Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

Metabolic Responses to an Acute Glucose Challenge: The Differential Effects of Eight Weeks of Almond vs. Cracker Consumption in Young Adults

Mon, 03/06/2024 - 12:00
medRxiv [Preprint]. 2024 May 20:2024.05.19.24307571. doi: 10.1101/2024.05.19.24307571.ABSTRACTThis study investigated the dynamic responses to an acute glucose challenge following chronic almond versus cracker consumption for 8 weeks (clinicaltrials.gov ID: NCT03084003 ). Seventy-three young adults (age: 18-19 years, BMI: 18-41 kg/m 2 ) participated in an 8-week randomized, controlled, parallel-arm intervention and were randomly assigned to consume either almonds (2 oz/d, n=38) or an isocaloric control snack of graham crackers (325 kcal/d, n=35) daily for 8 weeks. Twenty participants from each group underwent a 2-hour oral glucose tolerance test (oGTT) at the end of the 8-week intervention. Metabolite abundances in the oGTT serum samples were quantified using untargeted metabolomics, and targeted analyses for free PUFAs, total fatty acids, oxylipins, and endocannabinoids. Multivariate, univariate, and chemical enrichment analyses were conducted to identify significant metabolic shifts. Findings exhibit a biphasic lipid response distinguished by higher levels of unsaturated triglycerides in the earlier periods of the oGTT followed by lower levels in the latter period in the almond versus cracker group (p-value<0.05, chemical enrichment analyses). Almond (vs. cracker) consumption was also associated with higher AUC 120 min of aminomalonate, and oxylipins (p-value<0.05), but lower AUC 120 min of L-cystine, N-acetylmannosamine, and isoheptadecanoic acid (p-value<0.05). Additionally, the Matsuda Index in the almond group correlated with AUC 120 min of CE 22:6 (r=- 0.46; p-value<0.05) and 12,13 DiHOME (r=0.45; p-value<0.05). Almond consumption for 8 weeks leads to dynamic, differential shifts in response to an acute glucose challenge, marked by alterations in lipid and amino acid mediators involved in metabolic and physiological pathways.PMID:38826341 | PMC:PMC11142291 | DOI:10.1101/2024.05.19.24307571

Inherent Metabolic Adaptations in Adult Spiny Mouse ( <em>Acomys</em> ) Cardiomyocytes Facilitate Enhanced Cardiac Recovery Following Myocardial Infarction

Mon, 03/06/2024 - 12:00
bioRxiv [Preprint]. 2024 May 26:2024.05.22.595229. doi: 10.1101/2024.05.22.595229.ABSTRACTThe adult mammalian heart has limited regenerative capacity following injury, leading to progressive heart failure and mortality. Recent studies have identified the spiny mouse ( Acomys ) as a unique model for mammalian cardiac isch3emic resilience, exhibiting enhanced recovery after myocardial infarction (MI) compared to commonly used laboratory mouse strains. However, the underlying cellular and molecular mechanisms behind this unique response remain poorly understood. In this study, we comprehensively characterized the metabolic characteristics of cardiomyocytes in Acomys compared to the non-regenerative Mus musculus . We utilized single-nucleus RNA sequencing (snRNA-seq) in sham-operated animals and 1, 3, and 7 days post-myocardial infarction to investigate cardiomyocytes' transcriptomic and metabolomic profiles in response to myocardial infarction. Complementary targeted metabolomics, stable isotope-resolved metabolomics, and functional mitochondrial assays were performed on heart tissues from both species to validate the transcriptomic findings and elucidate the metabolic adaptations in cardiomyocytes following ischemic injury. Transcriptomic analysis revealed that Acomys cardiomyocytes inherently upregulate genes associated with glycolysis, the pentose phosphate pathway, and glutathione metabolism while downregulating genes involved in oxidative phosphorylation (OXPHOS). These metabolic characteristics are linked to decreased reactive oxygen species (ROS) production and increased antioxidant capacity. Our targeted metabolomic studies in heart tissue corroborated these findings, showing a shift from fatty acid oxidation to glycolysis and ancillary biosynthetic pathways in Acomys at baseline with adaptive changes post-MI. Functional mitochondrial studies indicated a higher reliance on glycolysis in Acomys compared to Mus , underscoring the unique metabolic phenotype of Acomys hearts. Stable isotope tracing experiments confirmed a shift in glucose utilization from oxidative phosphorylation in Acomys . In conclusion, our study identifies unique metabolic characteristics of Acomys cardiomyocytes that contribute to their enhanced ischemic resilience following myocardial infarction. These findings provide novel insights into the role of metabolism in regulating cardiac repair in adult mammals. Our work highlights the importance of inherent and adaptive metabolic flexibility in determining cardiomyocyte ischemic responses and establishes Acomys as a valuable model for studying cardiac ischemic resilience in adult mammals.PMID:38826249 | PMC:PMC11142149 | DOI:10.1101/2024.05.22.595229

The Ameliorative and Neuroprotective Effects of Dietary Fiber on Hyperuricemia mice:A perspective from Microbiome and Metabolome

