10.1111/pbi.14349. Online ahead of print.ABSTRACTSterols have long been associated with diverse fields, such as cancer treatment, drug development, and plant growth; however, their underlying mechanisms and functions remain enigmatic. Here, we unveil a critical role played by a GmNF-YC9-mediated CCAAT-box transcription complex in modulating the steroid metabolism pathway within soybeans. Specifically, this complex directly activates squalene monooxygenase (GmSQE1), which is a rate-limiting enzyme in steroid synthesis. Our findings demonstrate that overexpression of either GmNF-YC9 or GmSQE1 significantly enhances soybean stress tolerance, while the inhibition of SQE weakens this tolerance. Field experiments conducted over two seasons further reveal increased yields per plant in both GmNF-YC9 and GmSQE1 overexpressing plants under drought stress conditions. This enhanced stress tolerance is attributed to the reduction of abiotic stress-induced cell oxidative damage. Transcriptome and metabolome analyses shed light on the upregulation of multiple sterol compounds, including fucosterol and soyasaponin II, in GmNF-YC9 and GmSQE1 overexpressing soybean plants under stress conditions. Intriguingly, the application of soybean steroids, including fucosterol and soyasaponin II, significantly improves drought tolerance in soybean, wheat, foxtail millet, and maize. These findings underscore the pivotal role of soybean steroids in countering oxidative stress in plants and offer a new research strategy for enhancing crop stress tolerance and quality from gene regulation to chemical intervention.PMID:38600703 | DOI:10.1111/pbi.14349
Comprehensive antifungal investigation of natural plant extracts against Neosartorya spp. (Aspergillus spp.) of agriculturally significant microbiological contaminants and shaping their metabolic profile
Sci Rep. 2024 Apr 10;14(1):8399. doi: 10.1038/s41598-024-58791-4.ABSTRACTFungi belonging to the genus Neosartorya (teleomorph of Aspergillus spp.) are of great concern in the production and storage of berries and fruit-based products, mainly due to the production of thermoresistant ascospores that cause food spoilage and possible secretion of mycotoxins. We initially tested the antifungal effect of six natural extracts against 20 isolates of Neosartorya spp. using a traditional inhibition test on Petri dishes. Tested isolates did not respond uniformly, creating 5 groups of descending sensitivity. Ten isolates best representing of the established sensitivity clusters were chosen for further investigation using a Biolog™ MT2 microplate assay with the same 6 natural extracts. Additionally, to test for metabolic profile changes, we used a Biolog™ FF microplate assay after pre-incubation with marigold extract. All natural extracts had an inhibitory effect on Neosartorya spp. growth and impacted its metabolism. Lavender and tea tree oil extracts at a concentration of 1000 µg mL-1 presented the strongest antifungal effect during the inhibition test, however all extracts exhibited inhibitory properties at even the lowest dose (5 µg mL-1). The fungal stress response in the presence of marigold extract was characterized by a decrease of amino acids and carbohydrates consumption and an uptake of carboxylic acids on the FF microplates, where the 10 studied isolates also presented differences in their innate resilience, creating 3 distinctive sensitivity groups of high, average and low sensitivity. The results confirm that natural plant extracts and essential oils inhibit and alter the growth and metabolism of Neosartorya spp. suggesting a possible future use in sustainable agriculture as an alternative to chemical fungicides used in traditional crop protection.PMID:38600229 | PMC:PMC11006677 | DOI:10.1038/s41598-024-58791-4
A Lacticaseibacillus rhamnosus secretome induces immunoregulatory transcriptional, functional and immunometabolic signatures in human THP-1 monocytes
