Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

SMetaS: A Sample Metadata Standardizer for Metabolomics

Fri, 25/08/2023 - 12:00
Metabolites. 2023 Aug 12;13(8):941. doi: 10.3390/metabo13080941.ABSTRACTMetabolomics has advanced to an extent where it is desired to standardize and compare data across individual studies. While past work in standardization has focused on data acquisition, data processing, and data storage aspects, metabolomics databases are useless without ontology-based descriptions of biological samples and study designs. We introduce here a user-centric tool to automatically standardize sample metadata. Using such a tool in frontends for metabolomic databases will dramatically increase the FAIRness (Findability, Accessibility, Interoperability, and Reusability) of data, specifically for data reuse and for finding datasets that share comparable sets of metadata, e.g., study meta-analyses, cross-species analyses or large scale metabolomic atlases. SMetaS (Sample Metadata Standardizer) combines a classic database with an API and frontend and is provided in a containerized environment. The tool has two user-centric components. In the first component, the user designs a sample metadata matrix and fills the cells using natural language terminology. In the second component, the tool transforms the completed matrix by replacing freetext terms with terms from fixed vocabularies. This transformation process is designed to maximize simplicity and is guided by, among other strategies, synonym matching and typographical fixing in an n-grams/nearest neighbors model approach. The tool enables downstream analysis of submitted studies and samples via string equality for FAIR retrospective use.PMID:37623884 | DOI:10.3390/metabo13080941

Metabolic Alteration of MCF-7 Cells upon Indirect Exposure to <em>E. coli</em> Secretome: A Model of Studying the Microbiota Effect on Human Breast Tissue

Fri, 25/08/2023 - 12:00
Metabolites. 2023 Aug 11;13(8):938. doi: 10.3390/metabo13080938.ABSTRACTAccording to studies, the microbiome may contribute to the emergence and spread of breast cancer. E. coli is one of the Enterobacteriaceae family recently found to be present as part of the breast tissue microbiota. In this study, we focused on the effect of E. coli secretome free of cells on MCF-7 metabolism. Liquid chromatography-mass spectrometry (LC-MS) metabolomics was used to study the E. coli secretome and its role in MCF-7 intra- and extracellular metabolites. A comparison was made between secretome-exposed cells and unexposed controls. Our analysis revealed significant alterations in 31 intracellular and 55 extracellular metabolites following secretome exposure. Several metabolic pathways, including lactate, aminoacyl-tRNA biosynthesis, purine metabolism, and energy metabolism, were found to be dysregulated upon E. coli secretome exposure. E. coli can alter the breast cancer cells' metabolism through its secretome which disrupts key metabolic pathways of MCF-7 cells. These microbial metabolites from the secretome hold promise as biomarkers of drug resistance or innovative approaches for cancer treatment, either as standalone therapies or in combination with other medicines.PMID:37623881 | DOI:10.3390/metabo13080938

Comparative Metabolomics in Single Ventricle Patients after Fontan Palliation: A Strong Case for a Targeted Metabolic Therapy

Fri, 25/08/2023 - 12:00
Metabolites. 2023 Aug 9;13(8):932. doi: 10.3390/metabo13080932.ABSTRACTMost studies on single ventricle (SV) circulation take a physiological or anatomical approach. Although there is a tight coupling between cardiac contractility and metabolism, the metabolic perspective on this patient population is very recent. Early findings point to major metabolic disturbances, with both impaired glucose and fatty acid oxidation in the cardiomyocytes. Additionally, Fontan patients have systemic metabolic derangements such as abnormal glucose metabolism and hypocholesterolemia. Our literature review compares the metabolism of patients with a SV circulation after Fontan palliation with that of patients with a healthy biventricular (BV) heart, or different subtypes of a failing BV heart, by Pubmed review of the literature on cardiac metabolism, Fontan failure, heart failure (HF), ketosis, metabolism published in English from 1939 to 2023. Early evidence demonstrates that SV circulation is not only a hemodynamic burden requiring staged palliation, but also a metabolic issue with alterations similar to what is known for HF in a BV circulation. Alterations of fatty acid and glucose oxidation were found, resulting in metabolic instability and impaired energy production. As reported for patients with BV HF, stimulating ketone oxidation may be an effective treatment strategy for HF in these patients. Few but promising clinical trials have been conducted thus far to evaluate therapeutic ketosis with HF using a variety of instruments, including ketogenic diet, ketone esters, and sodium-glucose co-transporter-2 (SGLT2) inhibitors. An initial trial on a small cohort demonstrated favorable outcomes for Fontan patients treated with SGLT2 inhibitors. Therapeutic ketosis is worth considering in the treatment of Fontan patients, as ketones positively affect not only the myocardial energy metabolism, but also the global Fontan physiopathology. Induced ketosis seems promising as a concerted therapeutic strategy.PMID:37623876 | DOI:10.3390/metabo13080932

