Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

Non-Mutational Key Features in the Biology of Thymomas

Wed, 13/03/2024 - 11:00
Cancers (Basel). 2024 Feb 26;16(5):942. doi: 10.3390/cancers16050942.ABSTRACTThymomas (THs) are a unique group of heterogeneous tumors of the thymic epithelium. In particular, the subtypes B2 and B3 tend to be aggressive and metastatic. Radical tumor resection remains the only curative option for localized tumors, while more advanced THs require multimodal treatment. Deep sequencing analyses have failed to identify known oncogenic driver mutations in TH, with the notable exception of the GTF2I mutation, which occurs predominantly in type A and AB THs. However, there are multiple alternative non-mutational mechanisms (e.g., perturbed thymic developmental programs, metabolism, non-coding RNA networks) that control cellular behavior and tumorigenesis through the deregulation of critical molecular pathways. Here, we attempted to show how the results of studies investigating such alternative mechanisms could be integrated into a current model of TH biology. This model could be used to focus ongoing research and therapeutic strategies.PMID:38473304 | DOI:10.3390/cancers16050942

The Keratinocyte in the Picture Cutaneous Melanoma Microenvironment

Wed, 13/03/2024 - 11:00
Cancers (Basel). 2024 Feb 23;16(5):913. doi: 10.3390/cancers16050913.ABSTRACTMelanoma progression is a multistep evolution from a common melanocytic nevus through a radial superficial growth phase, the invasive vertical growth phase finally leading to metastatic dissemination into distant organs. Melanoma aggressiveness largely depends on the propensity to metastasize, which means the capacity to escape from the physiological microenvironment since tissue damage due to primary melanoma lesions is generally modest. Physiologically, epidermal melanocytes are attached to the basement membrane, and their adhesion/migration is under the control of surrounding keratinocytes. Thus, the epidermal compartment represents the first microenvironment responsible for melanoma spread. This complex process involves cell-cell contact and a broad range of secreted bioactive molecules. Invasion, or at the beginning of the microinvasion, implies the breakdown of the dermo-epidermal basement membrane followed by the migration of neoplastic melanocytic cells in the superficial papillary dermis. Correspondingly, several experimental evidences documented the structural and functional rearrangement of the entire tissue surrounding neoplasm that in some way reflects the atypia of tumor cells. Lastly, the microenvironment must support the proliferation and survival of melanocytes outside the normal epidermal-melanin units. This task presumably is mostly delegated to fibroblasts and ultimately to the self-autonomous capacity of melanoma cells. This review will discuss remodeling that occurs in the epidermis during melanoma formation as well as skin changes that occur independently of melanocytic hyperproliferation having possible pro-tumoral features.PMID:38473275 | DOI:10.3390/cancers16050913

Supplementation with Astragalus Root Powder Promotes Rumen Microbiota Density and Metabolome Interactions in Lambs

Wed, 13/03/2024 - 11:00
Animals (Basel). 2024 Mar 2;14(5):788. doi: 10.3390/ani14050788.ABSTRACTThe gut microbiota is highly symbiotic with the host, and the microbiota and its metabolites are essential for regulating host health and physiological functions. Astragalus, as a feed additive, can improve animal immunity. However, the effects of Astragalus root powder on the rumen microbiota and their metabolites in lambs are not apparent. In this study, thirty healthy Hu sheep lambs with similar body weights (17.42 ± 2.02 kg) were randomly selected for the feeding experiment. Lambs were fed diets supplemented with 0.3% Astragalus root powder, and the rumen microbiota density and metabolome were measured to determine the effects of Astragalus on the health of lambs in the rumen. The results showed that the relative abundance of Butyrivibrio fibrisolvens (Bf), Ruminococcus flavefaciens (Rf), Succiniclasticum (Su), and Prevotella (Pr) in the rumen was increased in the Astragalus group (p < 0.01), and metabolic profiling showed that the metabolites, such as L-lyrosine and L-leucine, were upregulated in the Astragalus group (p < 0.01). KEGG functional annotation revealed that upregulated metabolites were mainly enriched in the pathways of amino acid metabolism, lipid metabolism, fatty acid biosynthesis, and bile secretion in the Astragalus group, and downregulated metabolites were enriched in the pathways of methane metabolism and other pathways. Correlation analysis revealed that butyric acid was positively correlated with Roseburia and Blautia (p < 0.05) and negatively correlated with Desulfovibrio (p < 0.05). Thus, by analyzing the interactions of Astragalus root powder with the density of rumen microorganisms and their metabolites in lambs, it was shown that Astragalus root powder could improve the structure of rumen microbiota and their metabolites and then participate in the regulation of amino acid metabolism, lipid metabolism, immune metabolism, and other pathways to improve the efficiency of energy absorption of the lambs.PMID:38473173 | DOI:10.3390/ani14050788