Sci Rep. 2024 Apr 10;14(1):8379. doi: 10.1038/s41598-024-56420-8.ABSTRACTMacrophage responses to activation are fluid and dynamic in their ability to respond appropriately to challenges, a role integral to host defence. While bacteria can influence macrophage differentiation and polarization into pro-inflammatory and alternatively activated phenotypes through direct interactions, many questions surround indirect communication mechanisms mediated through secretomes derived from gut bacteria, such as lactobacilli. We examined effects of secretome-mediated conditioning on THP-1 human monocytes, focusing on the ability of the Lacticaseibacillus rhamnosus R0011 secretome (LrS) to drive macrophage differentiation and polarization and prime immune responses to subsequent challenge with lipopolysaccharide (LPS). Genome-wide transcriptional profiling revealed increased M2-associated gene transcription in response to LrS conditioning in THP-1 cells. Cytokine and chemokine profiling confirmed these results, indicating increased M2-associated chemokine and cytokine production (IL-1Ra, IL-10). These cells had increased cell-surface marker expression of CD11b, CD86, and CX3CR1, coupled with reduced expression of the M1 macrophage-associated marker CD64. Mitochondrial substrate utilization assays indicated diminished reliance on glycolytic substrates, coupled with increased utilization of citric acid cycle intermediates, characteristics of functional M2 activity. LPS challenge of LrS-conditioned THP-1s revealed heightened responsiveness, indicative of innate immune priming. Resting stage THP-1 macrophages co-conditioned with LrS and retinoic acid also displayed an immunoregulatory phenotype with expression of CD83, CD11c and CD103 and production of regulatory cytokines. Secretome-mediated conditioning of macrophages into an immunoregulatory phenotype is an uncharacterized and potentially important route through which lactic acid bacteria and the gut microbiota may train and shape innate immunity at the gut-mucosal interface.PMID:38600116 | PMC:PMC11006683 | DOI:10.1038/s41598-024-56420-8
Differential impact of perfluorooctanoic acid and fluorotelomer ethoxylates on placental metabolism in mice
Chemosphere. 2024 Apr 8:141923. doi: 10.1016/j.chemosphere.2024.141923. Online ahead of print.ABSTRACTPoly- and perfluoroalkyl substances (PFAS) are a group of compounds with uses in industry and many consumer products. Concerns about the potential health effects of these compounds resulted in regulation by the Stockholm Convention on the use of three of the most common PFAS, including perfluorooctanoic acid (PFOA). Thousands of PFAS remain in production that are unregulated and for which their toxicity is unknown. Our group recently identified a new class of PFAS, fluorotelomer ethoxylates (FTEOs), in indoor dust and industrial wastewater. In this study, we investigated the effect of PFAS on placental metabolism by exposing healthy, pregnant CD-1 mice to PFOA or FTEOs at one of three concentrations (0 ng/L (controls), 5 ng/L, 100 ng/L) (n = 7-8/group). While PFOA is banned and PFOA concentrations in human blood are decreasing, we hypothesize that FTEOs will cause adverse pregnancy outcomes similar to PFOA, the compounds they were meant to replace. Placental tissue samples were collected at embryonic day 17.5 and 1H solid-state magic angle spinning nuclear magnetic resonance spectroscopy was used to determine the relative concentration of placental metabolites (n = 18-20/group). At the highest concentration, the relative concentrations of glucose and threonine were increased and the relative concentration of creatine was decreased in the PFOA-exposed placentas compared to controls (p < 0.05). In contrast, the relative concentrations of asparagine and lysine were decreased and the relative concentration of creatine was increased in the FTEOs-exposed placentas compared to controls (p < 0.05). Partial least squares - discriminant analysis showed the FTEOs-exposed and control groups were significantly separated (p < 0.005) and pathway analysis found four biochemical pathways were perturbed following PFOA exposure, while one pathway was altered following FTEOs exposure. Maternal exposure to PFOA and FTEOs had a significant impact on the placental metabolome, with the effect depending on the pollutant. This work motivates further studies to determine exposure levels and evaluate associations with adverse outcomes in human pregnancies.PMID:38599328 | DOI:10.1016/j.chemosphere.2024.141923
Identification of pyruvic and maleic acid as potential markers for disease activity and prognosis in chronic urticaria