Effect of Noise and Music on Neurotransmitters in the Amygdala: The Role Auditory Stimuli Play in Emotion Regulation

Fri, 25/08/2023 - 12:00
Metabolites. 2023 Aug 8;13(8):928. doi: 10.3390/metabo13080928.ABSTRACTStress caused by noise is becoming widespread globally. Noise may lead to deafness, endocrine disorders, neurological diseases, and a decline in mental health. The mechanism behind noise-induced neurodevelopmental abnormalities is unclear, but apoptosis and pro-inflammatory signals may play an important role. In this study, weaned piglets were used as a model to explore noise-induced neurodevelopmental abnormalities. We hypothesized that long-term noise exposure would induce anxiety and cause acute stress, exhibited by alterations in neurotransmission in the amygdala. A total of 72 hybrid piglets (Large White × Duroc × Min Pig) were randomly divided into three groups, including noise (exposed to mechanical noise, 80-85 dB), control (blank, exposed to natural background sound, <40 dB), and music (positive control, exposed to Mozart K.448, 60-70 dB) groups. The piglets were exposed to 6 h of auditory noise daily (10:00-16:00) for 28 days. Compared with the control group, piglets exposed to noise showed more aggressive behavior. The expression of Caspase3, Caspase9, Bax, NF-κB (p56), TLR4, MYD88, I κ B α, IL-1 β, TNF-α, and IL-12RB2 was significantly upregulated in the amygdala, while the expression of Nrf2, HO-1, CAT, and SOD was downregulated in piglets in the noise group. Cell death occurred, and numerous inflammatory cells accumulated in the amygdala of piglets in the noise group. Targeted metabolomics showed that the content of inhibitory neurotransmitter GABA was higher in the amygdala of piglets in the noise group. Compared with the noise group, piglets in the music group displayed more positive emotion-related behaviors. Compared with the noise group, the expression of genes related to apoptosis, inflammation, and oxidative damage was lower in the music group. Cells of the amygdala in the music group were also of normal morphology. Our results show that noise-induced stress causes apoptosis and neuroinflammation in the amygdala and induces anxiety during the early neonatal neural development of piglets. In contrast, to some extent, music alleviates noise-induced anxiety.PMID:37623873 | DOI:10.3390/metabo13080928

Multi-Modality, Multi-Dimensional Characterization of Pediatric Non-Alcoholic Fatty Liver Disease

Fri, 25/08/2023 - 12:00
Metabolites. 2023 Aug 8;13(8):929. doi: 10.3390/metabo13080929.ABSTRACTNon-alcoholic fatty liver disease is a multifaceted disease that progresses through multiple phases; it involves metabolic as well as structural changes. These alterations can be measured directly or indirectly through blood, non-invasive imaging, and/or tissue analyses. While some studies have evaluated the correlations between two sets of measurements (e.g., histopathology with cross-sectional imaging or blood biomarkers), the interrelationships, if any, among histopathology, clinical blood profiles, cross-sectional imaging, and metabolomics in a pediatric cohort remain unknown. We created a multiparametric clinical MRI-histopathologic NMR network map of pediatric NAFLD through multimodal correlation networks, in order to gain insight into how these different sets of measurements are related. We found that leptin and other blood markers were correlated with many other measurements; however, upon filtering out the blood biomarkers, the network was decomposed into three independent hubs centered around histopathological features, each with associated MRI and plasma metabolites. These multi-modality maps could serve as a framework for characterizing disease status and progression and could potentially guide medical interventions.PMID:37623872 | DOI:10.3390/metabo13080929

Optimization Strategies for Mass Spectrometry-Based Untargeted Metabolomics Analysis of Small Polar Molecules in Human Plasma