Mon, 03/06/2024 - 12:00
Br J Nutr. 2024 Jun 3:1-29. doi: 10.1017/S0007114524001211. Online ahead of print.ABSTRACTThe effect of single dietary fiber (DF) on lowering uric acid (UA) level has been reported in the literature. However, the potential protective mechanism of dietary fibre against potassium oxybate-induced hyperuricaemia (HUA), as modelled by prophylactic administration, remains unclear.The data demonstrates that DF significantly decreased serum and cerebral tissue UA concentrations, inhibited xanthine oxidase (XOD) expression and activity in the liver, and reduced levels of creatinine (Cr) and urea nitrogen (BUN) in the serum. Additionally, it mitigated the deposition of amyloid-β (Aβ) in cerebral tissue. Correlation analysis showed that DF modulated the TLR4/NF-κB signaling pathway, attenuating oxidative stress and inflammatory responses in HUA mice. Additionally, DF helps to maintain the composition of the gut microbiota, reducing harmful Desulfovibrio and enriching beneficial Akkermansia and Ruminococcus populations.The results of the faecal metabolomics analysis indicate that DF facilitates the regulation of metabolic pathways involved in oxidative stress and inflammation. These pathways include pyrimidine metabolism, tryptophan metabolism, nucleotide metabolism, and vitamin B6 metabolism. Additionally, the study found that DF has a preventive effect on anxiety-like behaviour induced by HUA. In summary, DF shows promise in mitigating HUA and cognitive deficits, primarily by modulating gut microbiota and metabolites.PMID:38826102 | DOI:10.1017/S0007114524001211

Prospective of Mitochondrial DNA Variations in Cancer on Genomic Medicine

Mon, 03/06/2024 - 12:00
Cancer Epidemiol Biomarkers Prev. 2024 Jun 3;33(6):766-768. doi: 10.1158/1055-9965.EPI-24-0233.ABSTRACTMitochondrial DNA (mtDNA) has emerged as a pivotal component in understanding the etiology and susceptibility of cancer. A recent study by Chen and colleagues delineated the germline genetic effect of mtDNA single-nucleotide polymorphisms (SNP) and haplogroups across pan-cancer risk. They identified a subset of mtSNPs and the corresponding risk score, as well as haplogroups A and M7 alongside their genetic interactions, conferring a protective effect against various cancers. These findings underscored the value of mtDNA variations as biomarkers for cancer etiology and as tools for cancer risk stratification. Future investigations are encouraged to integrate comprehensive omics data of genomics, transcriptomics, proteomics, and metabolomics, etc., from nuclear DNA with mtDNA variations, alongside single-cell and spatial technologies, to unravel the tumor mechanism and identify the drug targets. Moreover, the incorporation of polygenic risk score, that included mtDNA variations with both rare and common frequencies, and liquid biopsy-based biomarkers would enhance the predictive performance of cancer risk assessment and refine the risk stratification of population-based cancer screening. This commentary advocates for the validation across diverse populations to harness the full potential of mitochondrial genomics, and ultimately paves the prospective way for advancements in personalized cancer therapeutics and prevention strategies. See related article by Chen and colleagues, Cancer Epidemiol Biomarkers Prev 2024;33:381-8.PMID:38826080 | DOI:10.1158/1055-9965.EPI-24-0233

Differential analysis of aqueous humor metabolomics between presenile cataract and senile cataract

Mon, 03/06/2024 - 12:00
Zhonghua Yan Ke Za Zhi. 2024 Jun 11;60(6):518-527. doi: 10.3760/cma.j.cn112142-20240106-00013.ABSTRACTObjective: To explore the differences in metabolites and metabolic pathways in the aqueous humor between patients with presenile cataracts and senile cataracts. Methods: This metabolomic study was conducted at Tianjin Medical University Eye Hospital from August 2020 to September 2022. Eight patients with presenile cataracts (8 eyes) and 8 patients with senile cataracts (9 eyes) were included. Data were collected, including age, gender, preoperative uncorrected visual acuity, intraocular pressure, lens dysfunction index, and axial length. Aqueous humor and anterior capsule tissue samples were obtained during cataract surgery. Metabolites in the aqueous humor were detected using Liquid Chromatography-Mass Spectrometry in a non-targeted approach. The principal component analysis, differential analysis, clustering analysis, and correlation analysis were performed to identify differentially expressed metabolites. These metabolites were ranked based on the fold change (FC). The receiver operating characteristic (ROC) curve analysis and metabolic enrichment analysis were used to identify differential pathways and potential biomarkers for presenile cataracts. Immunohistochemistry was conducted on anterior capsule tissues, and pyruvate levels were measured by colorimetry to validate metabolomic results. Results: Patients with presenile cataracts included 7 males and 1 female, with a mean age of (37.50±4.90) years. Patients with senile cataracts were 7 males and 1 female, with a mean age of (73.44±5.22) years. Except for age, there were no significant differences in baseline data (P>0.05). A total of 347 differential metabolites were identified, 10 of which were potential biomarkers for presenile cataract according to the ROC curve analysis (all P<0.05), including propoxycaine (log2FC=7.26), 2-methyl-2, 3, 4, 5-tetrahydro-1, 5-benzodiazepine-4-ketone (log2FC=6.35), l-pyroglutamic acid (log2FC=-1.72), leanly-proline (log2FC=-0.77), and choline (log2FC=-0.56) in the positive ion mode, and N-phenylacetyl glutamine (log2FC=-1.84), pyruvate (log2FC=1.07), ascorbic acid (log2FC=0.92), pseudouracil nucleoside (log2FC=-0.68), and palmitic acid (log2FC=-0.51) in the negative ion mode. The metabolic enrichment analysis identified 72 differential pathways (32 cationic and 40 anionic), with significant differences in glutathione metabolism, cysteine and methionine metabolism, glycolysis or gluconeogenesis, pyruvate metabolism, and the citric acid cycle (P<0.05). The experimental validation showed reduced lactate dehydrogenase and increased pyruvate levels in patients with presenile cataracts (P<0.05). Conclusions: Pyruvate and nine other metabolites may serve as potential biomarkers for presenile cataracts. Pathways involving glutathione metabolism, cysteine and methionine metabolism, glycolysis or gluconeogenesis, pyruvate metabolism, and the citric acid cycle are notably dysregulated in patients with presenile cataracts.PMID:38825951 | DOI:10.3760/cma.j.cn112142-20240106-00013

