PubMed
Lack of SPNS1 results in accumulation of lysolipids and lysosomal storage disease in mouse models
JCI Insight. 2024 Mar 7:e175462. doi: 10.1172/jci.insight.175462. Online ahead of print.ABSTRACTAccumulation of sphingolipids, especially sphingosines, in the lysosomes is a key driver of several lysosomal storage diseases. The transport mechanism for sphingolipids from the lysosome remains unclear. Here, we identified SPNS1, which shares the highest homology to SPNS2 - a sphingosine-1-phosphate (S1P) transporter, functions as a transporter for lysolipids from the lysosome. We generated Spns1 knockout cells and mice and employed lipidomic and metabolomic approaches to reveal SPNS1 ligand identity. Global knockout of Spns1 caused embryonic lethality between E12.5-E13.5 and an accumulation of sphingosine, lysophosphatidylcholines (LPC) and lysophosphatidylethanolamines (LPE) in the fetal livers. Similarly, metabolomic analysis of livers from postnatal Spns1 knockout (Spns1-KO) mice presented an accumulation of sphingosines and lysoglycerophospholipids including LPC and LPE. Subsequently, biochemical assays showed that SPNS1 is required for LPC and sphingosine release from lysosomes. The accumulation of these lysolipids in the lysosomes of Spns1-KO mice affected liver functions and altered the PI3K-AKT signaling pathway. Furthermore, we identified three human siblings with a homozygous variant in the SPNS1 gene. These patients suffer from developmental delay, neurological impairment, intellectual disability, and exhibiting cerebellar hypoplasia. These results reveal a critical role of SPNS1 as a promiscuous lysolipid transporter in the lysosomes and link its physiological functions with lysosomal storage diseases.PMID:38451736 | DOI:10.1172/jci.insight.175462
Bile acid profile associated with CSF and PET biomarkers in Alzheimer's disease
Aging Clin Exp Res. 2024 Mar 7;36(1):62. doi: 10.1007/s40520-024-02729-3.ABSTRACTBACKGROUND: Recent studies have shown that gut microbiota can affect the development of Alzheimer's disease (AD) through various mechanisms. Bile acids (BAs), which are the final byproducts of cholesterol metabolism created through both the human body and gut microbiome, appear to be influenced by gut microbiota and may impact AD pathological characteristics such as the accumulation of tau and amyloid-β. We aimed to investigate the associations between various serum BAs and CSF biomarkers (including Aβ, total tau, and p-tau). Additionally, we sought to examine the longitudinal changes in brain Aβ and tau through PET imaging in relation to BAs profile.METHODS: The data of 828 subjects including 491 diagnosed with mild cognitive impairment (MCI), 119 patients diagnosed with AD, and 267 cognitively normal (CN) participants were obtained from ADNI. The baseline and longitudinal [18F] florbetapir and [18F] flortaucipir PET standard uptake value ratios (SUVR) measures were obtained to assess the accumulation of tau and Aβ. Moreover, baseline levels of serum BAs and CSF Aβ1-42, tau, and p-tau were used.RESULTS: After FDR correction we observed that five BAs level and relevant calculated ratios were associated with CSF p-tau and tau, three with CSF Aβ1-42. Furthermore, three BAs level and relevant calculated ratios were associated with the tau-PET rate of change, and two with the Aβ rate of change.CONCLUSION: The findings from our study suggest a correlation between altered profiles of BAs and CSF and imaging biomarkers associated with AD. These results provide supporting evidence for the link between the gut microbiome and the pathological features of AD.PMID:38451317 | DOI:10.1007/s40520-024-02729-3
Stable Isotope Tracer Technique and Network Pharmacology to Reveal Antidepressant Targets and Active Components of Xiaoyao San
Chem Biodivers. 2024 Mar 7:e202301736. doi: 10.1002/cbdv.202301736. Online ahead of print.ABSTRACTIn recent years, the research of mitochondrial dysfunction in depression has drawn the focus of researchers. Our research group previously found that Xiaoyao San (XYS) has improved the mitochondrial structure and the blocked tricarboxylic acid cycle (TCA cycle) in the hippocampal tissue of chronic unpredictable mild stress (CUMS) rats. However, the specific targets and active components of XYS remain unclear, and the potential to improve hippocampal mitochondrial TCA cycle disorder was also unexplored. In this research, a strategy to combine stable isotope-resolved metabolomics (SIRM), network pharmacology and transmission electron microscopy (TEM) was used to explore the potential, targets of action, and active components of XYS to improve hippocampal mitochondrial TCA cycle disorder of CUMS rats. The results of TEM showed that the ultrastructure of hippocampal mitochondria could be improved by XYS. A combination of SIRM and molecular docking showed that pyruvate carboxylase (PC), ATP citrate lyase (ACLK), glutamate dehydrogenase (GLDH), glutamate oxaloacetate transaminase (GOT) and pyruvate dehydrogenase (PDH) were targets of XYS to improve TCA cycle disorder. In addition, Troxerutin was found to be the most potential active component of XYS to improve TCA cycle disorder. The above research results can provide new insights for the development of antidepressant drugs.PMID:38451006 | DOI:10.1002/cbdv.202301736