Fri, 25/08/2023 - 12:00
Metabolites. 2023 Aug 7;13(8):923. doi: 10.3390/metabo13080923.ABSTRACTThe untargeted approach to mass spectrometry-based metabolomics has a wide potential to investigate health and disease states, identify new biomarkers for diseases, and elucidate metabolic pathways. All this holds great promise for many applications in biological and chemical research. However, the complexity of instrumental parameters on advanced hybrid mass spectrometers can make the optimization of the analytical method immensely challenging. Here, we report a strategy to optimize the selected settings of a hydrophilic interaction liquid chromatography-tandem mass spectrometry method for untargeted metabolomics studies of human plasma, as a sample matrix. Specifically, we evaluated the effects of the reconstitution solvent in the sample preparation procedure, the injection volume employed, and different mass spectrometry-related operating parameters including mass range, the number of data-dependent fragmentation scans, collision energy mode, duration of dynamic exclusion time, and mass resolution settings on the metabolomics data quality and output. This study highlights key instrumental variables influencing the detection of metabolites along with suggested settings for the IQ-X tribrid system and proposes a new methodological framework to ensure increased metabolome coverage.PMID:37623867 | DOI:10.3390/metabo13080923

Differences in the Stool Metabolome between Vegans and Omnivores: Analyzing the NIST Stool Reference Material

Fri, 25/08/2023 - 12:00
Metabolites. 2023 Aug 7;13(8):921. doi: 10.3390/metabo13080921.ABSTRACTTo gain confidence in results of omic-data acquisitions, methods must be benchmarked using validated quality control materials. We report data combining both untargeted and targeted metabolomics assays for the analysis of four new human fecal reference materials developed by the U.S. National Institute of Standards and Technologies (NIST) for metagenomics and metabolomics measurements. These reference grade test materials (RGTM) were established by NIST based on two different diets and two different samples treatments, as follows: firstly, homogenized fecal matter from subjects eating vegan diets, stored and submitted in either lyophilized (RGTM 10162) or aqueous form (RGTM 10171); secondly, homogenized fecal matter from subjects eating omnivore diets, stored and submitted in either lyophilized (RGTM 10172) or aqueous form (RGTM 10173). We used four untargeted metabolomics assays (lipidomics, primary metabolites, biogenic amines and polyphenols) and one targeted assay on bile acids. A total of 3563 compounds were annotated by mass spectrometry, including 353 compounds that were annotated in more than one assay. Almost half of all compounds were annotated using hydrophilic interaction chromatography/accurate mass spectrometry, followed by the lipidomics and the polyphenol assays. In total, 910 metabolites were found in at least 4-fold different levels in fecal matter from vegans versus omnivores, specifically for peptides, amino acids and lipids. In comparison, only 251 compounds showed 4-fold differences between lyophilized and aqueous fecal samples, including DG O-34:0 and methionine sulfoxide. A range of diet-specific metabolites were identified to be significantly different between vegans and omnivores, exemplified by citrinin and C17:0-acylcarnitine for omnivores, and curcumin and lenticin for vegans. Bioactive molecules like acyl alpha-hydroxy-fatty acids (AAHFA) were differentially regulated in vegan versus omnivore fecal materials, highlighting the importance of diet-specific reference materials for dietary biomarker studies.PMID:37623865 | DOI:10.3390/metabo13080921

The Intersection of Metabolomics and Data Science

Fri, 25/08/2023 - 12:00
Metabolites. 2023 Aug 4;13(8):915. doi: 10.3390/metabo13080915.ABSTRACTMetabolomics generates a vast amount of data and heavily relies on data science for biological interpretation [...].PMID:37623859 | DOI:10.3390/metabo13080915

Synovial Fluid Metabolome Can Differentiate between Healthy Joints and Joints Affected by Osteoarthritis in Horses