J Allergy Clin Immunol. 2024 Apr 8:S0091-6749(24)00336-1. doi: 10.1016/j.jaci.2024.01.032. Online ahead of print.ABSTRACTBACKGROUND: Population-based studies have highlighted the link between chronic urticaria (CU) and metabolic syndrome, and metabolic alterations have been revealed in CU. However, to our knowledge, a comprehensive metabolomics study on a large cohort of CU patients has not been reported.OBJECTIVE: To explore the underlying metabolic subtypes and novel metabolite biomarkers for CU diagnosis and therapy.METHODS: Plasma samples from 80 CU patients and 82 healthy controls (HCs) were collected for metabolomics quantification and performed bioinformatics analysis. Another independent cohort consisting of 144 CU patients was studied to validate the findings. Bone marrow-derived mast cells (BMMCs) and IgE-induced passive cutaneous anaphylaxis (PCA) mice were utilized for in vitro and in vivo experiments, respectively.RESULTS: We observed clear metabolomics difference between CU and HC. Meanwhile, differential metabolites N6-acetyl-l-lysine, L-aspartate, maleic acid and pyruvic acid were used to respectively construct random forest classifiers, and achieved AUCs greater than 0.85, suggesting their potential as diagnostic biomarkers of CU. More importantly, by exploring the underlying metabolic subtypes of CU, we found that the low abundance of pyruvic acid and maleic acid was significantly related to the activity of CU, poor efficacy of second-generation H1-antihistamines (sgAHs), and short relapse-free time. The results were validated in the independent cohort. Moreover, supplementation with pyruvate or maleate could significantly attenuate IgE-mediated mast cells activation in vitro and in vivo.CONCLUSIONS: The combination of plasma pyruvic acid and maleic acid may be effective biomarkers for predicting the disease activity, therapeutic efficacy as well as prognosis for CU patients.PMID:38599289 | DOI:10.1016/j.jaci.2024.01.032
Baseline phenotypes with preserved β-cell function and high insulin concentrations have the best improvements in glucose tolerance after weight loss: results from the prospective DEXLIFE and EGIR-RISC studies
Metabolism. 2024 Apr 8:155910. doi: 10.1016/j.metabol.2024.155910. Online ahead of print.ABSTRACTBACKGROUND: Weight loss and lifestyle intervention improve glucose tolerance delaying the onset of type 2 diabetes (T2D), but individual responses are highly variable. Determining the predictive factors linked to the beneficial effects of weight loss on glucose tolerance could provide tools for individualized prevention plans. Thus, the aim was to investigate the relationship between pre-intervention values of insulin sensitivity and secretion and the improvement in glucose metabolism after weight loss.METHODS: In the DEXLIFE cohort (373 individuals at high risk of T2D, assigned 3:1 to a 12-week lifestyle intervention or a control arm, Trial Registration: ISRCTN66987085), K-means clustering and logistic regression analysis were performed based on pre-intervention indices of insulin sensitivity, insulin secretion (AUC-I), and glucose-stimulated insulin response (ratio of incremental areas of insulin and glucose, iAUC I/G). The response to the intervention was evaluated in terms of reduction of OGTT-glucose concentration. Clusters' validation was done in the prospective EGIR-RISC cohort (n = 1538).RESULTS: Four replicable clusters with different glycemic and metabolomic profiles were identified. Individuals had similar weight loss, but improvement in glycemic profile and β-cell function was different among clusters, highly depending on pre-intervention insulin response to OGTT. Pre-intervention high insulin response was associated with the best improvement in AUC-G, while clusters with low AUC-I and iAUC I/G showed no beneficial effect of weight loss on glucose control, as also confirmed by the logistic regression model.CONCLUSIONS: Individuals with preserved β-cell function and high insulin concentrations at baseline have the best improvement in glucose tolerance after weight loss.PMID:38599278 | DOI:10.1016/j.metabol.2024.155910
Metabolomics applications for plant-based foods origin tracing, cultivars identification and processing: Feasibility and future aspects