Functional and multi-omics signatures of mitapivat efficacy upon activation of pyruvate kinase in red blood cells from patients with sickle cell disease
Haematologica. 2024 Mar 7. doi: 10.3324/haematol.2023.284831. Online ahead of print.ABSTRACTMitapivat, a pyruvate kinase (PK) activator, shows great potential as a sickle cell disease (SCD)- modifying therapy. Safety and efficacy of mitapivat as a long-term maintenance therapy is currently being evaluated in two open-label studies. Here we apply a comprehensive multi-omics approach to investigate the impact of activating PK on red blood cells (RBCs) from 15 SCD patients. HbSS patients were enrolled in one of the open label, extended studies (NCT04610866). Leuko-depleted RBCs obtained from fresh whole blood at baseline (visit 1, V1), prior to drug initiation and longitudinal time points over the course of the study were processed for multiomics through a stepwise extraction of metabolites, lipids and proteins. Mitapivat therapy had significant effects on the metabolome, lipidome and proteome of SCD RBCs. Mitapivat decreased 2,3-diphosphoglycerate (DPG) levels, increased adenosine triphosphate (ATP) levels, and improved hematologic and sickling parameters in patients with SCD. Agreement between omics measurements and clinical measurements confirmed the specificity of mitapivat on targeting late glycolysis, with glycolytic metabolites ranking as the top correlates to parameters of hemoglobin S (HbS) oxygen affinity (p50) and sickling kinetics (t50) during treatment. Mitapivat markedly reduced levels of proteins of mitochondrial origin within 2 weeks of initiation of drug treatment, with minimal changes in the reticulocyte counts. The first six months of treatment also witnessed transient elevation of lysophosphatidylcholines and oxylipins with depletion in free fatty acids, suggestive of an effect on membrane lipid remodeling. Multi-omics analysis of RBCs identified benefits for glycolysis, as well as activation of the Lands cycle.PMID:38450513 | DOI:10.3324/haematol.2023.284831
Integrated microbiome and metabolomics analysis reveal the relationship between plant-specialized metabolites and microbial community in Phellodendron amurense
Front Plant Sci. 2024 Feb 21;15:1363063. doi: 10.3389/fpls.2024.1363063. eCollection 2024.ABSTRACTPhellodendron amurense is the essential source of bisbenzylisoquinoline alkaloids (BIAs), making it a highly valued raw material in traditional Chinese medicine. The plant's root secondary metabolism is intricately linked to the microbial communities that surround it. However, the root-associated microbiomes of P. amurense, as well as the potential correlation between its bioactive compounds and these microbiomes, remain poorly understood. Here, the metabolic profiles of root, rhizosphere, and bulk soils of P. amurense revealed the dramatic differences in the relative content of plant-specialized metabolites. A total of 31, 21, and 0 specialized metabolites in P. amurense were identified in the root, rhizosphere soil, and bulk soil, respectively, with higher content of the seven major BIAs observed in the rhizosphere compared with that in the bulk soils. The composition of the bulk and rhizosphere microbiomes was noticeably distinct from that of the endospheric microbiome. The phylum Cyanobacteria accounted for over 60% of the root endosphere communities, and the α-diversity in root was the lowest. Targeted seven BIAs, namely, berberine, palmatine, magnocurarine, phellodendrine, jatrorrhizine, tetrahydropalmatine, and magnoflorine, were significantly positively correlated with Nectriaceae and Sphingobacteriaceae. This study has illuminated the intricate interaction networks between P. amurense root-associated microorganisms and their key chemical compounds, providing the theoretical foundation for discovering biological fertilizers and laying the groundwork for cultivating high-quality medicinal plants.PMID:38450408 | PMC:PMC10915045 | DOI:10.3389/fpls.2024.1363063
Metabolomics analysis reveals novel serum metabolite alterations in cancer cachexia