Competition for Nitrogen Resources: An Explanation of the Effects of a Bioprotective Strain <em>Metschnikowia pulcherrima</em> on the Growth of <em>Hanseniaspora</em> Genus in Oenology

Wed, 13/03/2024 - 11:00
Foods. 2024 Feb 27;13(5):724. doi: 10.3390/foods13050724.ABSTRACTAs a biological alternative to the antimicrobial action of SO2, bioprotection has been proposed to winemakers as a means to limit or prevent grape musts microbial alteration. Competition for nitrogenous nutrients and for oxygen are often cited as potential explanations for the effectiveness of bioprotection. This study analyses the effect of a bioprotective M. pulcherrima strain on the growth of one H. valbyensis strain and one H. uvarum strain. Bioprotection efficiency was observed only against H. valbyensis inoculated at the two lowest concentrations. These results indicate a potential species-dependent efficiency of the bioprotective strain and a strong impact of the initial ratio between bioprotective and apiculate yeasts. The analysis of the consumption of nitrogen compounds revealed that leucine, isoleucine, lysine and tryptophan were consumed preferentially by all three strains. The weaker assimilation percentages of these amino acids observed in H. valbyensis at 24 h growth suggest competition with M. pulcherrima that could negatively affects the growth of the apiculate yeast in co-cultures. The slowest rate of O2 consumption of H. valbyensis strain, in comparison with M. pulcherrima, was probably not involved in the bioprotective effect. Non-targeted metabolomic analyses of M. pulcherrima and H. valbyensis co-culture indicate that the interaction between both strains particularly impact lysin and tryptophan metabolisms.PMID:38472837 | DOI:10.3390/foods13050724

Microbiome-Metabolomic Analysis Revealed the Immunoprotective Effects of the Extract of Vanilla planifolia Andrew (EVPA) on Immunosuppressed Mice

Wed, 13/03/2024 - 11:00
Foods. 2024 Feb 26;13(5):701. doi: 10.3390/foods13050701.ABSTRACTThis study investigated the immunoprotective effects of the extract of Vanilla planifolia Andrew (EVPA) on cyclophosphamide (Cy)-induced immunosuppression in mice. The results show that EVPA administration significantly alleviated the immune damage induced by Cy, as evidenced by an improved body weight, organ index, and colonic injury. A further analysis of microbial diversity revealed that the EVPA primarily increased the abundance of the beneficial bacteria Verrucomicrobiota, Lactobacillaceae, and Lactobacillus while decreasing Akkermansiaceae, Akkermansia, Romboutsia, and Lactococcus, thereby ameliorating the microbial dysbiosis caused by Cy. A metabolomic analysis revealed significant alterations in the microbial metabolite levels after EVPA treatment, including urobilinogen, formamidopyrimidine nucleoside triphosphate, Cer (d18:1/18:0), pantetheine, and LysoPC (15:0/0:0). These altered metabolites are associated with pathways related to sphingolipid metabolism, carbapenem biosynthesis, pantothenate and CoA biosynthesis, glycerophospholipid metabolism, and porphyrin metabolism. Furthermore, significant correlations were observed between certain microbial groups and the differential metabolites. These findings provide new insights into the immunomodulatory effects of EVPA on the intestinal microbiota and metabolism, laying the foundation for more extensive utilization.PMID:38472814 | DOI:10.3390/foods13050701

Mechanism of Peppermint Extract-Induced Delay of 'Packham's Triumph' Pear (<em>Pyrus communis</em> L.) Postharvest Ripening

Wed, 13/03/2024 - 11:00
Foods. 2024 Feb 21;13(5):657. doi: 10.3390/foods13050657.ABSTRACTPostharvest ripening is correlated to the quality and shelf life of European pear fruit. In this study, the effects of peppermint extract on fruit phenotype, related physiological activities, and aroma components during postharvest ripening of the European pear variety 'Packham's Triumph' were examined. Fruit treated with 2.0 g L-1 peppermint extract for 12 h showed delayed softening by 4 d compared with that of the untreated control group. The peak values of ethylene and respiratory rate in fruit were reduced to a certain extent after peppermint extract treatment; however, the peppermint extract did not delay the occurrence of the respiratory climacteric peak. Peppermint extract treatment also did not significantly increase the content of the characteristic peppermint aroma in pear fruit. Further, widely targeted metabolome analysis revealed 298 significantly different metabolites, with flavonoids (40%) and lipid compounds (15%) accounting for the highest proportion on the first day after treatment. The Kyoto Encyclopedia of Genes and Genomes pathway result showed significant enrichment in the metabolic pathways of biosynthesis of flavonoid, isoflavonoid, flavone and flavonol, linoleic acid, and alpha-linolenic acid metabolism following peppermint extract treatment. The combined analysis of transcriptome and metabolome data showed significant enrichment in linoleic acid metabolism and alpha-linolenic acid metabolism on the first, third, and fifth days after peppermint extract treatment. This study indicates that peppermint extract mainly affects the pear fruit softening process in the early stage after treatment.PMID:38472770 | DOI:10.3390/foods13050657