Archaea influence composition of endoscopically visible ileocolonic biofilms

Mon, 03/06/2024 - 12:00
Gut Microbes. 2024 Jan-Dec;16(1):2359500. doi: 10.1080/19490976.2024.2359500. Epub 2024 Jun 2.ABSTRACTThe gut microbiota has been implicated as a driver of irritable bowel syndrome (IBS) and inflammatory bowel disease (IBD). Recently we described, mucosal biofilms, signifying alterations in microbiota composition and bile acid (BA) metabolism in IBS and ulcerative colitis (UC). Luminal oxygen concentration is a key factor in the gastrointestinal (GI) ecosystem and might be increased in IBS and UC. Here we analyzed the role of archaea as a marker for hypoxia in mucosal biofilms and GI homeostasis. The effects of archaea on microbiome composition and metabolites were analyzed via amplicon sequencing and untargeted metabolomics in 154 stool samples of IBS-, UC-patients and controls. Mucosal biofilms were collected in a subset of patients and examined for their bacterial, fungal and archaeal composition. Absence of archaea, specifically Methanobrevibacter, correlated with disrupted GI homeostasis including decreased microbial diversity, overgrowth of facultative anaerobes and conjugated secondary BA. IBS-D/-M was associated with absence of archaea. Presence of Methanobrevibacter correlated with Oscillospiraceae and epithelial short chain fatty acid metabolism and decreased levels of Ruminococcus gnavus. Absence of fecal Methanobrevibacter may indicate a less hypoxic GI environment, reduced fatty acid oxidation, overgrowth of facultative anaerobes and disrupted BA deconjugation. Archaea and Ruminococcus gnavus could distinguish distinct subtypes of mucosal biofilms. Further research on the connection between archaea, mucosal biofilms and small intestinal bacterial overgrowth should be performed.PMID:38825783 | DOI:10.1080/19490976.2024.2359500

Transcriptome and metabolome analysis revealed the dynamic change of bioactive compounds of Fructus Ligustri Lucidi

Sun, 02/06/2024 - 12:00
BMC Plant Biol. 2024 Jun 3;24(1):489. doi: 10.1186/s12870-024-05096-3.ABSTRACTBACKGROUND: The Fructus Ligustri Lucidi, the fruit of Ligustrum lucidum, contains a variety of bioactive compounds, such as flavonoids, triterpenoids, and secoiridoids. The proportions of these compounds vary greatly during the different fruit development periods of Fructus Ligustri Lucidi. However, a clear understanding of how the proportions of the compounds and their regulatory biosynthetic mechanisms change across the different fruit development periods of Fructus Ligustri Lucidi is still lacking.RESULTS: In this study, metabolite profiling and transcriptome analysis of six fruit development periods (45 DAF, 75 DAF, 112 DAF, 135 DAF, 170 DAF, and 195 DAF) were performed. Seventy compounds were tentatively identified, of which secoiridoids were the most abundant. Eleven identified compounds were quantified by high performance liquid chromatography. A total of 103,058 unigenes were obtained from six periods of Fructus Ligustri Lucidi. Furthermore, candidate genes involved in triterpenoids, phenylethanols, and oleoside-type secoiridoid biosynthesis were identified and analyzed. The in vitro enzyme activities of nine glycosyltransferases involved in salidroside biosynthesis revealed that they can catalyze trysol and hydroxytyrosol to salidroside and hydroxylsalidroside.CONCLUSIONS: These results provide valuable information to clarify the profile and molecular regulatory mechanisms of metabolite biosynthesis, and also in optimizing the harvest time of this fruit.PMID:38825671 | DOI:10.1186/s12870-024-05096-3