Front Oncol. 2024 Feb 20;14:1286896. doi: 10.3389/fonc.2024.1286896. eCollection 2024.ABSTRACTBACKGROUND: Cachexia is a body wasting syndrome that significantly affects well-being and prognosis of cancer patients, without effective treatment. Serum metabolites take part in pathophysiological processes of cancer cachexia, but apart from altered levels of select serum metabolites, little is known on the global changes of the overall serum metabolome, which represents a functional readout of the whole-body metabolic state. Here, we aimed to comprehensively characterize serum metabolite alterations and analyze associated pathways in cachectic cancer patients to gain new insights that could help instruct strategies for novel interventions of greater clinical benefit.METHODS: Serum was sampled from 120 metastatic cancer patients (stage UICC IV). Patients were grouped as cachectic or non-cachectic according to the criteria for cancer cachexia agreed upon international consensus (main criterium: weight loss adjusted to body mass index). Samples were pooled by cachexia phenotype and assayed using non-targeted gas chromatography-mass spectrometry (GC-MS). Normalized metabolite levels were compared using t-test (p < 0.05, adjusted for false discovery rate) and partial least squares discriminant analysis (PLS-DA). Machine-learning models were applied to identify metabolite signatures for separating cachexia states. Significant metabolites underwent MetaboAnalyst 5.0 pathway analysis.RESULTS: Comparative analyses included 78 cachectic and 42 non-cachectic patients. Cachectic patients exhibited 19 annotable, significantly elevated (including glucose and fructose) or decreased (mostly amino acids) metabolites associating with aminoacyl-tRNA, glutathione and amino acid metabolism pathways. PLS-DA showed distinct clusters (accuracy: 85.6%), and machine-learning models identified metabolic signatures for separating cachectic states (accuracy: 83.2%; area under ROC: 88.0%). We newly identified altered blood levels of erythronic acid and glucuronic acid in human cancer cachexia, potentially linked to pentose-phosphate and detoxification pathways.CONCLUSION: We found both known and yet unknown serum metabolite and metabolic pathway alterations in cachectic cancer patients that collectively support a whole-body metabolic state with impaired detoxification capability, altered glucose and fructose metabolism, and substrate supply for increased and/or distinct metabolic needs of cachexia-associated tumors. These findings together imply vulnerabilities, dependencies and targets for novel interventions that have potential to make a significant impact on future research in an important field of cancer patient care.PMID:38450189 | PMC:PMC10915872 | DOI:10.3389/fonc.2024.1286896
Electroacupuncture at ST25 corrected gut microbial dysbiosis and SNpc lipid peroxidation in Parkinson's disease rats
Front Microbiol. 2024 Feb 21;15:1358525. doi: 10.3389/fmicb.2024.1358525. eCollection 2024.ABSTRACTINTRODUCTION: Parkinson's disease (PD) remains one kind of a complex, progressive neurodegenerative disease. Levodopa and dopamine agonists as widely utilized PD therapeutics have not shown significant positive long-term outcomes. Emerging evidences indicate that electroacupuncture (EA) have potential effects on the therapy of nervous system disorders, particularly PD, but its specific underlying mechanism(s) remains poorly understood, leading to the great challenge of clinical application and management. Previous study has shown that acupuncture ameliorates PD motor symptoms and dopaminergic neuron damage by modulating intestinal dysbiosis, but its intermediate pathway has not been sufficiently investigated.METHODS: A rat model of PD was induced using rotenone. The therapeutic effect of EA on PD was assessed using the pole and rotarod tests and immunohistostaining for tyrosine hydroxylase (TH) in the substantia nigra (SN) of brain. The role of gut microbiota was explored using 16S rRNA gene sequencing and metabonomic analysis. PICRUSt2 analysis, lipidomic analysis, LPS and inflammatory factor assays were used for subsequent exploration and validation. Correlation analysis was used to identify the key bacteria that EA regulates lipid metabolism to improve PD.RESULTS: The present study firstly reappeared the effects of EA on protecting motor function and dopaminergic neurons and modulation of gut microbial dysbiosis in rotenone-induced PD rat model. EA improved motor dysfunction (via the pole and rotarod tests) and protected TH+ neurons in PD rats. EA increased the abundance of beneficial bacteria such as Lactobacillus, Dubosiella and Bifidobacterium and decreased the abundance of Escherichia-Shigella and Morganella belonging to Pseudomonadota, suggesting that the modulation of gut microbiota by EA improving the symptoms of PD motility via alleviating LPS-induced inflammatory response and oxidative stress, which was also validated by various aspects such as microbial gene functional analysis, fecal metabolomics analysis, LPS and inflammatory