Heterologous expression of taxane genes confers resistance to fall armyworm in Nicotiana benthamiana

Wed, 13/03/2024 - 11:00
Plant Cell Rep. 2024 Mar 12;43(4):94. doi: 10.1007/s00299-024-03169-z.ABSTRACTTaxadiene synthase, taxadiene-5α-hydroxylase, and taxane 13α-hydroxylase genes were introduced into Nicotiana benthamiana, and the improved resistance to lepidoptera pest fall armyworm was reported. Fall armyworm (FAW) is a serious agricultural pest. Genetic engineering techniques have been used to create pest-resistant plant varieties for reducing pest damage. Paclitaxel is a diterpenoid natural metabolite with antineoplastic effects in medicine. However, the effects of taxanes on the growth and development of lepidoptera pests, such as the FAW, are unknown. Here, selected paclitaxel precursor biosynthesis pathway genes, taxadiene synthase, taxane 5α-hydroxylase, and taxane 13α-hydroxylase, were engineered in the heterologous host Nicotiana benthamiana plants. Bioassay experiments showed that the transgenic N. benthamiana plants displayed improved resistance to FAW infestation, with degeneration of gut tissues and induced expression of apoptosis-related genes. Cytotoxicity experiment showed that the paclitaxel precursor, 10-deacetylbaccatin III, is cytotoxic to Sf9 cells, causing cell cycle arrest at the G2/M phase and disorder of the cytoskeleton. Metabolome analysis showed that heterologous expression of taxane genes in N. benthamiana affected the digestive system, steroid hormone and purine metabolism pathways of FAW larvae. In summary, this study provides a candidate approach for FAW control.PMID:38472660 | DOI:10.1007/s00299-024-03169-z

Plasma Biomarker Profiles for Premature and Nonpremature Coronary Heart Disease in Women

Tue, 12/03/2024 - 11:00
Clin Chem. 2024 Mar 13:hvae007. doi: 10.1093/clinchem/hvae007. Online ahead of print.ABSTRACTBACKGROUND: Premature coronary heart disease (CHD) is a major cause of death in women. We aimed to characterize biomarker profiles of women who developed CHD before and after age 65 years.METHODS: In the Women's Health Study (median follow-up 21.5 years), women were grouped by age and timing of incident CHD: baseline age <65 years with premature CHD by age 65 years (25 042 women; 447 events) and baseline age ≥65 years with nonpremature CHD (2982 women; 351 events). Associations of 44 baseline plasma biomarkers measured using standard assays and a nuclear magnetic resonance (NMR)-metabolomics assay were analyzed using Cox models adjusted for clinical risk factors.RESULTS: Twelve biomarkers showed associations only with premature CHD and included lipoprotein(a), which was associated with premature CHD [adjusted hazard ratio (HR) per SD: 1.29 (95% CI 1.17-1.42)] but not with nonpremature CHD [1.09(0.98-1.22)](Pinteraction = 0.02). NMR-measured lipoprotein insulin resistance was associated with the highest risk of premature CHD [1.92 (1.52-2.42)] but was not associated with nonpremature CHD (Pinteraction <0.001). Eleven biomarkers showed stronger associations with premature vs nonpremature CHD, including apolipoprotein B. Nine NMR biomarkers showed no association with premature or nonpremature CHD, whereas 12 biomarkers showed similar significant associations with premature and nonpremature CHD, respectively, including low-density lipoprotein (LDL) cholesterol [1.30(1.20-1.45) and 1.22(1.10-1.35)] and C-reactive protein [1.34(1.19-1.50) and 1.25(1.08-1.44)].CONCLUSIONS: In women, a profile of 12 biomarkers was selectively associated with premature CHD, driven by lipoprotein(a) and insulin-resistant atherogenic dyslipoproteinemia. This has implications for the development of biomarker panels to screen for premature CHD.PMID:38472127 | DOI:10.1093/clinchem/hvae007

Biological Effect of Microplastics with Different Functional Groups on the Bacterial Communities and Metabolic Functions of Zebrafish (<em>Danio rerio</em>) Embryos