Saturated fatty acid concentrations are predictive of insulin sensitivity and beta cell compensation in dogs

Sun, 02/06/2024 - 12:00
Sci Rep. 2024 Jun 2;14(1):12639. doi: 10.1038/s41598-024-63373-5.ABSTRACTChronic feeding of a high fat diet (HFD) in preclinical species induces broad metabolic dysfunction characterized by body weight gain, hyperinsulinemia, dyslipidemia and impaired insulin sensitivity. The plasma lipidome is not well characterized in dogs with HFD-induced metabolic dysfunction. We therefore aimed to describe the alterations that occur in the plasma lipid composition of dogs that are fed a HFD and examine the association of these changes with the clinical signs of metabolic dysfunction. Dogs were fed a normal diet (ND) or HFD for 12 weeks. Insulin sensitivity (SI) and beta cell compensation (AIRG) were assessed through an intravenous glucose tolerance test (IVGTT) and serum biochemistry was analyzed before the introduction of HFD and again after 12 weeks of continued ND or HFD feeding. Plasma lipidomics were conducted prior to the introduction of HFD and again at week 8 in both ND and HFD-fed dogs. 12 weeks of HFD feeding resulted in impaired insulin sensitivity and increased beta cell compensation measured by SI (ND mean: 11.5 [mU/l]-1 min-1, HFD mean: 4.7 [mU/l]-1 min-1) and AIRG (ND mean: 167.0 [mU/l]min, HFD mean: 260.2 [mU/l]min), respectively, compared to dogs fed ND over the same duration. Chronic HFD feeding increased concentrations of plasma lipid species and deleterious fatty acids compared to dogs fed a ND. Saturated fatty acid (SFA) concentrations were significantly associated with fasting insulin (R2 = 0.29), SI (R2 = 0.49) and AIRG (R2 = 0.37) in all dogs after 12 weeks, irrespective of diet. Our results demonstrate that chronic HFD feeding leads to significant changes in plasma lipid composition and fatty acid concentrations associated with metabolic dysfunction. High SFA concentrations may be predictive of deteriorated insulin sensitivity in dogs.PMID:38825593 | DOI:10.1038/s41598-024-63373-5

Analysis of Metabolic Changes in Endogenous Metabolites and Diagnostic Biomarkers for Various Diseases Using Liquid Chromatography and Mass Spectrometry

Sun, 02/06/2024 - 12:00
Biol Pharm Bull. 2024;47(6):1087-1105. doi: 10.1248/bpb.b24-00073.ABSTRACTAnalysis of endogenous metabolites in various diseases is useful for searching diagnostic biomarkers and elucidating the molecular mechanisms of pathophysiology. The author and collaborators have developed some LC/tandem mass spectrometry (LC/MS/MS) methods for metabolites and applied them to disease-related samples. First, we identified urinary conjugated cholesterol metabolites and serum N-palmitoyl-O-phosphocholine serine as useful biomarkers for Niemann-Pick disease type C (NPC). For the purpose of intraoperative diagnosis of glioma patients, we developed the LC/MS/MS analysis methods for 2-hydroxyglutaric acid or cystine and found that they could be good differential biomarkers. For renal cell carcinoma, we searched for various biomarkers for early diagnosis, malignancy evaluation and recurrence prediction by global metabolome analysis and targeted LC/MS/MS analysis. In pathological analysis, we developed a simultaneous LC/MS/MS analysis method for 13 steroid hormones and applied it to NPC cells, we found 6 types of reductions in NPC model cells. For non-alcoholic steatohepatitis (NASH), model mice were prepared with special diet and plasma bile acids were measured, and as a result, hydrophilic bile acids were significantly increased. In addition, we developed an LC/MS/MS method for 17 sterols and analyzed liver cholesterol metabolites and found a decrease in phytosterols and cholesterol synthetic markers and an increase in non-enzymatic oxidative sterols in the pre-onset stage of NASH. We will continue to challenge themselves to add value to clinical practice based on cutting-edge analytical chemistry methodology.PMID:38825462 | DOI:10.1248/bpb.b24-00073

Metabolic signatures of metabolic dysfunction-associated steatotic liver disease in severely obese patients