factor assays and SNpc lipidomics analysis. Moreover, correlation analyses also verified strong correlations of Escherichia-Shigella and Morganella with motor symptoms and SNpc lipid peroxidation, explicating targets and intermediate pathways through which EA improve PD exercise symptom.CONCLUSION: Our results indicate that the improvement of motor function in PD model by EA may be mediated in part by restoring the gut microbiota, which intermediate processes involve circulating endotoxins and inflammatory mediators, SNpc oxidative stress and lipid peroxidation. The gut-microbiome - brain axis may be a potential mechanism of EA treatment for the PD.PMID:38450172 | PMC:PMC10915097 | DOI:10.3389/fmicb.2024.1358525
Gut microbiota affects obesity susceptibility in mice through gut metabolites
Front Microbiol. 2024 Feb 21;15:1343511. doi: 10.3389/fmicb.2024.1343511. eCollection 2024.ABSTRACTINTRODUCTION: It is well-known that different populations and animals, even experimental animals with the same rearing conditions, differ in their susceptibility to obesity. The disparity in gut microbiota could potentially account for the variation in susceptibility to obesity. However, the precise impact of gut microbiota on gut metabolites and its subsequent influence on susceptibility to obesity remains uncertain.METHODS: In this study, we established obesity-prone (OP) and obesity-resistant (OR) mouse models by High Fat Diet (HFD). Fecal contents of cecum were examined using 16S rDNA sequencing and untargeted metabolomics. Correlation analysis and MIMOSA2 analysis were used to explore the association between gut microbiota and intestinal metabolites.RESULTS: After a HFD, gut microbiota and gut metabolic profiles were significantly different between OP and OR mice. Gut microbiota after a HFD may lead to changes in eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), a variety of branched fatty acid esters of hydroxy fatty acids (FAHFAs) and a variety of phospholipids to promote obesity. The bacteria g_Akkermansia (Greengene ID: 175696) may contribute to the difference in obesity susceptibility through the synthesis of glycerophosphoryl diester phosphodiesterase (glpQ) to promote choline production and the synthesis of valyl-tRNA synthetase (VARS) which promotes L-Valine degradation. In addition, gut microbiota may affect obesity and obesity susceptibility through histidine metabolism, linoleic acid metabolism and protein digestion and absorption pathways.PMID:38450171 | PMC:PMC10916699 | DOI:10.3389/fmicb.2024.1343511
Oral <em>Clostridium butyricum</em> on mice endometritis through uterine microbiome and metabolic alternations
Front Microbiol. 2024 Feb 21;15:1351899. doi: 10.3389/fmicb.2024.1351899. eCollection 2024.ABSTRACTEndometritis occurs frequently in humans and animals, which can negatively affect fertility and cause preterm parturition syndrome. Orally administered Clostridium butyricum, a butyrate-producing gram-positive anaerobe, exhibits anti-inflammatory effects. However, the precise mechanism by which Clostridium butyricum attenuates endometritis remains unclear. This in vivo study evaluated the anti-inflammatory effects of orally administered Clostridium butyricum on uterine tissues. In addition, we conducted uterine microbiome and lipid metabolome analyses to determine the underlying mechanisms. Female Balb/c mice were divided into the following four groups (n = 5-20): (1) mock group, (2) only operation group (mice only underwent operation to exposed uterine horns from the side), (3) control group (mice underwent the same operation with the operation group + perfusion of lipopolysaccharide solution from uterine horns), and (4) Clostridium butyricum administration group (mice underwent the same operation with the control group + oral Clostridium butyricum administration from days 0 to 9). Clostridium butyricum was administered via oral gavage. On day 10, we investigated protein expression, uterine microbiome, and lipid metabolism in uterine tissues. Consequently, orally administered Clostridium butyricum altered the uterine microbiome and induced proliferation of Lactobacillus and Limosilactobacillus species. The effects can contribute to show the anti-inflammatory effect through the interferon-β upregulation in uterine tissues. Additionally, oral Clostridium butyricum administration resulted in the upregulations of some lipid metabolites, such as ω-3 polyunsaturated fatty acid resolvin D5, in uterine tissues, and resolvin D5 showed anti-inflammatory effects. However, the orally administered Clostridium butyricum induced anti-inflammatory effect was attenuated with the deletion of G protein-coupled receptor 120 and 15-lipooxgenase inhibition. In conclusion, Clostridium butyricum in the gut has anti-inflammatory effects on uterine tissues through alterations in the uterine microbiome and lipid metabolism. This study revealed a gut-uterus axis mechanism and provided insights into the treatment and prophylaxis of endometritis.PMID:38450161 | PMC:PMC10915095 | DOI:10.3389/fmicb.2024.1351899