Tue, 12/03/2024 - 11:00
Huan Jing Ke Xue. 2024 Mar 8;45(3):1859-1868. doi: 10.13227/j.hjkx.202304058.ABSTRACTTo investigate the influences of functional groups on the biological effects caused by microplastics, the accumulation of three polystyrene microplastics (PS, PS-NH2, and PS-COOH) in zebrafish (Danio rerio) embryos were analyzed, and then the responses of metabolic functions and microbial communities in zebrafish larvae were revealed using the combination of the microbiome and metabolome methods. The results showed that all microplastics could accumulate in zebrafish with concentrations ranging from 143 to 175 μg·g-1, and there were no significant differences in the accumulation potentials among different PS treatments. Exposure to plain PS significantly affected the metabolic capacity of aminoglycosides in zebrafish larvae, whereas the metabolic processes of amino acids were affected by PS-NH2. In the PS-COOH treatment, the metabolic pathways of the tricarboxylic acid cycle, amino acids, and glycolysis in zebrafish were markedly altered. The metabolic functions of zebrafish larvae were changed by all PS microplastics, resulting in toxic effects on zebrafish, and the functional group modification of microplastics may have further enhanced these toxicities. Compared to that in the control, exposure to PS-NH2 significantly reduced the diversity of microbial communities in zebrafish larvae and increased the proportion of Proteobacteria in the composition, leading to an imbalance of the bacterial community in zebrafish and thus disrupting the metabolic functions in the fish. Therefore, the functional modifications of microplastics may significantly alter the related stresses on aquatic organisms, leading to unpredictable ecological risks.PMID:38471897 | DOI:10.13227/j.hjkx.202304058

Correction to 'PathBank 2.0-the pathway database for model organism metabolomics'

Tue, 12/03/2024 - 11:00
Nucleic Acids Res. 2024 Mar 12:gkae191. doi: 10.1093/nar/gkae191. Online ahead of print.NO ABSTRACTPMID:38471813 | DOI:10.1093/nar/gkae191

Screening by Q Exactive liquid chromatography/tandem mass spectrometry identified Choline, 25-hydroxyvitamin D2, and SM(d18:0/16:1(9Z) (OH)) as biomarkers for high-grade serous ovarian cancer

Tue, 12/03/2024 - 11:00
J Proteomics. 2024 Mar 10:105154. doi: 10.1016/j.jprot.2024.105154. Online ahead of print.ABSTRACTHigh-grade serous ovarian cancer (HGSOC) has a high death rate and poor prognosis. The main causes of poor prognosis are asymptomatic early disease, no effective screening method at present, and advanced disease. Changes in cellular metabolism are characteristic of cancer, and plasma metabolome analysis can be used to identify biomarkers. In this study, we used Q Exactive liquid chromatography tandem mass spectrometry (LC-MS/MS, QE) to compare the differentiation between plasma samples (22 HGSOC samples and 22 normal samples). In total, we detected 124 metabolites, and an orthogonal partial least-squares-discriminant analysis (OPLS-DA) model was useful to distinguish HGSOC patients from healthy controls. Choline, 25-hydroxyvitamin D2, and sphingomyelin (d18:0/16:1(9Z) (OH))/SM(d18:0/16:1(9Z) (OH)) showed significantly differential plasma levels in HGSOC patients under the conditions of variable importance in projection (VIP) > 1, p < 0.05 using Student's t-test, and fold change (FC) ≥ 1.5 or ≤ 0.667. Metabolic pathway analysis can provide valuable information to enhance the understanding of the underlying pathophysiology of HGSOC. In conclusion, the Q Exactive LC/MS/MS method validation-based plasma metabolomics approach may have potential as a convenient screening method for HGSOC and may be a method to monitor tumor recurrence in patients with HGSOC after surgery SIGNIFICANCE: High-grade serous ovarian cancer (HGSOC) has a high death rate and poor prognosis. The main causes of poor prognosis are asymptomatic early disease, no effective screening method at present, and advanced disease. Changes in cellular metabolism are characteristic of cancer, and plasma metabolome analysis can be used to identify biomarkers. In this study, we used Q Exactive liquid chromatography tandem mass spectrometry (LC-MS/MS, QE) to compare the differentiation between plasma samples (20 HGSOC samples and 20 normal samples). In total, we detected 124 metabolites, and an orthogonal partial least-squares-discriminant analysis (OPLS-DA) model was useful to distinguish HGSOC patients from healthy controls. Choline, 25-hydroxyvitamin D2, and sphingomyelin (d18:0/16:1(9Z) (OH))/SM(d18:0/16:1(9Z) (OH)) showed significantly differential plasma levels in HGSOC patients under the conditions of variable importance in projection (VIP) > 1, p < 0.05 using Student's t-test, and fold change (FC) ≥ 1.5 or ≤ 0.667. Metabolic pathway analysis can provide valuable information to enhance the understanding of the underlying pathophysiology of HGSOC. In conclusion, the Q Exactive LC/MS/MS method validation-based plasma metabolomics approach may have potential as a convenient screening method for HGSOC and may be a method to monitor tumor recurrence in patients with HGSOC after surgery.PMID:38471622 | DOI:10.1016/j.jprot.2024.105154