Fri, 25/08/2023 - 12:00
Metabolites. 2023 Aug 4;13(8):913. doi: 10.3390/metabo13080913.ABSTRACTOsteoarthritis (OA) is a common cause of lameness in sport horses with a significant economic impact. The prevention of OA is crucial since no effective treatment is available. This study aimed to apply untargeted metabolomic analysis to investigate the differences in synovial fluid (SF) composition between healthy and OA-affected joints in horses. SF collected from healthy (n.8) and OA (n.11) horses was analyzed using H-NMR analysis. Metabolomic analysis allowed 55 different metabolites to be identified and quantified in SF samples. Nineteen metabolites were found to be differently concentrated in OA compared to control horses. Synovial fluids from the OC group were found to be higher in 1,3-dihydroxyacetone but lower in tryptophan, phenylalanine, tyrosine, uridine, creatinine, creatine, glycine, choline, asparagine, glutamine, arginine, 3-hydroxybutyrate, valine, 2-hydroxyisovalerate, α-ketoisovaleric acid, 3-methyl-2-oxovalerate, 3-hydroxyisobutyrate, isoleucine, and methionine compared to the controls. A variety of SF metabolites significantly changed following joint disease, demonstrating the complex mechanism underlying osteoarthritis in horses and highlighting the value of applying the metabolomic approach in clinical research.PMID:37623857 | DOI:10.3390/metabo13080913

Discriminative Metabolomics Analysis and Cytotoxic Evaluation of Flowers, Leaves, and Roots Extracts of <em>Matthiola longipetala</em> subsp. <em>livida</em>

Fri, 25/08/2023 - 12:00
Metabolites. 2023 Aug 3;13(8):909. doi: 10.3390/metabo13080909.ABSTRACTMatthiola longipetala subsp. livida is an annual herb in Brassicaceae that has received little attention despite the family's high reputation for health benefits, particularly cancer prevention. In this study, UPLC-HRMS-MS analysis was used for mapping the chemical constituents of different plant parts (i.e., flowers, leaves, and roots). Also, spectral similarity networks via the Global Natural Products Social Molecular Networking (GNPS) were employed to visualize their chemical differences and similarities. Additionally, the cytotoxic activity on HCT-116, HeLa, and HepG2 cell lines was evaluated. Throughout the current analysis, 154 compounds were annotated, with the prevalence of phenolic acids, glucosinolates, flavonol glucosides, lipids, peptides, and others. Predictably, secondary metabolites (phenolic acids, flavonoids, and glucosinolates) were predominant in flowers and leaves, while the roots were characterized by primary metabolites (peptides and fatty acids). Four diacetyl derivatives tentatively assigned as O-acetyl O-malonyl glucoside of quercetin (103), kaempferol (108 and 112), and isorhamnetin (114) were detected for the first time in nature. The flowers and leaves extracts showed significant inhibition of HeLa cell line propagation with LC50 values of 18.1 ± 0.42 and 29.6 ± 0.35 µg/mL, respectively, whereas the flowers extract inhibited HCT-116 with LC50 24.8 ± 0.45 µg/mL, compared to those of Doxorubicin (26.1 ± 0.27 and 37.6 ± 0.21 µg/mL), respectively. In conclusion, the flowers of M. longipetala are responsible for the abundance of bioactive compounds with cytotoxic properties.PMID:37623853 | DOI:10.3390/metabo13080909

The Expectation and Reality of the HepG2 Core Metabolic Profile

Fri, 25/08/2023 - 12:00
Metabolites. 2023 Aug 3;13(8):908. doi: 10.3390/metabo13080908.ABSTRACTTo represent the composition of small molecules circulating in HepG2 cells and the formation of the "core" of characteristic metabolites that often attract researchers' attention, we conducted a meta-analysis of 56 datasets obtained through metabolomic profiling via mass spectrometry and NMR. We highlighted the 288 most commonly studied compounds of diverse chemical nature and analyzed metabolic processes involving these small molecules. Building a complete map of the metabolome of a cell, which encompasses the diversity of possible impacts on it, is a severe challenge for the scientific community, which is faced not only with natural limitations of experimental technologies, but also with the absence of transparent and widely accepted standards for processing and presenting the obtained metabolomic data. Formulating our research design, we aimed to reveal metabolites crucial to the Hepg2 cell line, regardless of all chemical and/or physical impact factors. Unfortunately, the existing paradigm of data policy leads to a streetlight effect. When analyzing and reporting only target metabolites of interest, the community ignores the changes in the metabolomic landscape that hide many molecular secrets.PMID:37623852 | DOI:10.3390/metabo13080908

Effects of Pera Orange Juice and Moro Orange Juice in Healthy Rats: A Metabolomic Approach