Dietary protein restriction regulates skeletal muscle fiber metabolic characteristics associated with the FGF21-ERK1/2 pathway
iScience. 2024 Feb 19;27(3):109249. doi: 10.1016/j.isci.2024.109249. eCollection 2024 Mar 15.ABSTRACTUnder conditions of dietary amino acid balance, decreasing the dietary crude protein (CP) level in pigs has a beneficial effect on meat quality. To further elucidate the mechanism, we explored the alteration of muscle fiber characteristics and key regulators related to myogenesis in the skeletal muscle of pigs fed a protein restricted diet. Compared to pigs fed a normal protein diet, dietary protein restriction significantly increased the slow-twitch muscle fiber proportion in skeletal muscle, succinic dehydrogenase (SDH) activity, the concentrations of ascorbate, biotin, palmitoleic acid, and the ratio of s-adenosylhomocysteine (SAM) to s-adenosylhomocysteine (SAH), but the fast-twitch muscle fiber proportion, lactate dehydrogenase (LDH) activity, the concentrations of ATP, glucose-6-phosphate, SAM, and SAH in skeletal muscle, and the ratio of serum triiodothyronine (T3) to tetraiodothyronine (T4) were decreased. In conclusion, we demonstrated that dietary protein restriction induced skeletal muscle fiber remodeling association the regulation of FGF21-ERK1/2-mTORC1 signaling in weaned piglets.PMID:38450157 | PMC:PMC10915561 | DOI:10.1016/j.isci.2024.109249
Plasma free fatty acid levels in cervical cancer: concurrent chemoradiotherapy improves abnormal profile
Front Pharmacol. 2024 Feb 21;15:1352101. doi: 10.3389/fphar.2024.1352101. eCollection 2024.ABSTRACTBackground: Epidemiology has demonstrated that plasma free fatty acids (FFAs) can prevent the development of cancer. Our study sought to evaluate the relationship between plasma (FFA) levels and cervical cancer. Methods: In recent years, metabolomics-based approaches have been recognized as an emerging tool, so we examined the plasma FFA profiles of 114 patients with cervical cancer and 151 healthy people using liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods. Results: The data results were analyzed by multifactorial binary logistic regression analysis, and it was found that palmitic acid, docosahexaenoic acid (DHA), and total ω-3 fatty acids were negatively correlated with the risk of cervical cancer; whereas tetracosanoic acid was positively correlated with the risk of cervical cancer (OR, 1.026; 95% CI, 1.013-1.040; p < 0.001). Dynamic follow-up of 40 cervical cancer patients who successfully completed CCRT revealed that most fatty acid levels tended to increase after the end of treatment, except for palmitic and stearic acid levels, which were lower than before treatment. Conclusion: Plasma FFA profiles were altered in cervical cancer patients, which may be related to abnormal fatty acid metabolism in cervical cancer. The described changes in fatty acid profiles during CCRT may be related to the good functioning of CCRT. Further studies on plasma FFA composition and its changes due to CCRT in patients with cervical cancer are warranted.PMID:38449803 | PMC:PMC10916716 | DOI:10.3389/fphar.2024.1352101
Bacterial Lactonases ZenA with Noncanonical Structural Features Hydrolyze the Mycotoxin Zearalenone
ACS Catal. 2024 Feb 16;14(5):3392-3410. doi: 10.1021/acscatal.4c00271. eCollection 2024 Mar 1.ABSTRACTZearalenone (ZEN) is a mycoestrogenic polyketide produced by Fusarium graminearum and other phytopathogenic members of the genus Fusarium. Contamination of cereals with ZEN is frequent, and hydrolytic detoxification with fungal lactonases has been explored. Here, we report the isolation of a bacterial strain, Rhodococcus erythropolis PFA D8-1, with ZEN hydrolyzing activity, cloning of the gene encoding α/β hydrolase ZenA encoded on the linear megaplasmid pSFRL1, and biochemical characterization of nine homologues. Furthermore, we report site-directed mutagenesis as well as structural analysis of the dimeric ZenARe of R. erythropolis and the more thermostable, tetrameric ZenAScfl of Streptomyces coelicoflavus with and without bound ligands. The X-ray crystal structures not only revealed canonical features of α/β hydrolases with a cap domain including a Ser-His-Asp catalytic triad but also unusual features including an uncommon oxyanion hole motif and a peripheral, short antiparallel β-sheet involved in tetramer interactions. Presteady-state kinetic analyses for ZenARe and ZenAScfl identified balanced rate-limiting steps of the reaction cycle, which can change depending on temperature. Some new bacterial ZEN lactonases have lower KM and higher kcat than the known fungal ZEN lactonases and may lend themselves to enzyme technology development for the degradation of ZEN in feed or food.PMID:38449531 | PMC:PMC10913051 | DOI:10.1021/acscatal.4c00271