Food Chem. 2024 Apr 4;449:139227. doi: 10.1016/j.foodchem.2024.139227. Online ahead of print.ABSTRACTMetabolomics, the systematic study of metabolites, is dedicated to a comprehensive analysis of all aspects of plant-based food research and plays a pivotal role in the nutritional composition and quality control of plant-based foods. The diverse chemical compositions of plant-based foods lead to variations in sensory characteristics and nutritional value. This review explores the application of the metabolomics method to plant-based food origin tracing, cultivar identification, and processing methods. It also addresses the challenges encountered and outlines future directions. Typically, when combined with other omics or techniques, synergistic and complementary information is uncovered, enhancing the classification and prediction capabilities of models. Future research should aim to evaluate all factors affecting food quality comprehensively, and this necessitates advanced research into influence mechanisms, metabolic pathways, and gene expression.PMID:38599108 | DOI:10.1016/j.foodchem.2024.139227
Extention and interlaboratory comparison of an LC-MS/MS multi-class method for the determination of 15 different classes of veterinary drug residues in milk and poultry feed
Food Chem. 2024 Feb 21;449:138834. doi: 10.1016/j.foodchem.2024.138834. Online ahead of print.ABSTRACTAn HPLC-MS/MS multi-class method for quantitation of 15 different classes of veterinary drug residues (>140 analytes) in milk and poultry feed was developed and validated. Accuracy criteria for routine laboratories were met for the majority of analytes, > 83 % in milk and between 50 and 60 % in chicken feed, with an apparent recovery of 60-140 %. Extraction efficiency criteria were met for >95 % of the analytes for milk and > 80 % for chicken feed. Intermediate precision meets the SANTE criterion of RSD < 20 % for 80-90 % of the analytes in both matrices. For all analytes with an existing MRL in milk, the LOQ was below the related MRL. Twenty-nine samples of commercial milk and chicken feed were analyzed within the interlaboratory comparison. No residues of veterinary drugs were found in the milk samples. However, the feed samples exhibited high levels of nicarbazin, salinomycin, and decoquinate.PMID:38599102 | DOI:10.1016/j.foodchem.2024.138834
Empowering veterinary clinical diagnosis in industrial poultry production by ambient mass spectrometry and chemiometrics: a new approach for precise poultry farming
Poult Sci. 2024 Apr 1;103(6):103709. doi: 10.1016/j.psj.2024.103709. Online ahead of print.ABSTRACTUntargeted metabolomic profiling, by ambient mass spectrometry and chemometric tools, has made a dramatic impact on human disease detection. In a similar vein, this study attempted the translation of this clinical human disease experience to farmed poultry for precise veterinary diagnosis. As a proof of principle, in this diagnostic/prognostic study, direct analysis in real-time high resolution mass spectrometry (DART-HRMS) was used in an untargeted manner to analyze fresh tissues (abdominal fat, leg skin, liver, and leg muscle) of pigmented and non-pigmented broilers to investigate the causes of lack of pigmentation in an industrial poultry farm. Afterwards, statistical analysis was applied to the DART-HRMS data to retrieve the molecular features that codified for 2 broiler groups, that is, properly pigmented and non-pigmented broilers. Higher abundance of oxidized lipids, high abundance of oxidized bile derivatives, and lower levels of tocopherol isomers (Vitamin E) and retinol (Vitamin A) were captured in nonpigmented than in pigmented broilers. In addition, conventional rapid analyses were used: 1) color parameters of the tissues of pigmented and non-pigmented broilers were measured to rationalize the color differences in abdominal fat, leg skin and leg muscle, and 2) macronutrients were determined in broiler leg muscle, to capture a detailed picture of the pathology and exclude other possible causes. In this study, the DART-HRMS system performed well in retrieving valuable chemical information from broilers that explained the differences between the 2 groups of broilers in absorption of xanthophylls and the subsequent lack of proper broiler pigmentation in affected broilers. The results suggest this technology could be useful in providing near real-time feedback to aid in veterinary decision-making in poultry farming.PMID:38598914 | DOI:10.1016/j.psj.2024.103709