Sun, 02/06/2024 - 12:00
Dig Liver Dis. 2024 Jun 1:S1590-8658(24)00773-4. doi: 10.1016/j.dld.2024.05.015. Online ahead of print.ABSTRACTBACKROUND: Metabolic dysfunction-associated steatotic liver disease (MASLD) can lead to liver fibrosis, cirrhosis, and hepatocellular carcinoma. Still, most patients with MASLD die from cardiovascular diseases indicating metabolic alterations related to both liver and cardiovascular pathology.AIMS AND METHODS: The aim of this study was to assess biologic pathways behind MASLD progression from steatosis to metabolic dysfunction-associated steatohepatitis (MASH) using non-targeted liquid chromatography-mass spectrometry analysis in 106 severely obese individuals (78 women, mean age 47.7 7 ± 9.2 years, body mass index 41.8 ± 4.3 kg/m²) undergoing laparoscopic Roux-en-Y gastric bypass.RESULTS: We identified several metabolites that are associated with MASLD progression. Most importantly, we observed a decrease of lysophosphatidylcholines LPC(18:2), LPC(18:3), and LPC(20:3) and increase of xanthine when comparing those with steatosis to those with MASH. We found that indole propionic acid and threonine were negatively correlated to fibrosis, but not with the metabolic disturbances associated with cardiovascular risk. Xanthine, ketoleucine, and tryptophan were positively correlated to lobular inflammation and ballooning but also with insulin resistance, and dyslipidemia, respectively. The results did not change when taking into account the most important genetic risk factors of MASLD.CONCLUSIONS: Our findings suggest that there are several separate biological pathways, some of them independent of insulin resistance and dyslipidemia, associating with MASLD.PMID:38825414 | DOI:10.1016/j.dld.2024.05.015

Exploring the co-exposure effects of environmentally relevant microplastics and an estrogenic mixture on the metabolome of the Sydney rock oyster

Sun, 02/06/2024 - 12:00
Chemosphere. 2024 May 31:142501. doi: 10.1016/j.chemosphere.2024.142501. Online ahead of print.ABSTRACTIn aquatic environments the concurrent exposure of molluscs to microplastics (MPs) and estrogens is common as these pollutants are frequently released by wastewater treatment plants into estuaries. Therefore, this study aimed to evaluate the independent and co-exposure impacts of polyethylene microplastics (PE-MPs) and estrogenic endocrine-disrupting chemicals (EEDCs) at environmentally relevant concentrations on polar metabolites and morphological parameters of the Sydney rock oyster. A seven-day acute exposure revealed no discernible differences in morphology; however, significant variations in polar metabolites were observed across oyster tissues. The altered metabolites were mostly amino acids, carbohydrates and intermediates of the Kreb's cycle. The perturbation of metabolites were tissue and sex-specific. All treatments generally showed an increase of metabolites relative to controls - a possible stimulatory and/or a potential hormetic response. The presence of MPs impeded the exposure of adsorbed and free EEDCs potentially due to the selective feeding behaviour of oysters to microplastics, favouring algae over similar-sized PE-MPs, and the formation of an eco/bio-corona involving faeces, pseudo- faeces, natural organic matter, and algae.PMID:38825244 | DOI:10.1016/j.chemosphere.2024.142501

Type 3 Resistant Starch From Canna Edulis Reduce Lipid Levels in Patients with Mild Hyperlipidemia through Altering Gut Microbiome: A Double- Blind Randomized Controlled Trial

Sun, 02/06/2024 - 12:00
Pharmacol Res. 2024 May 31:107232. doi: 10.1016/j.phrs.2024.107232. Online ahead of print.ABSTRACTType 3 resistant starch from Canna edulis (Ce-RS3) is an insoluble dietary fiber which could improve blood lipids in animals, but clinically robust evidence is still lacking. We performed a double-blind randomized controlled trial to assess the effects of Ce- RS3 on lipids in mild hyperlipidemia. One hundred and fifteen patients were included followed the recruitment criteria, and were randomly allocated to receive Ce- RS3 or placebo (native starch from Canna edulis) for 12 weeks (20g/day). In addition to serum lipids, complete blood counts, serum inflammatory factors, antioxidant indexes, and dietary survey, 16S rRNA sequencing technique was utilized to analyze the gut microbiota alterations. Targeted quantitative metabolomics (TQM) was used to detect metabolite changes. Compared with the placebo, Ce- RS3 significantly decreased levels of total cholesterol, lowdensity lipoprotein cholesterol, and non-high-density lipoprotein cholesterol, andincreased the glutathione peroxidase. Based on the 16S rRNA sequencing, TQM, thecorrelation analysis, as well as the Kyoto Encyclopedia of Genes (KEGG) and Genomes and Human Metabolome Database (HMDB) analysis, we found that Ce- RS3 could increase the abundances of genera Faecalibacterium and Agathobacter, while reduce the abundances of genera norank_f_Ruminococcaceae and Christensenellaceae_R-7_ group to regulate phenylalanine metabolism, which could reduce the fatty acid biosynthesis and fatty acid elongation in the mitochondria to lower blood lipids. Conclusively, we firstlyconfirmed the feasibility of Ce-RS3 for clinical application, which presents a novel, effective therapy for the mild hyperlipidemia. (Chictr. org. cn. Clinical study on anti-mild hyperlipidemia of Canna edulis RS3 resistant starch, ID Number: ChiCTR2200062871).PMID:38825157 | DOI:10.1016/j.phrs.2024.107232

Probiotic Bifidobacterium animalis ssp. lactis Probio-M8 improves the fermentation and probiotic properties of fermented milk