Fri, 25/08/2023 - 12:00
Metabolites. 2023 Aug 2;13(8):902. doi: 10.3390/metabo13080902.ABSTRACTCardiovascular disease is a leading cause of death worldwide. Heart failure is a cardiovascular disease with high prevalence, morbidity, and mortality. Several natural compounds have been studied for attenuating pathological cardiac remodeling. Orange juice has been associated with cardiovascular disease prevention by attenuating oxidative stress. However, most studies have evaluated isolated phytochemicals rather than whole orange juice and usually under pathological conditions. In this study, we evaluated plasma metabolomics in healthy rats receiving Pera or Moro orange juice to identify possible metabolic pathways and their effects on the heart.METHODS: Sixty male Wistar rats were allocated into 3 groups: control (C), Pera orange juice (PO), and Moro orange juice (MO). PO and MO groups received Pera orange juice or Moro orange juice, respectively, and C received water with maltodextrin (100 g/L). Echocardiogram and euthanasia were performed after 4 weeks. Plasma metabolomic analysis was performed by high-resolution mass spectrometry. Type I collagen was evaluated in picrosirius red-stained slides and matrix metalloproteinase (MMP)-2 activity by zymography. MMP-9, tissue inhibitor of metalloproteinase (TIMP)-2, TIMP-4, type I collagen, and TNF-α protein expression were evaluated by Western blotting.RESULTS: We differentially identified three metabolites in PO (N-docosahexaenoyl-phenylalanine, diglyceride, and phosphatidylethanolamine) and six in MO (N-formylmaleamic acid, N2-acetyl-L-ornithine, casegravol isovalerate, abscisic alcohol 11-glucoside, cyclic phosphatidic acid, and torvoside C), compared to controls, which are recognized for their possible roles in cardiac remodeling, such as extracellular matrix regulation, inflammation, oxidative stress, and membrane integrity. Cardiac function, collagen level, MMP-2 activity, and MMP-9, TIMP-2, TIMP-4, type I collagen, and TNF-α protein expression did not differ between groups.CONCLUSION: Ingestion of Pera and Moro orange juice induces changes in plasma metabolites related to the regulation of extracellular matrix, inflammation, oxidative stress, and membrane integrity in healthy rats. Moro orange juice induces a larger number of differentially expressed metabolites than Pera orange juice. Alterations in plasma metabolomics induced by both orange juice are not associated with modifications in cardiac extracellular matrix components. Our results allow us to postulate that orange juice may have beneficial effects on pathological cardiac remodeling.PMID:37623846 | DOI:10.3390/metabo13080902

Metabolomic Profiling of Aqueous Humor from Pathological Myopia Patients with Choroidal Neovascularization

Fri, 25/08/2023 - 12:00
Metabolites. 2023 Jul 30;13(8):900. doi: 10.3390/metabo13080900.ABSTRACTChoroidal neovascularization (CNV) is a severe complication observed in individuals with pathological myopia (PM). Our hypothesis is that specific metabolic alterations occur during the development of CNV in patients with PM. To investigate this, an untargeted metabolomics analysis was conducted using gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS) on aqueous humor (AH) samples obtained from meticulously matched PM patients, including those with CNV (n = 11) and without CNV (n = 11). The analysis aimed to identify differentially expressed metabolites between the two groups. Furthermore, the discriminative ability of each metabolite was evaluated using the area under the receiver operating characteristic curve (AUC). Enriched metabolic pathways were determined using the KEGG and MetaboAnalyst databases. Our results revealed the detection of 272 metabolites using GC-MS and 1457 metabolites using LC-MS in AH samples. Among them, 97 metabolites exhibited significant differential expression between the CNV and non-CNV groups. Noteworthy candidates, including D-citramalic acid, biphenyl, and isoleucylproline, demonstrated high AUC values ranging from 0.801 to 1, indicating their potential as disease biomarkers. Additionally, all three metabolites showed a strong association with retinal cystoid edema in CNV patients. Furthermore, the study identified 12 altered metabolic pathways, with five of them related to carbohydrate metabolism, suggesting their involvement in the occurrence of myopic CNV. These findings provide possible disease-specific biomarkers of CNV in PM and suggest the role of disturbed carbohydrate metabolism in its pathogenesis. Larger studies are needed to validate these findings.PMID:37623844 | DOI:10.3390/metabo13080900

Untargeted Metabolomics and Body Mass in Adolescents: A Cross-Sectional and Longitudinal Analysis