Metabolomics analysis of CEF cells infected with avian leukosis virus subgroup J based on UHPLC-QE-MS
Poult Sci. 2024 Mar 28;103(6):103693. doi: 10.1016/j.psj.2024.103693. Online ahead of print.ABSTRACTAvian leukosis virus subgroup J (ALV-J) is a retrovirus that can cause immunosuppression and tumors in chicken. However, relative pathogenesis is still not clear. At present, metabolomics has shown great potential in the screening of tumor metabolic markers, prognostic evaluation, and drug target design. In this study, we utilize an untargeted metabolomics approach based on ultrahigh-performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (UHPLC-QTOF-MS) to analyze the metabolic changes in chicken embryo fibroblast (CEF) cells infected by ALV-J. We found that ALV-J infection significantly altered a wealth of metabolites compared with control group. Additionally, most of the differentially expressed metabolites belonged to lipid metabolism, purine nucleotide metabolism and amino acid metabolism. Among them, the proportion of lipid metabolites account for the highest proportion (around 31%). Results suggest that these changes may be conductive to the formation of virion, thereby promoting the replication of ALV-J. These data provided metabolic evidence and potential biomarkers for the cellular metabolic changes induced by ALV-J, and provided important insight for further understanding the replication needs and pathogenesis of ALV-J.PMID:38598912 | DOI:10.1016/j.psj.2024.103693
Duck compound probiotics fermented diet alters the growth performance by shaping the gut morphology, microbiota and metabolism
Poult Sci. 2024 Mar 29;103(6):103647. doi: 10.1016/j.psj.2024.103647. Online ahead of print.ABSTRACTDietary absorption and digestion are influenced by the microbiota, morphology, and digestive enzymes of intestines, and fermentation is a popular and effective technique to enhance animal rearing growth performance. This study aims to explore the pivotal role of Muscovy duck probiotics fermented feedstuff (FF) in altering the growth performance by reshaping gut morphology, microorganisms and metabolism. The findings showed that FF considerably raised the levels of fatty acids (FA) and small peptides (7-19AA) in the diet. Further feeding trial data reveals that FF greatly increased the Muscovy duck average daily gain (ADG) but had no effect on their daily feed intake (DFI), and the FCR significantly dropped (P < 0.05). Additionally, it was evident that FF improved the integrity of the intestinal mucosa in Muscovy duck by increasing villus height, villus height-to-crypt depth ratio, and lowering crypt depth. Then, in comparison to the control group (NC), there was a significant increase in the gene expression of the mucosal tight junction proteins Occludin, Claudin-1, and Zo-1 in the intestine of Muscovy duck. Additionally, there was higher expression of the mucosal transport channels SGLT-1, PepT1, AQP2, AQP3, and AQP10 in the similarly colon site, jejunum, and duodenum. Furthermore, in AB-PAS/PAS-stained duodenum, jejunum, ileum, and similarly colon site, FF markedly increased relative mucus output and goblet cells while decreasing epithelial cell apoptosis. Following 16S sequencing data indicated that the intestinal microbiota was altered and the diversity and richness of gut microbes was greatly enhanced by FF. Particularly, the boost of core probiotics, such as Rothia of duodenum, Limosilactobacillus and Lentilactobacillus of jejunum, Lactococcus and Rothia of ileum, Ligilactobacillus and Entocuccus of similarly colon site, Gallibacterium of caecum. And reduced potentially pathogenic bacteria (Campylobacter, Prevotellaceae, Clostridia-vadinBB60, and Oscillospira). Nontargeted metabolomics assay for intestinal content confirmed an increased organic acids (oxidanesulfonic acid, cholic acid, gallic acid, coumaric acid, pipecollc acid, 13s-hydroxyoctadecadienoic acid) and glycosides metabolites (5-hydroxydantrolene, 3-hydroxyguanfacine glucuronide, acetylleucine, astragalin, xanthosine, taxiphylin, sinapine, denudatine, penylalanyl-tyrosine and phenylalanyl-valine). These findings demonstrated that FF, a viable option to improve Muscovy duck growth performance through reconstructed intestinal morphology, microorganisms, and metabolism, subsequently promoted the gut health and increased diet digestion and absorption. The study that is being presented offers scientific proof that FF might be a useful strategy for improving Muscovy duck growth performance.PMID:38598908 | DOI:10.1016/j.psj.2024.103647