Anticyanobacterial effect of p-coumaric acid on Limnothrix sp. determined by proteomic and metabolomic analysis

Tue, 12/03/2024 - 11:00
Sci Total Environ. 2024 Mar 10:171632. doi: 10.1016/j.scitotenv.2024.171632. Online ahead of print.ABSTRACTRegulating photosynthetic machinery is a powerful but challenging strategy for selectively inhibiting bloom-forming cyanobacteria, in which photosynthesis mainly occurs in thylakoids. P-coumaric acid (p-CA) has several biological properties, including free radical scavenging and antibacterial effects, and studies have shown that it can damage bacterial cell membranes, reduce chlorophyll a in cyanobacteria, and effectively inhibit algal growth at concentrations exceeding 0.127 g/L. Allelochemicals typically inhibit cyanobacteria by inhibiting photosynthesis; however, research on inhibiting harmful algae using phenolic acids has focused mainly on their inhibitory and toxic effects and metabolite levels, and the molecular mechanism by which p-CA inhibits photosynthesis remains unclear. Thus, we examined the effect of p-CA on the photosynthesis of Limnothrix sp. in detail. We found that p-CA inhibits algal growth and damages photosynthesis-related proteins in Limnothrix sp., reduces carotenoid and allophycocyanin levels, and diminishes the actual quantum yield of Photosystem II (PSII). Moreover, p-CA significantly altered algal cell membrane protein systems, and PSII loss resulting from p-CA exposure promoted reactive oxygen species production. It significantly altered algae cell membrane protein systems. Finally, p-CA was found to be environmentally nontoxic; 80 % of 48-h-old Daphnia magna larvae survived when exposed to 0.15 g/L p-CA. These findings provide insight into the mechanism of cyanobacterial inhibition by p-CA, providing a more practical approach to controlling harmful algal blooms.PMID:38471589 | DOI:10.1016/j.scitotenv.2024.171632

The underappreciated diversity of bile acid modifications

Tue, 12/03/2024 - 11:00
Cell. 2024 Mar 6:S0092-8674(24)00185-5. doi: 10.1016/j.cell.2024.02.019. Online ahead of print.ABSTRACTThe repertoire of modifications to bile acids and related steroidal lipids by host and microbial metabolism remains incompletely characterized. To address this knowledge gap, we created a reusable resource of tandem mass spectrometry (MS/MS) spectra by filtering 1.2 billion publicly available MS/MS spectra for bile-acid-selective ion patterns. Thousands of modifications are distributed throughout animal and human bodies as well as microbial cultures. We employed this MS/MS library to identify polyamine bile amidates, prevalent in carnivores. They are present in humans, and their levels alter with a diet change from a Mediterranean to a typical American diet. This work highlights the existence of many more bile acid modifications than previously recognized and the value of leveraging public large-scale untargeted metabolomics data to discover metabolites. The availability of a modification-centric bile acid MS/MS library will inform future studies investigating bile acid roles in health and disease.PMID:38471500 | DOI:10.1016/j.cell.2024.02.019

Tryptophan degradation as a systems phenomenon in inflammation - an analysis across 13 chronic inflammatory diseases