Fri, 25/08/2023 - 12:00
Metabolites. 2023 Jul 30;13(8):899. doi: 10.3390/metabo13080899.ABSTRACTObesity in children and adolescents has increased globally. Increased body mass index (BMI) during adolescence carries significant long-term adverse health outcomes, including chronic diseases such as cardiovascular disease, stroke, diabetes, and cancer. Little is known about the metabolic consequences of changes in BMI in adolescents outside of typical clinical parameters. Here, we used untargeted metabolomics to assess changing BMI in male adolescents. Untargeted metabolomic profiling was performed on urine samples from 360 adolescents using UPLC-QTOF-MS. The study includes a baseline of 235 subjects in a discovery set and 125 subjects in a validation set. Of them, a follow-up of 81 subjects (1 year later) as a replication set was studied. Linear regression analysis models were used to estimate the associations of metabolic features with BMI z-score in the discovery and validation sets, after adjusting for age, race, and total energy intake (kcal) at false-discovery-rate correction (FDR) ≤ 0.1. We identified 221 and 16 significant metabolic features in the discovery and in the validation set, respectively. The metabolites associated with BMI z-score in validation sets are glycylproline, citrulline, 4-vinylsyringol, 3'-sialyllactose, estrone sulfate, carnosine, formiminoglutamic acid, 4-hydroxyproline, hydroxyprolyl-asparagine, 2-hexenoylcarnitine, L-glutamine, inosine, N-(2-Hydroxyphenyl) acetamide glucuronide, and galactosylhydroxylysine. Of those 16 features, 9 significant metabolic features were associated with a positive change in BMI in the replication set 1 year later. Histidine and arginine metabolism were the most affected metabolic pathways. Our findings suggest that obesity and its metabolic outcomes in the urine metabolome of children are linked to altered amino acids, lipid, and carbohydrate metabolism. These identified metabolites may serve as biomarkers and aid in the investigation of obesity's underlying pathological mechanisms. Whether these features are associated with the development of obesity, or a consequence of changing BMI, requires further study.PMID:37623843 | DOI:10.3390/metabo13080899

Metabolome Mining of <em>Curcuma longa</em> L. Using HPLC-MS/MS and Molecular Networking

Fri, 25/08/2023 - 12:00
Metabolites. 2023 Jul 29;13(8):898. doi: 10.3390/metabo13080898.ABSTRACTTurmeric, Curcuma longa L., is a type of medicinal plant characterized by its perennial nature and rhizomatous growth. It is a member of the Zingiberaceae family and is distributed across the world's tropical and subtropical climates, especially in South Asia. Its rhizomes have been highly valued for food supplements, spices, flavoring agents, and yellow dye in South Asia since ancient times. It exhibits a diverse array of therapeutic qualities that encompass its ability to combat diabetes, reduce inflammation, act as an antioxidant, exhibit anticancer properties, and promote anti-aging effects. In this study, organic extracts of C. longa rhizomes were subjected to HPLC separation followed by ESI-MS and low-energy tandem mass spectrometry analyses. The Global Natural Product Social Molecular Networking (GNPS) approach was utilized for the first time in this ethnobotanically important species to conduct an in-depth analysis of its metabolomes based on their fragments. To sum it up, a total of 30 metabolites including 16 diarylheptanoids, 1 diarylpentanoid, 3 bisabolocurcumin ethers, 4 sesquiterpenoids, 4 cinnamic acid derivatives, and 2 fatty acid derivatives were identified. Among the 16 diarylheptanoids identified in this study, 5 of them are reported for the first time in this species.PMID:37623841 | DOI:10.3390/metabo13080898

The Impact of Acute Low-Dose Gamma Irradiation on Biomass Accumulation and Secondary Metabolites Production in <em>Cotinus coggygria</em> Scop. and <em>Fragaria × ananassa</em> Duch. Red Callus Cultures