Sun, 02/06/2024 - 12:00
J Dairy Sci. 2024 May 31:S0022-0302(24)00872-5. doi: 10.3168/jds.2024-24863. Online ahead of print.ABSTRACTProbiotics are increasingly used as starter cultures to produce fermented dairy products; however, few studies have investigated the role of probiotics in milk fermentation metabolism. The current study aimed to investigate whether adding Bifidobacterium animalis ssp. lactis Probio-M8 (Probio-M8) as a starter culture strain could improve milk fermentation by comparing the physico-chemical characteristics and metabolomes of fermented milks produced by a commercial starter culture with and without Probio-M8. Our results showed that adding Probio-M8 shortened the milk fermentation time and improved the fermented milk texture and stability. Metabolomics analyses revealed that adding Probio-M8 affected mostly organic acid, amino acid, and fatty acid metabolism in milk fermentation. Targeted quantitative analyses revealed significant increases in various metabolites related to the sensory quality, nutritive value, and health benefits of the probiotic fermented milk, including 5 organic acids (acetic acid, lactic acid, citric acid, succinic acid, and tartaric acid), 5 essential amino acids (valine, arginine, leucine, isoleucine, and lysine), glutamic acid, and 2 essential fatty acids (α-linolenic acid and docosahexaenoic acid). Thus, applying probiotics in milk fermentation is desirable. This study has generated useful information for developing novel functional dairy products.PMID:38825144 | DOI:10.3168/jds.2024-24863

Lactiplantibacillusplantarum JS19-adjunctly fermented goat milk alleviates D-galactose-induced aging by modulating oxidative stress and intestinal microbiota in mice

Sun, 02/06/2024 - 12:00
J Dairy Sci. 2024 May 31:S0022-0302(24)00860-9. doi: 10.3168/jds.2024-24733. Online ahead of print.ABSTRACTOxidative stress is a crucial factor in the age-related decline in physiological, genomic, metabolic, and immunological functions. We screened Lactiplantibacillus plantarum JS19 (L. plantarum JS19), which has been shown to possess therapeutic properties in mice with ulcerative colitis. In this study, L. plantarum JS19-adjunctly fermented goat milk (LAF) was employed to alleviate D-galactose-induced aging and regulate intestinal flora in an aging mouse model. The oral administration of LAF effectively improved the health of spleen and kidney in mice, while mitigating the hepatocyte and oxidative damage induced by D-galactose. Additionally, LAF alleviated D-galactose-induced dysbiosis of the intestinal flora by reducing the abundance of harmful bacteria Desulfovibrio and Helicobacter, while greatly promoting the growth of beneficial Rikenellaceae_RC9_gut_group and Eubacterium. Biomarker 5-hydroxyindole-3-acetic acid was found to be positively linked with those harmful bacteria, while bio-active metabolites were strongly correlated with the beneficial genus. These observations suggest that LAF possesses the capability to mitigate the effects of D-galactose-induced aging in a mouse model through the regulation of oxidative stress, the gut microbiota composition, and levels of fecal metabolites. Consequently, these findings shed light on the potential of LAF as a functional food with anti-aging properties.PMID:38825119 | DOI:10.3168/jds.2024-24733

Biological activities and metabolomic profiles of extracts from the marine sediment bacterium Nocardiopsis alba DP1B cultivated in different media

Sun, 02/06/2024 - 12:00
Microb Pathog. 2024 May 31:106702. doi: 10.1016/j.micpath.2024.106702. Online ahead of print.ABSTRACTThe soil bacterium DP1B was isolated from a marine sediment collected off the coast of Randayan Island, Kalimantan Barat, Indonesia and identified based on 16S rDNA as Nocardiopsis alba. The bacterium was cultivated in seven different media (A1, ISP1, ISP2, ISP4, PDB, PC-1, and SCB) with three different solvents [distilled water, 5% NaCl solution, artificial seawater (ASW)] combinations, shaken at 200 rpm, 30 °C, for 7 days. The culture broths were extracted with ethyl acetate and each extract was tested for its antimicrobial activity and brine shrimp lethality, and the chemical diversity was assessed using thin-layer chromatography (TLC), gas chromatography (GC), and liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS). The result showed that almost all extracts showed antibacterial but not antifungal activity, whereas their brine shrimp toxicity levels vary from high to low. The best medium/solvent combinations for antibacterial activity and toxicity were PC-1 (in either distilled water, 5% NaCl solution, or ASW) and SCB in ASW. Different chemical diversity profiles were observed on TLC, GC-MS, and LC-MS/MS. Extracts from the PC-1 cultures seem to contain a significant number of cyclic dipeptides, whereas those from the SCB cultures contain sesquiterpenes, indicating that media and solvent compositions can affect the secondary metabolite profiles of DP1B. In addition, untargeted metabolomic analyses using LC-MS/MS showed many molecular ions that did not match with those in the Global Natural Products Social Molecular Networking (GNPS) database, suggesting that DP1B has great potential as a source of new natural products.PMID:38825090 | DOI:10.1016/j.micpath.2024.106702