Tue, 12/03/2024 - 11:00
EBioMedicine. 2024 Mar 11;102:105056. doi: 10.1016/j.ebiom.2024.105056. Online ahead of print.ABSTRACTBACKGROUND: Chronic inflammatory diseases (CIDs) are systems disorders that affect diverse organs including the intestine, joints and skin. The essential amino acid tryptophan (Trp) can be broken down to various bioactive derivatives important for immune regulation. Increased Trp catabolism has been observed in some CIDs, so we aimed to characterise the specificity and extent of Trp degradation as a systems phenomenon across CIDs.METHODS: We used high performance liquid chromatography and targeted mass spectrometry to assess the serum and stool levels of Trp and Trp derivatives. Our retrospective study incorporates both cross-sectional and longitudinal components, as we have included a healthy population as a reference and there are also multiple observations per patient over time.FINDINGS: We found reduced serum Trp levels across the majority of CIDs, and a prevailing negative relationship between Trp and systemic inflammatory marker C-reactive protein (CRP). Notably, serum Trp was low in several CIDs even in the absence of measurable systemic inflammation. Increases in the kynurenine-to-Trp ratio (Kyn:Trp) suggest that these changes result from increased degradation along the kynurenine pathway.INTERPRETATION: Increases in Kyn:Trp indicate the kynurenine pathway as a major route for CID-related Trp metabolism disruption and the specificity of the network changes indicates excessive Trp degradation relative to other proteogenic amino acids. Our results suggest that increased Trp catabolism is a common metabolic occurrence in CIDs that may directly affect systemic immunity.FUNDING: This work was supported by the DFG Cluster of Excellence 2167 "Precision medicine in chronic inflammation" (KA, SSchr, PR, BH, SWa), the BMBF (e:Med Juniorverbund "Try-IBD" 01ZX1915A and 01ZX2215, the e:Med Network iTREAT 01ZX2202A, and GUIDE-IBD 031L0188A), EKFS (2020_EKCS.11, KA), DFG RU5042 (PR, KA), and Innovative Medicines Initiative 2 Joint Undertakings ("Taxonomy, Treatments, Targets and Remission", 831434, "ImmUniverse", 853995, "BIOMAP", 821511).PMID:38471395 | DOI:10.1016/j.ebiom.2024.105056

Discovery of two novel bioactive algicidal substances from Brevibacillus sp. via metabolomics profiling and back-validation

Tue, 12/03/2024 - 11:00
J Hazard Mater. 2024 Mar 8;469:133985. doi: 10.1016/j.jhazmat.2024.133985. Online ahead of print.ABSTRACTIdentifying potent bacterial algicidal agents is essential for the development of effective, safe, and economically viable algaecides. Challenges in isolating and purifying these substances from complex secretions have impeded progress in this field. Metabolomics profiling, an efficient strategy for identifying metabolites, was pioneered in identifying bacterial algicidal substances in this study. Extracellular secretions from different generations of the algicidal bacterium Brevibacillus sp. were isolated for comprehensive analysis. Specifically, a higher algicidal efficacy was observed in the secretion from Generation 3 (G3) of Brevibacillus sp. compared to Generation 1 (G1). Subsequent metabolomics profiling comparing G3 and 1 revealed 83 significantly up-regulated metabolites, of which 9 were identified as potential algicidal candidates. Back-validation highlighted the potency of 4-acetamidobutanoic acid (4-ABC) and 8-hydroxyquinoline (8-HQL), which exhibited robust algicidal activity with 3d-EC50 values of 6.40 mg/L and 92.90 µg/L, respectively. These substances disrupted photosynthetic activity in M. aeruginosa by ceasing electron transfer in PSⅡ, like the impact exerted by Brevibacillus sp. secretion. These findings confirmed that 4-ABC and 8-HQL were the main algicidal components derived from Brevibacillus sp.. Thus, this study presents a streamlined strategy for identifying bacterial algicidal substances and unveils two novel and highly active algicidal substances. ENVIRONMENTAL IMPLICATION: Harmful cyanobacterial blooms (HCBs) pose significant environmental problems and health effects to humans and other organisms. The increasing frequency of HCBs has emerged as a pressing global concern. Bacterial-derived algicidal substances are expected to serve as effective, safe, and economically viable algaecides against HCBs. This study presents a streamlined strategy for identifying bacterial algicidal substances and unveils two novel substances (4-ABC and 8-HQL). These two substances demonstrate remarkable algicidal activity and disrupt the photosynthetic system in M. aeruginosa. They hold potential as prospective algaecides for addressing HCBs.PMID:38471378 | DOI:10.1016/j.jhazmat.2024.133985

LC-MS based untargeted metabolomics studies of the metabolic response of Ginkgo biloba extract on arsenism patients

Tue, 12/03/2024 - 11:00
Ecotoxicol Environ Saf. 2024 Mar 11;274:116183. doi: 10.1016/j.ecoenv.2024.116183. Online ahead of print.ABSTRACTArsenic is an environmentally ubiquitous toxic metalloid. Chronic exposure to arsenic may lead to arsenicosis, while no specific therapeutic strategies are available for the arsenism patients. And Ginkgo biloba extract (GBE) exhibited protective effect in our previous study. However, the mechanisms by which GBE protects the arsenism patients remain poorly understood. A liquid chromatography-mass spectrometry (LC-MS) based untargeted metabolomics analysis was used to study metabolic response in arsenism patients upon GBE intervention. In total, 39 coal-burning type of arsenism patients and 50 healthy residents were enrolled from Guizhou province of China. The intervention group (n = 39) were arsenism patients orally administered with GBE (three times per day) for continuous 90 days. Plasma samples from 50 healthy controls (HC) and 39 arsenism patients before and after GBE intervention were collected and analyzed by established LC-MS method. Statistical analysis was performed by MetaboAnalyst 5.0 to identify differential metabolites. Multivariate analysis revealed a separation in arsenism patients between before (BG) and after GBE intervention (AG) group. It was observed that 35 differential metabolites were identified between BG and AG group, and 30 of them were completely or partially reversed by GBE intervention, with 14 differential metabolites significantly up-regulated and 16 differential metabolites considerably down-regulated. These metabolites were involved in promoting immune response and anti-inflammatory functions, and alleviating oxidative stress. Taken together, these findings indicate that the GBE intervention could probably exert its protective effects by reversing disordered metabolites modulating these functions in arsenism patients, and provide insights into further exploration of mechanistic studies.PMID:38471343 | DOI:10.1016/j.ecoenv.2024.116183