The discovery of regional neurotoxicity-associated metabolic alterations induced by carbon quantum dots in brain of mice using a spatial metabolomics analysis
Part Fibre Toxicol. 2024 Apr 10;21(1):19. doi: 10.1186/s12989-024-00580-y.ABSTRACTBACKGROUND: Recently, carbon quantum dots (CQDs) have been widely used in various fields, especially in the diagnosis and therapy of neurological disorders, due to their excellent prospects. However, the associated inevitable exposure of CQDs to the environment and the public could have serious severe consequences limiting their safe application and sustainable development.RESULTS: In this study, we found that intranasal treatment of 5 mg/kg BW (20 µL/nose of 0.5 mg/mL) CQDs affected the distribution of multiple metabolites and associated pathways in the brain of mice through the airflow-assisted desorption electrospray ionization mass spectrometry imaging (AFADESI-MSI) technique, which proved effective in discovery has proven to be significantly alerted and research into tissue-specific toxic biomarkers and molecular toxicity analysis. The neurotoxic biomarkers of CQDs identified by MSI analysis mainly contained aminos, lipids and lipid-like molecules which are involved in arginine and proline metabolism, biosynthesis of unsaturated fatty acids, and glutamine and glutamate metabolism, etc. as well as related metabolic enzymes. The levels or expressions of these metabolites and enzymes changed by CQDs in different brain regions would induce neuroinflammation, organelle damage, oxidative stress and multiple programmed cell deaths (PCDs), leading to neurodegeneration, such as Parkinson's disease-like symptoms. This study enlightened risk assessments and interventions of QD-type or carbon-based nanoparticles on the nervous system based on toxic biomarkers regarding region-specific profiling of altered metabolic signatures.CONCLUSION: These findings provide information to advance knowledge of neurotoxic effects of CQDs and guide their further safety evaluation.PMID:38600504 | DOI:10.1186/s12989-024-00580-y
Cold-stress induced metabolomic and transcriptomic changes in leaves of three mango varieties with different cold tolerance
BMC Plant Biol. 2024 Apr 10;24(1):266. doi: 10.1186/s12870-024-04983-z.ABSTRACTBACKGROUND: Mango (Mangifera indica L.) is grown in Hainan, Guangdong, Yunnan, Sichuan, and Fujian provinces and Guanxi autonomous region of China. However, trees growing in these areas suffer severe cold stress during winter, which affects the yield. To this regard, data on global metabolome and transcriptome profiles of leaves are limited. Here, we used combined metabolome and transcriptome analyses of leaves of three mango cultivars with different cold stress tolerance, i.e. Jinhuang (J)-tolerant, Tainung (T) and Guiremang No. 82 (G)-susceptible, after 24 (LF), 48 (MF) and 72 (HF) hours of cold.RESULTS: A total of 1,323 metabolites belonging to 12 compound classes were detected. Of these, amino acids and derivatives, nucleotides and derivatives, and lipids accumulated in higher quantities after cold stress exposure in the three cultivars. Notably, Jinhuang leaves showed increasing accumulation trends of flavonoids, terpenoids, lignans and coumarins, and alkaloids with exposure time. Among the phytohormones, jasmonic acid and abscisic acid levels decreased, while N6-isopentenyladenine increased with cold stress time. Transcriptome analysis led to the identification of 22,526 differentially expressed genes. Many genes enriched in photosynthesis, antenna proteins, flavonoid, terpenoid (di- and sesquiterpenoids) and alkaloid biosynthesis pathways were upregulated in Jihuang leaves. Moreover, expression changes related to phytohormones, MAPK (including calcium and H2O2), and the ICE-CBF-COR signalling cascade indicate involvement of these pathways in cold stress responses.CONCLUSION: Cold stress tolerance in mango leaves is associated with regulation of primary and secondary metabolite biosynthesis pathways. Jasmonic acid, abscisic acid, and cytokinins are potential regulators of cold stress responses in mango leaves.PMID:38600447 | DOI:10.1186/s12870-024-04983-z