Urinary eicosanoid levels in early life and risk of atopic disease in childhood

Sun, 02/06/2024 - 12:00
J Allergy Clin Immunol. 2024 May 31:S0091-6749(24)00565-7. doi: 10.1016/j.jaci.2024.05.022. Online ahead of print.ABSTRACTINTRODUCTION: Eicosanoids are lipid mediators including thromboxanes (TXs), prostaglandins (PGs) and leukotrienes (LTs) with a pathophysiological role in established atopic disease. However, their role in the inception of disease is unclear. We aimed to investigate the association between urinary eicosanoids in early life and development of atopic disease.METHODS: We quantified the levels of 21 eicosanoids in urine from children from the COPSAC2010 (age 1 year, n=450) and VDAART (age 3 years, n=575) mother-child cohorts and analyzed the associations with development of wheeze/asthma, atopic dermatitis, and biomarkers of Type-2 inflammation, applying FDR5% multiple testing correction.RESULTS: In both cohorts, analyses adjusted for environmental determinants showed that higher TXA2 eicosanoids in early life were associated with increased risk of developing atopic dermatitis (P<FDR5%) and Type-2 inflammation (p<0.05). In VDAART, lower PGE2 and PGI2 eicosanoids and higher isoprostanes were also associated with increased risk of atopic dermatitis (P<FDR5%). For wheeze/asthma, analyses in COPSAC2010 showed that lower isoprostanes and PGF2 eicosanoids and higher PGD2 eicosanoids at age 1 year associated with an increased risk at age 1-10 years (p<0.05), whereas analyses in VDAART showed that lower PGE2 and higher TXA2 eicosanoids at age 3 years associated with an increased risk at 6 years (P<FDR5%).CONCLUSIONS: This study suggests that early life perturbations in the eicosanoid metabolism are present before the onset of atopic disease in childhood, which provides pathophysiological insight in the inception of atopic diseases.PMID:38825025 | DOI:10.1016/j.jaci.2024.05.022

The different roles of homocysteine metabolism in hypertension among normal-weight and obese patients with obstructive sleep apnea

Sun, 02/06/2024 - 12:00
Sleep Med. 2024 May 29;120:1-9. doi: 10.1016/j.sleep.2024.05.050. Online ahead of print.ABSTRACTBACKGROUND: Obstructive sleep apnea (OSA) is associated with hypertension. However, the differential mechanisms underlying OSA-related hypertension between normal-weight vs. obese patients is limited.METHODS: We studied 92 patients with OSA and 24 patients with continuous positive airway pressure (CPAP) treatment. Blood pressure (BP) was measured twice during awake and continuously monitored during sleep. Obesity was defined as body mass index ≥28 kg/m2. Serum metabolite levels were assessed by metabolomics.RESULTS: Among 59 normal-weight and 33 obese patients, 651 and 167 metabolites showed differences between hypertension and normotension or were associated with systolic and diastolic BP (SBP, DBP) after controlling confounders. These metabolites involved 16 and 12 Kyoto Encyclopedia of Genes and Genomes enrichment pathways in normal-weight and obese patients respectively, whereas 6 pathways overlapped. Among these 6 overlapping pathways, 4 were related to homocysteine metabolism and 2 were non-specific pathways. In homocysteine metabolism pathway, 13 metabolites were identified. Interestingly, the change trends of 7 metabolites associated with SBP (all interaction-p≤0.083) and 8 metabolites associated with DBP (all interaction-p≤0.033) were opposite between normal-weight and obese patients. Specifically, increased BP was associated with down-regulated folate-dependent remethylation and accelerated transsulfuration in normal-weight patients, whereas associated with enhanced betaine-dependent remethylation and reduced transsulfuration in obese patients. Similar findings were observed in ambulatory BP during sleep. After CPAP treatment, baseline low homocysteine levels predicted greater decrease in DBP among normal-weight but not obese patients.CONCLUSIONS: Mechanisms in OSA-related hypertension differ between normal-weight and obese patients, which are explained by different changes in homocysteine metabolism.PMID:38824846 | DOI:10.1016/j.sleep.2024.05.050

Integrated proteomics, transcriptomics, and metabolomics offer novel insights into Cd resistance and accumulation in Poa pratensis

Sun, 02/06/2024 - 12:00
J Hazard Mater. 2024 May 24;474:134727. doi: 10.1016/j.jhazmat.2024.134727. Online ahead of print.ABSTRACTKentucky bluegrass (Poa pratensis L., KB) demonstrates superior performance in both cadmium (Cd) accumulation and tolerance; however, the regulatory mechanisms and detoxification pathways in this species remain unclear. Therefore, phenotype, root ultrastructure, cell wall components, proteomics, transcriptomics, and metabolomics were analyzed under the hydroponic system to investigate the Cd tolerance and accumulation mechanisms in the Cd-tolerant KB variety 'Midnight (M)' and the Cd-sensitive variety 'Rugby II (R)' under Cd stress. The M variety exhibited higher levels of hydroxyl and carboxyl groups as revealed by Fourier transform infrared spectroscopy spectral analysis. Additionally, a reduced abundance of polysaccharide degradation proteins was observed in the M variety. The higher abundance of glutathione S-transferase and content of L-cysteine-glutathione disulfide and oxidized glutathione in the M variety may contribute to better performance of the M variety under Cd stress. Additionally, the R variety had an enhanced content of carboxylic acids and derivatives, increasing the Cd translocation capacity. Collectively, the down-regulation of cell wall polysaccharide degradation genes coupled with the up-regulation of glutathione metabolism genes enhances the tolerance to Cd stress in KB. Additionally, lignification of the endodermis and the increase in carboxylic acids and derivatives play crucial roles in the redistribution of Cd in KB.PMID:38824780 | DOI:10.1016/j.jhazmat.2024.134727