Ginseng fermentation solution affects the gut microbiota in zebrafish with alcoholic liver disease via PI3K/Akt pathway

Tue, 12/03/2024 - 11:00
Phytomedicine. 2024 Feb 27;128:155495. doi: 10.1016/j.phymed.2024.155495. Online ahead of print.ABSTRACTBACKGROUND: Ginsenosides have received increased amounts of attention due to their ability to modulate the intestinal flora, which may subsequently alleviate alcoholic liver disease (ALD). The effects of ginseng fermentation solution (GFS) on the gut microbiota and metabolism in ALD patients have not been explored.PURPOSE: This research aimed to explore the regulatory effect of GFS on ALD both in vitro and in vivo.METHOD: This study assessed the anti-ALD efficacy of GFS using an LO2 cell model and a zebrafish model. Untargeted metabolomics was used for differentially abundant metabolite analysis, and high-throughput 16S rRNA sequencing was used to examine the effect of GFS on ALD.RESULTS: The LO2 cell line experiments demonstrated that GFS effectively mitigated alcohol-induced oxidative stress and reduced apoptosis by upregulating PI3K and Bcl-2 expression and decreasing the levels of malondialdehyde, total cholesterol, and triglycerides. In zebrafish, GFS improved morphological and physiological parameters and diminished oxidative stress-induced ALD. Meanwhile, the results from Western blotting indicated that GFS enhanced the expression of PI3K, Akt, and Bcl-2 proteins while reducing Bax protein expression, thereby ameliorating the ALD model in zebrafish. Metabolomics data revealed significant changes in a total of 46 potential biomarkers. Among them, metabolites such as prostaglandin F2 alpha belong to arachidonic acid metabolism. In addition, GFS also partly reversed the imbalance of gut microbiota composition caused by alcohol. At the genus level, alcohol consumption elevated the presence of Flectobacillus, Curvibacter, among others, and diminished Elizabethkingia within the intestinal microbes of zebrafish. Conversely, GFS reversed these effects, notably enhancing the abundance of Proteobacteria and Archaea. Correlation analyses further indicated a significant negative correlation between prostaglandin F2 alpha, 11,14,15-THETA, Taurocholic acid and Curvibacter.CONCLUSION: This study highlights a novel mechanism by which GFS modulates anti-ALD activity through the PI3K/Akt signalling pathway by influencing the intestinal flora-metabolite axis. These results indicate the potential of GFS as a functional food for ALD treatment via modulation of the gut flora.PMID:38471317 | DOI:10.1016/j.phymed.2024.155495

2-Hydroxy-5-nitro-3-(trifluoromethyl)pyridine as a Novel Matrix for Enhanced MALDI Imaging of Tissue Metabolites

Tue, 12/03/2024 - 11:00
Anal Chem. 2024 Mar 12. doi: 10.1021/acs.analchem.3c05235. Online ahead of print.ABSTRACTMatrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI), which is a label-free imaging technique, determines the spatial distribution and relative abundance of versatile endogenous metabolites in tissues. Meanwhile, matrix selection is generally regarded as a pivotal step in MALDI tissue imaging. This study presents the first report of a novel MALDI matrix, 2-hydroxy-5-nitro-3-(trifluoromethyl)pyridine (HNTP), for the in situ detection and imaging of endogenous metabolites in rat liver and brain tissues by MALDI-MS in positive-ion mode. The HNTP matrix exhibits excellent characteristics, including strong ultraviolet absorption, μm-scale matrix crystals, high chemical stability, low background ion interference, and high metabolite ionization efficiency. Notably, the HNTP matrix also shows superior detection capabilities, successfully showing 185 detectable metabolites in rat liver tissue sections. This outperforms the commonly used matrices of 2,5-dihydroxybenzoic acid and 2-mercaptobenzothiazole, which detect 145 and 120 metabolites from the rat liver, respectively. Furthermore, a total of 152 metabolites are effectively detected and imaged in rat brain tissue using the HNTP matrix, and the spatial distribution of these compounds clearly shows the heterogeneity of the rat brain. The results demonstrate that HNTP is a new and powerful positive-ion mode matrix to enhance the analysis of metabolites in biological tissues by MALDI-MSI.PMID:38470972 | DOI:10.1021/acs.analchem.3c05235