Fri, 25/08/2023 - 12:00
Metabolites. 2023 Jul 28;13(8):894. doi: 10.3390/metabo13080894.ABSTRACTCotinus coggygria Scop. (smoketree) and Fragaria × ananassa Duch. (strawberry) are two industrially important species due to their composition in bioactive compounds. In this study, we investigated the effects of acute low-dose gamma irradiation (15, 20, 25, 30, 35 and 40 Gy) on two red callus cultures established in smoketree and strawberry. The biomass production, dry weight, content of phenols, flavonoids, monomeric anthocyanins', index of anthocyanins polymerization and antioxidant activity were evaluated. For the smoketree callus, a negative correlation between irradiation doses and callus biomass accumulation was observed. For the strawberry callus, irradiation did not significantly affect the accumulation of the biomass. An increased dry weight was observed in irradiated smoketree callus, while for treated strawberry callus, a decrease was recorded. Irradiation with 30 Gy was stimulative for polyphenols' accumulation in both cultures; however, the increase was significant only in the strawberry callus. The flavonoids increased in the 30 Gy strawberry variants, while it significantly decreased in smoketree callus irradiated with 35 and 40 Gy. In irradiated strawberry callus, except for the 25 Gy variant (1.65 ± 0.4 mg C-3-GE/g DW), all treatments caused an increase in anthocyanins' accumulation. In smoketree, except for the 15 Gy variant (2.14 ± 0.66 mg C-3-GE/g DW), the irradiation determined an increase in anthocyanins synthesis, with the highest value being seen in the 20 Gy variant (2.8 ± 0.94 mg C-3-GE/g DW). According to UPLC-HRMS investigations, an unidentified compound increased by 99% at the 30 Gy dose in strawberry callus, while in smoketree, maslinic acid increased by 51% after irradiation with 40 Gy. The results of this study showed, for the first time, the differential response of two performant callus cultures to low-dose gamma irradiation, a biotechnological method that can be used to stimulate the synthesis of important flavonoids and triterpenes.PMID:37623838 | DOI:10.3390/metabo13080894

Metabolites Potentially Derived from Gut Microbiota Associated with Podocyte, Proximal Tubule, and Renal and Cerebrovascular Endothelial Damage in Early Diabetic Kidney Disease in T2DM Patients

Fri, 25/08/2023 - 12:00
Metabolites. 2023 Jul 28;13(8):893. doi: 10.3390/metabo13080893.ABSTRACTComplications due to type 2 diabetes mellitus (T2DM) such as diabetic kidney disease (DKD) and cerebral small vessel disease (CSVD) have a powerful impact on mortality and morbidity. Our current diagnostic markers have become outdated as T2DM-related complications continue to develop. The aim of the investigation was to point out the relationship between previously selected metabolites which are potentially derived from gut microbiota and indicators of endothelial, proximal tubule (PT), and podocyte dysfunction, and neurosonological indices. The study participants were 20 healthy controls and 90 T2DM patients divided into three stages: normoalbuminuria, microalbuminuria, and macroalbuminuria. Serum and urine metabolites were determined by untargeted and targeted metabolomic techniques. The markers of endothelial, PT and podocyte dysfunction were assessed by ELISA technique, and the neurosonological indices were provided by an ultrasound device with high resolution (MYLAB 8-ESAOTE Italy). The descriptive statistical analysis was followed by univariable and multivariable linear regression analyses. In conclusion, in serum, arginine (sArg), butenoylcarnitine (sBCA), and indoxyl sulfate (sIS) expressed a biomarker potential in terms of renal endothelial dysfunction and carotid atherosclerosis, whereas sorbitol (sSorb) may be a potential biomarker of blood-brain barrier (BBB) dysfunction. In urine, BCA and IS were associated with markers of podocyte damage, whereas PCS correlated with markers of PT dysfunction.PMID:37623837 | DOI:10.3390/metabo13080893

Integration of Metabolome and Transcriptome Reveals the Major Metabolic Pathways and Potential Biomarkers in Response to Freeze-Stress Regulation in Apple (<em>Malus domestica</em>)