Protective effect of Xixin-Ganjiang herb pair for warming the lungs to dissolve phlegm in chronic obstructive pulmonary disease rats based on integrated network pharmacology and metabolomics
Biomed Chromatogr. 2024 Mar 6:e5851. doi: 10.1002/bmc.5851. Online ahead of print.ABSTRACTXixin-Ganjiang herb pair (XGHP) is a classic combination for warming the lungs to dissolve phlegm and is often used to treat a variety of chronic lung diseases; it can treat the syndrome of cold phlegm obstruction of lungs. First, ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was used to examine the composition of XGHP, and network pharmacology was used to predict its potential core targets and signaling pathways in the current study. Second, a rat model of chronic obstructive pulmonary disease (COPD) was established for assessing the anti-COPD activity of XGHP, and metabolomics was used to explore the biomarkers and metabolic pathways. Finally, the sample was validated using molecular docking and Western blotting. The integration of metabolomics and network pharmacology results identified 11 targets, 3 biomarkers, 3 pathways, and 2 metabolic pathways. Western blotting showed that XGHP effectively regulated the expression of core proteins via multiple signaling pathways (downregulation of toll-like receptor 4 [TLR4] and upregulation of serine/threonine-protein kinase 1 [p-AKT1] and nitric oxide synthase 3 [NOS3]). Molecular docking results showed that the 10 potentially active components of XGHP have good affinity with tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), matrix metalloproteinase 9 (MMP-9), TLR4, p-AKT1, and NOS3. Our findings suggest that XGHP may regulate glucolipid metabolism, improve energy supply, and inhibit inflammatory responses (TNF-α, IL-6, and MMP-9) via the PI3K-Akt signaling pathway and HIF-1 signaling pathway in the management of COPD.PMID:38449348 | DOI:10.1002/bmc.5851
The secretome of macrophages has a differential impact on spinal cord injury recovery according to the polarization protocol
Front Immunol. 2024 Feb 20;15:1354479. doi: 10.3389/fimmu.2024.1354479. eCollection 2024.ABSTRACTINTRODUCTION: The inflammatory response after spinal cord injury (SCI) is an important contributor to secondary damage. Infiltrating macrophages can acquire a spectrum of activation states, however, the microenvironment at the SCI site favors macrophage polarization into a pro-inflammatory phenotype, which is one of the reasons why macrophage transplantation has failed.METHODS: In this study, we investigated the therapeutic potential of the macrophage secretome for SCI recovery. We investigated the effect of the secretome in vitro using peripheral and CNS-derived neurons and human neural stem cells. Moreover, we perform a pre-clinical trial using a SCI compression mice model and analyzed the recovery of motor, sensory and autonomic functions. Instead of transplanting the cells, we injected the paracrine factors and extracellular vesicles that they secrete, avoiding the loss of the phenotype of the transplanted cells due to local environmental cues.RESULTS: We demonstrated that different macrophage phenotypes have a distinct effect on neuronal growth and survival, namely, the alternative activation with IL-10 and TGF-β1 (M(IL-10+TGF-β1)) promotes significant axonal regeneration. We also observed that systemic injection of soluble factors and extracellular vesicles derived from M(IL-10+TGF-β1) macrophages promotes significant functional recovery after compressive SCI and leads to higher survival of spinal cord neurons. Additionally, the M(IL-10+TGF-β1) secretome supported the recovery of bladder function and decreased microglial activation, astrogliosis and fibrotic scar in the spinal cord. Proteomic analysis of the M(IL-10+TGF-β1)-derived secretome identified clusters of proteins involved in axon extension, dendritic spine maintenance, cell polarity establishment, and regulation of astrocytic activation.DISCUSSION: Overall, our results demonstrated that macrophages-derived soluble factors and extracellular vesicles might be a promising therapy for SCI with possible clinical applications.PMID:38444856 | PMC:PMC10912310 | DOI:10.3389/fimmu.2024.1354479
Translational bioinformatics approach to combat cardiovascular disease and cancers