Queen bee gut microbiota extends honeybee lifespan by inhibiting insulin signaling

Tue, 12/03/2024 - 11:00
Appl Environ Microbiol. 2024 Mar 12:e0179923. doi: 10.1128/aem.01799-23. Online ahead of print.ABSTRACTQueen and worker bees are natural models for aging research, as their lifespans vary considerably independent of genetic variation. Investigating the reasons why queens live longer than workers is of great significance for research on the universal processes of aging in animals. The gut microbiome has received attention as a vital regulator of host health, while its precise role in honeybee aging needs further investigation. The effects and mechanisms behind the relationship between gut microbiota and worker lifespan were measured by transplanting queen bee gut bacteria (QG) and worker bee gut bacteria (WG) into microbiota-free (MF) workers. The transplantation of QG to MF bees significantly extended the workers' lifespans compared with MF and WG bees. Untargeted metabolomics identified 49 lifespan-related differential metabolites, and Kyoto Encyclopedia of Genes and Genomes analysis of these revealed three lifespan-related metabolic pathways: insulin/insulin-like growth factor signaling, immune, and ketone body metabolism pathways. Further verification showed that QG inhibited the expression of insulin-like peptides (ILPs), and the expression of ILPs was lower in natural queens than in natural workers. QG transplantation also stimulated the expression of antioxidant genes and lowered oxidative damage products in natural queen bees. However, gut microbiota transplantation failed to mimic the immune properties and ketone body metabolism profiles of natural queens and workers. Concisely, QG could increase the antioxidant capacity to extend lifespan by inhibiting insulin signaling. These findings may help determine the mechanisms behind queen longevity and provide further insights into the role of gut symbionts.IMPORTANCE: Queen and worker bees share the same genetic background but have vastly different lifespans. The gut microbiome regulates host health, suggesting that differences in lifespan between queen and worker bees could be related to gut bacteria. Herein, we used an innovative method to transplant gut microbiota from adult queen or worker bees to microbiota-free bees. The transplantation of queen gut microbiota to microbiota-free bees extended their lifespan. Insulin/insulin-like growth factor signaling, a highly conserved metabolic pathway related to lifespan, displayed identical expression profiles in natural queen bees and microbiota-free bees transplanted with queen microbiota. This finding significantly expands our understanding of the relationships between intestinal bacteria, host health, and the biology of aging.PMID:38470148 | DOI:10.1128/aem.01799-23

Decoding the chemical language of Suillus fungi: genome mining and untargeted metabolomics uncover terpene chemical diversity

Tue, 12/03/2024 - 11:00
mSystems. 2024 Mar 12:e0122523. doi: 10.1128/msystems.01225-23. Online ahead of print.ABSTRACTEctomycorrhizal fungi establish mutually beneficial relationships with trees, trading nutrients for carbon. Suillus are ectomycorrhizal fungi that are critical to the health of boreal and temperate forest ecosystems. Comparative genomics has identified a high number of non-ribosomal peptide synthetase and terpene biosynthetic gene clusters (BGC) potentially involved in fungal competition and communication. However, the functionality of these BGCs is not known. This study employed co-culture techniques to activate BGC expression and then used metabolomics to investigate the diversity of metabolic products produced by three Suillus species (Suillus hirtellus EM16, Suillus decipiens EM49, and Suillus cothurnatus VC1858), core members of the pine microbiome. After 28 days of growth on solid media, liquid chromatography-tandem mass spectrometry identified a diverse range of extracellular metabolites (exometabolites) along the interaction zone between Suillus co-cultures. Prenol lipids were among the most abundant chemical classes. Out of the 62 unique terpene BGCs predicted by genome mining, 41 putative prenol lipids (includes 37 putative terpenes) were identified across the three Suillus species using metabolomics. Notably, some terpenes were significantly more abundant in co-culture conditions. For example, we identified a metabolite matching to isomers isopimaric acid, sandaracopimaric acid, and abietic acid, which can be found in pine resin and play important roles in host defense mechanisms and Suillus spore germination. This research highlights the importance of combining genomics and metabolomics to advance our understanding of the chemical diversity underpinning fungal signaling and communication.IMPORTANCEUsing a combination of genomics and metabolomics, this study's findings offer new insights into the chemical diversity of Suillus fungi, which serve a critical role in forest ecosystems.PMID:38470040 | DOI:10.1128/msystems.01225-23

Pages