Fri, 25/08/2023 - 12:00
Metabolites. 2023 Jul 27;13(8):891. doi: 10.3390/metabo13080891.ABSTRACTFreezing stress is the main factor affecting the normal growth and distribution of plants. The safe overwintering of a perennial deciduous plant is a crucial link to ensuring its survival and yield. However, little is known about the molecular mechanism of its gene regulation metabolites as related to its freeze-tolerance. In order to enhance our comprehension of freeze-tolerance metabolites and gene expression in dormant apple trees, we examined the metabolic and transcriptomic differences between 'Ralls' and 'Fuji', two apple varieties with varying degrees of resistance to freezing. The results of the freezing treatment showed that 'Ralls' had stronger freeze-tolerance than 'Fuji'. We identified 302, 334, and 267 up-regulated differentially accumulated metabolites (DAMs) and 408, 387, and 497 down-regulated DAMs between 'Ralls' and 'Fuji' under -10, -15, and -20 °C treatment, respectively. A total of 359 shared metabolites were obtained in the upward trend modules, of which 62 metabolites were associated with 89 pathways. The number of up-regulated genes accounted for 50.2%, 45.6%, and 43.2% of the total number of differentially expressed genes (DEGs), respectively, at -10, -15, and -20 °C. Through combined transcriptome and metabolome analysis, we identified 12 pathways that included 16 DAMs and 65 DEGs. Meanwhile, we found that 20 DEGs were identified in the phenylpropanoid biosynthesis pathway and its related pathways, involving the metabolism of p-Coumaroyl-CoA, 7, 4'-Dihydroxyflavone, and scolymoside. These discoveries advance our comprehension of the molecular mechanism underlying apple freeze-tolerance and provide genetic material for breeding apple cultivars with enhanced freeze-tolerance.PMID:37623835 | DOI:10.3390/metabo13080891

Evaluation of Metabolomics as Diagnostic Targets in Oral Squamous Cell Carcinoma: A Systematic Review

Fri, 25/08/2023 - 12:00
Metabolites. 2023 Jul 27;13(8):890. doi: 10.3390/metabo13080890.ABSTRACTIn recent years, high-throughput technologies have facilitated the widespread use of metabolomics to identify biomarkers and targets for oral squamous cell carcinoma (OSCC). As a result, the primary goal of this systematic review is to identify and evaluate metabolite biomarkers and their pathways for OSCC that featured consistently across studies despite methodological variations. Six electronic databases (Medline, Cochrane, Web of Science, CINAHL, ProQuest, and Embase) were reviewed for the longitudinal studies involving OSCC patients and metabolic marker analysis (in accordance with PRISMA 2020). The studies included ranged from the inception of metabolomics in OSCC (i.e., 1 January 2007) to 30 April 2023. The included studies were then assessed for their quality using the modified version of NIH quality assessment tool and QUADOMICS. Thirteen studies were included after screening 2285 studies. The majority of the studies were from South Asian regions, and metabolites were most frequently derived from saliva. Amino acids accounted for more than quarter of the detected metabolites, with glutamate and methionine being the most prominent. The top dysregulated metabolites indicated dysregulation of six significantly enriched pathways including aminoacyl-tRNA biosynthesis, glutathione metabolism and arginine biosynthesis with the false discovery rate (FDR) <0.05. Finally, this review highlights the potential of metabolomics for early diagnosis and therapeutic targeting of OSCC. However, larger studies and standardized protocols are needed to validate these findings and make them a clinical reality.PMID:37623834 | DOI:10.3390/metabo13080890

Non-Targeted Metabolomics Combined with Chemometrics by UHPLC-Orbitrap-HRMS and Antioxidant Activity of <em>Atractylodes chinensis</em> (DC.) Koidez. from Eight Origins

Fri, 25/08/2023 - 12:00
Metabolites. 2023 Jul 27;13(8):888. doi: 10.3390/metabo13080888.ABSTRACTAtractylodes chinensis (DC.) Koidez. (AC) is a type of Atractylodis Rhizoma that is widely used in China to treat diarrhea and arthritis, as well as a nutritional supplement. The objective of this study was to investigate and identify the phytochemicals in the aqueous extract of AC using an ultra-high-performance liquid chromatography (UHPLC)-Orbitrap-HRMS platform based on a non-targeted metabolomic approach. There were 76 compounds in the AC, the majority of which were phenylpropanoids (16) and terpenoids (15). The hierarchical clustering analysis (HCA) and principal component analysis (PCA) results revealed variations across eight AC samples and classified them into four groups. Using Pareto modeling, the orthogonal partial least squares-discriminant analysis (OPLS-DA) identified 11 distinct AC compounds. Furthermore, the antioxidant activity of eight AC samples was assessed using ABTS, DPPH, and OH· methods. The AC samples with concentrations ranging from 0 to 25 mg/mL had no toxic effects on A549 cells. They have a strong therapeutic potential against oxidation-related diseases, and further research on AC is warranted.PMID:37623832 | DOI:10.3390/metabo13080888

Pages