Adv Protein Chem Struct Biol. 2024;139:221-261. doi: 10.1016/bs.apcsb.2023.11.006. Epub 2024 Feb 15.ABSTRACTBioinformatics is an interconnected subject of science dealing with diverse fields including biology, chemistry, physics, statistics, mathematics, and computer science as the key fields to answer complicated physiological problems. Key intention of bioinformatics is to store, analyze, organize, and retrieve essential information about genome, proteome, transcriptome, metabolome, as well as organisms to investigate the biological system along with its dynamics, if any. The outcome of bioinformatics depends on the type, quantity, and quality of the raw data provided and the algorithm employed to analyze the same. Despite several approved medicines available, cardiovascular disorders (CVDs) and cancers comprises of the two leading causes of human deaths. Understanding the unknown facts of both these non-communicable disorders is inevitable to discover new pathways, find new drug targets, and eventually newer drugs to combat them successfully. Since, all these goals involve complex investigation and handling of various types of macro- and small- molecules of the human body, bioinformatics plays a key role in such processes. Results from such investigation has direct human application and thus we call this filed as translational bioinformatics. Current book chapter thus deals with diverse scope and applications of this translational bioinformatics to find cure, diagnosis, and understanding the mechanisms of CVDs and cancers. Developing complex yet small or long algorithms to address such problems is very common in translational bioinformatics. Structure-based drug discovery or AI-guided invention of novel antibodies that too with super-high accuracy, speed, and involvement of considerably low amount of investment are some of the astonishing features of the translational bioinformatics and its applications in the fields of CVDs and cancers.PMID:38448136 | DOI:10.1016/bs.apcsb.2023.11.006
Influence of acid-reducing Saccharomyces cerevisiae on the microbial communities and metabolites of Suanyu
Food Res Int. 2024 Apr;181:114117. doi: 10.1016/j.foodres.2024.114117. Epub 2024 Feb 9.ABSTRACTThe inoculation of S. cerevisiae can address the excessive acidity in Suanyu, but its influence on the microbial community structure has not been documented. In this study, the microbiota succession, and metabolites of Suanyu with the inoculation of acid-reducing S. cerevisiae L7 were explored. The findings revealed that the addition of S. cerevisiae L7 elevated the pH, and decreased the microbial α-diversity. In Suanyu, the dominant bacterial genera were Lactiplantibacillus and Bacillus, while the dominant fungal genera were Meyerozyma and Saccharomyces. Following the inoculation of S. cerevisiae L7, the relative abundance of Lactiplantibacillus decreased from 21 % to 13 %. Meanwhile, the growth of fungi such as Meyerozyma and Candida was suppressed. The rise in Saccharomyces had a significant impact on various pathways related to amino acid and carbohydrate metabolism, causing the accumulation of flavor compounds. This study sheds more lights on the methods for manipulating microbial community structure in fermented food.PMID:38448112 | DOI:10.1016/j.foodres.2024.114117
Targeted metabolomics analysis based on HS-SPME-GC-MS to discriminate geographical origin of 'Muscat Hamburg' grape and wine
Food Res Int. 2024 Apr;181:114120. doi: 10.1016/j.foodres.2024.114120. Epub 2024 Feb 8.ABSTRACTMonoterpenes are typical aroma components in muscat grapes and wines, closely related to its geographical origins. However, the mechanism underlying the geographical differences of monoterpenes remains to be elucidated, especially in the Chinese viticulture regions. This study investigated the diversity of six Chinese viticultural vineyards (YT, XF, SS, XX, WW and CL) in the monoterpene composition of Vitis vinifera L. cv.'Muscat Hamburg' grapes and the resulted wines. Monoterpenes were analyzed by HS-SPME- GC-MS. The total amount of free and bound monoterpenes varied dramatically between grapes of different vineyards, and their contents were obviously higher in YT region grapes. The OAVs for 18 monoterpenes of grapes from the YT vineyard were relative higher than those of other regions, and the floral odor could distinguish grapes from different regions. The total free monoterpenes were highest in the YT region wine. Concentrations of total bound monoterpenes ranged from 711.13 μg/L (XF region) to 1078.30 μg/L (CL region). A correlation analysis showed that all monoterpenes showeda positive correlation with mean relative humidity, sum rainfall, and a negative correlation with sum duration of sunshine and mean temperature. This study would provide some new insights to understand the geographical differences of monoterpenes, and the results would facilitate the effective viticultural treatment of grapes to improve the quality of the aroma.PMID:38448101 | DOI:10.1016/j.foodres.2024.114120
Metagenomics and untargeted metabolomics analyses to unravel the formation mechanism of characteristic metabolites in Cantonese soy sauce during different fermentation stages