Plasma metabolites and physical function in patients undergoing hemodialysis
Sci Rep. 2024 Apr 10;14(1):8427. doi: 10.1038/s41598-024-58522-9.ABSTRACTImpaired physical function contributes to falls, fractures, and mortality among patients undergoing dialysis. Using a metabolomic approach, we identified metabolite alterations and effect size-based composite scores for constructs of impaired gait speed and grip strength. 108 participants incident to dialysis had targeted plasma metabolomics via liquid chromatography-mass spectrometry and physical function assessed (i.e., 4 m walk, handgrip strength). Physical function measures were categorized as above/ below median, with grip utilizing sex-based medians. To develop composite scores, metabolites were identified via Wilcoxon uncorrected p < 0.05 and effect size > 0.40. Receiver operating characteristic analyses tested whether scores differentiated between above/below function groups. Participants were 54% male, 77% Black and 53 ± 14 y with dialysis vintage of 101 ± 50 days. Median (IQR) grip strength was 35.5 (11.1) kg (males) and 20 (8.4) kg (females); median gait speed was 0.82 (0.34) m/s. Of 246 measured metabolites, composite scores were composed of 22 and 12 metabolites for grip strength and gait speed, respectively. Area under the curve for metabolite composite was 0.88 (gait) and 0.911 (grip). Composite scores of physical function performed better than clinical parameters alone in patients on dialysis. These results provide potential pathways for interventions and needed validation in an independent cohort.PMID:38600145 | DOI:10.1038/s41598-024-58522-9
The antioxidant activity and metabolomic analysis of the supernatant of Streptococcus alactolyticus strain FGM
Sci Rep. 2024 Apr 10;14(1):8413. doi: 10.1038/s41598-024-58933-8.ABSTRACTStrain-specific probiotics can present antioxidant activity and reduce damage caused by oxidation. Streptococcus alactolyticus strain FGM (S. alactolyticus strain FGM) isolated from the chicken cecum shows potential probiotic properties which have been previously demonstrated. However, the antioxidant properties of S. alactolyticus strain FGM remain unknown. In this view, cell-free supernatant (CFS), intact cells (IC) and intracellular extracts (CFE) of strain FGM and 3 strains of Lactobacillus (LAB) were prepared, and their scavenging capacities against DPPH, hydroxyl radicals and linoleic acid peroxidation inhibitory were compared in this study. The effects of strain FGM cell-free supernatant (FCFS) on NO production, activity of SOD and GSH-Px in RAW264.7 cells and LPS-induced RAW264.7 cells were analyzed. The metabolites in the supernatant were quantitated by N300 Quantitative Metabolome. It was shown that the physicochemical characteristics of CFS to scavenge DPPH, hydroxyl radicals, and linoleic acid peroxidation inhibitory were significantly stronger than that of IC and CFE in the strain FGM (P < 0.05), respectively 87.12% ± 1.62, 45.03% ± 1.27, 15.63% ± 1.34. FCFS had a promotional effect on RAW264.7 cells, and significantly elevated SOD and GSH-Px activities in RAW264.7 cells. 25 μL FCFS significantly promoted the proliferation of RAW264.7 cells induced by LPS, increased the activities of SOD and GSH-PX, and decreased the release of NO. Furthermore, among the differential metabolites of FCFS quantified by N300, 12 metabolites were significantly up-regulated, including lactic acid, indole lactic acid, linoleic acid, pyruvic acid etc., many of which are known with antioxidant properties. In conclusion, FCFS had good antioxidant properties and activity, which can be attributed to metabolites produced from strain FGM fermentation. It was further confirmed that S. alactolyticus strain FGM and its postbiotic have potential probiotic properties and bright application prospects in livestock and poultry breeding.PMID:38600137 | DOI:10.1038/s41598-024-58933-8