Metabolic features of adolescent major depressive disorder: A comparative study between treatment-resistant depression and first-episode drug-naive depression

Sun, 02/06/2024 - 12:00
Psychoneuroendocrinology. 2024 May 22;167:107086. doi: 10.1016/j.psyneuen.2024.107086. Online ahead of print.ABSTRACTMajor depressive disorder (MDD) is a psychiatric illness that can jeopardize the normal growth and development of adolescents. Approximately 40% of adolescent patients with MDD exhibit resistance to conventional antidepressants, leading to the development of Treatment-Resistant Depression (TRD). TRD is associated with severe impairments in social functioning and learning ability and an elevated risk of suicide, thereby imposing an additional societal burden. In this study, we conducted plasma metabolomic analysis on 53 adolescents diagnosed with first-episode drug-naïve MDD (FEDN-MDD), 53 adolescents with TRD, and 56 healthy controls (HCs) using hydrophilic interaction liquid chromatography-mass spectrometry (HILIC-MS) and reversed-phase liquid chromatography-mass spectrometry (RPLC-MS). We established a diagnostic model by identifying differentially expressed metabolites and applying cluster analysis, metabolic pathway analysis, and multivariate linear support vector machine (SVM) algorithms. Our findings suggest that adolescent TRD shares similarities with FEDN-MDD in five amino acid metabolic pathways and exhibits distinct metabolic characteristics, particularly tyrosine and glycerophospholipid metabolism. Furthermore, through multivariate receiver operating characteristic (ROC) analysis, we optimized the area under the curve (AUC) and achieved the highest predictive accuracy, obtaining an AUC of 0.903 when comparing FEDN-MDD patients with HCs and an AUC of 0.968 when comparing TRD patients with HCs. This study provides new evidence for the identification of adolescent TRD and sheds light on different pathophysiologies by delineating the distinct plasma metabolic profiles of adolescent TRD and FEDN-MDD.PMID:38824765 | DOI:10.1016/j.psyneuen.2024.107086

Study on the photosynthetic growth characters in Cimicifuga dahurica (Turcz.) Maxim under different supplemental light environments

Sun, 02/06/2024 - 12:00
Plant Physiol Biochem. 2024 May 28;212:108783. doi: 10.1016/j.plaphy.2024.108783. Online ahead of print.ABSTRACTCimicifuga dahurica (C. dahurica) is an important medicinal plant in the northern region of China. The best supplemental light environment helps plant growth, development, and metabolism. In this study, we used two-year-old seedlings as experimental materials. The white light as the control (CK). The different ratios of red (R) and blue (B) combined light were supplemented (T1, 2R: 1B, 255.37 μmol m-2·s-1; T2, 3R: 1B, 279.69 μmol m-2·s-1; T3, 7R: 1B, 211.16 μmol m-2·s-1). The growth characteristics, photosynthetic pigment content, photosynthesis and chlorophyll fluorescence parameters, and primary metabolite content were studied in seedlings. The results showed that: 1) The fresh weight from shoot, root, and total fresh weight were significantly (P < 0.05) increased under T2 and T3 treatment. 2) The contents of chlorophyll a (Chl a), chlorophyll b (Chl b), and total chlorophyll (Chl) were significantly (P < 0.05) increased under T2 treatment, and carotenoid (car) content was reduced. 3) The photochemical quenching (qP), the actual photosynthetic efficiency of PSII (Y(II)), and the photosynthetic electron transfer rate (ETR) from leaves were significantly (P < 0.05) increased under T1 treatment. The Net photosynthetic rate (Pn), stomatal conductance (Gs), intercellular CO2 concentration (Ci), and transpiration rate (Tr) were significantly (P < 0.05) increased under T2 and T3 treatments. 4) A total of 52 primary metabolites were detected in C. dahurica leaves. Compared with CK, 14, 15, and 18 differential metabolites were screened under T1, T2, and T3 treatments. In addition, D-xylose, D-glucose, glycerol, glycolic acid, and succinic acid were significantly (P < 0.05) accumulated under the T2 treatment, which could regulate the TCA cycle metabolism pathway. The correlation analysis suggested that plant growth was promoted by regulating the change of D-mannose content in galactinol metabolism and amino sugar and nucleotide sugar metabolism. In summary, the growth of C. dahurica was improved under T2 treatment.PMID:38824694 | DOI:10.1016/j.plaphy.2024.108783

Pages