Food Res Int. 2024 Apr;181:114116. doi: 10.1016/j.foodres.2024.114116. Epub 2024 Feb 9.ABSTRACTCantonese soy sauce (CSS) is an important Chinese condiment due to its distinctive flavor. Microorganisms play a significant role in the flavor formation of CSS during fermentation. However, the correlation between microbes and flavor compounds as well as the potential fermentation mechanism remained poorly uncovered. Here we revealed the dynamic changes of microbial structure and characteristics metabolites as well as their correlation of CSS during the fermentation process. Metagenomics sequencing analysis showed that Tetragenococcus halophilus, Weissella confusa, Weissella paramesenteroides, Aspergillus oryzae, Lactiplantibacillus plantarum, Weissella cibaria were top six dominant species from day 0 to day 120. Sixty compounds were either positively or tentatively identified through untargeted metabolomics profile and they were 27 peptides, amino acids and derivatives, 8 carbohydrates and conjugates, 14 organic acids and derivatives, 5 amide compounds, 3 flavonoids and 3 nucleosides. Spearman correlation coefficient indicated that Tetragenococcus halophilus, Zygosaccharomyces rouxii, Pediococcus pentosaceus and Aspergillus oryzae were significantly related with the formation of taste amino acids and derivatives, peptides and functional substances. Additionally, the metabolisms of flavor amino acids including 13 main free amino acids were also profiled. These results provided valuable information for the production practice in the soy sauce industry.PMID:38448100 | DOI:10.1016/j.foodres.2024.114116
Rolling forms the diversities of small molecular nonvolatile metabolite profile and consequently shapes the bacterial community structure for Keemun black tea
Food Res Int. 2024 Apr;181:114094. doi: 10.1016/j.foodres.2024.114094. Epub 2024 Feb 2.ABSTRACTThe detailed dynamics of small molecular nonvolatile chemical and bacterial diversities, as well as their relationship are still unclear in the manufacturing process of Keemun black tea (KMBT). Herein, mass spectrometry-based untargeted metabolomics, Feature-based Molecular Networking (FBMN) and bacterial DNA amplicon sequencing were used to investigate the dense temporal samples of the manufacturing process. For the first time, we reveal that the pyrogallol-type catechins are oxidized asynchronously before catechol-type catechins during the black tea processing. Rolling is the key procedure for forming the small molecular nonvolatile metabolite profile (SMNMetProf), increasing the metabolite richness, and then shaping the bacterial community structure in the KMBT manufacturing process, which decreases both molecular weight and molecular polarity of the small molecular nonvolatile metabolites. The SMNMetProf of black tea is formed by the endogenous enzymatic oxidation of tea leaves, rather than bacterial fermentation.PMID:38448096 | DOI:10.1016/j.foodres.2024.114094
Adrenal pheochromocytoma impacts three main pathways: cysteine-methionine, pyrimidine, and tyrosine metabolism
J Zhejiang Univ Sci B. 2024 Mar 6:1-12. doi: 10.1631/jzus.B2300579. Online ahead of print.ABSTRACTPheochromocytomas and paragangliomas (PPGLs) cause symptoms by altering the circulation levels of catecholamines and peptide hormones. Currently, the diagnosis of PPGLs relies on diagnostic imaging and the detection of catecholamines. In this study, we used ultra-performance liquid chromatography (UPLC)/quadrupole time-of-flight mass spectrometry (Q-TOF MS) analysis to identify and measure the perioperative differential metabolites in the plasma of adrenal pheochromocytoma patients. We identified differentially expressed genes by comparing the transcriptomic data of pheochromocytoma with the normal adrenal medulla. Through conducting two steps of metabolomics analysis, we identified 111 differential metabolites between the healthy group and the patient group, among which 53 metabolites were validated. By integrating the information of differential metabolites and differentially expressed genes, we inferred that the cysteine-methionine, pyrimidine, and tyrosine metabolism pathways were the three main metabolic pathways altered by the neoplasm. The analysis of transcription levels revealed that the tyrosine and cysteine-methionine metabolism pathways were downregulated in pheochromocytoma, whereas the pyrimidine pathway showed no significant difference. Finally, we developed an optimized diagnostic model of two metabolites, L-dihydroorotic acid and vanylglycol. Our results for these metabolites suggest that they may serve as potential clinical biomarkers and can be used to supplement and improve the diagnosis of pheochromocytoma.PMID:38448048 | DOI:10.1631/jzus.B2300579