PubMed
Blood Pressure Partially Mediated the Association of Insulin Resistance and Cerebral Small Vessel Disease: A Community-Based Study
J Am Heart Assoc. 2024 Feb 23:e031723. doi: 10.1161/JAHA.123.031723. Online ahead of print.ABSTRACTBACKGROUND: Insulin resistance as a significant vascular risk factor has been studied in relation to cerebral small vessel disease (SVD). Evidence suggests that insulin resistance might trigger high blood pressure (BP). Therefore, we aimed to investigate whether insulin resistance impacts SVD with a mediating effect of BP in nondiabetic subjects.METHODS AND RESULTS: PRECISE (Polyvascular Evaluation for Cognitive Impairment and Vascular Events) study participants underwent brain and vascular imaging techniques and metabolomic risk factors measurements. Insulin resistance was evaluated by the insulin sensitivity index and the Homeostatic Model Assessment for Insulin Resistance based on the standard oral glucose tolerance test. On average, 2752 nondiabetic subjects (47.1% men) aged 60.9 years were included. The multivariable logistic regression model and linear regression model tested the association of insulin resistance with BP components (including systolic BP [SBP], diastolic BP (DBP), and pulse pressure [PP]) and SVD, and of BP components with SVD. In the mediation analysis, SBP, DBP, and PP were found to partially mediate the detrimental effect of insulin resistance (assessed by the insulin sensitivity index) on lacunes (mediation percentage: SBP, 31.15%; DBP, 34.21%; PP, 10.43%), white matter hyperintensity (mediation percentage: SBP, 37.34%; DBP, 44.15%; PP, 9.80%), and SVD total burden (mediation percentage: SBP, 42.07%; DBP, 49.29%; PP, 11.71%) (all P<0.05). The mediation analysis results were not significant when using the Homeostatic Model Assessment for Insulin Resistance to assess insulin resistance.CONCLUSIONS: Higher insulin resistance was associated with SVD in this community-dwelling population. The association of insulin resistance with lacunes, white matter hyperintensity, and SVD total burden was explained in part by BP.REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT03178448.PMID:38390815 | DOI:10.1161/JAHA.123.031723
Depicting the Chemical Diversity of Bioactive Meroterpenoids Produced by the Largest Organism on Earth
Angew Chem Int Ed Engl. 2024 Feb 23:e202318505. doi: 10.1002/anie.202318505. Online ahead of print.ABSTRACTIn this investigation, we explored the diversity of melleolide-type meroterpenoids produced by Armillaria ostoyae, one of the largest and oldest organisms on Earth, using extracts from liquid and solid fermentation media. The study unveiled three unprecedented dimeric bismelleolides (1-3) and three novel fatty acid-substituted congeners (4-6), along with 11 new (7-17) and 21 known (18-38) derivatives. Structure elucidation was done by 1D- and 2D-NMR spectroscopy, HRESI-MS data, and ROESY spectral analysis for relative configurations. Absolute configurations were determined through crystal structures and ECD spectra comparison. A compound library of melleolide-type meroterpenoids facilitated metabolomics-wide associations, revealing production patterns under different culture conditions. The library enabled assessments of antimicrobial and cytotoxic activities, unveiling that the Δ2,4 double bond is not crucial for antifungal activity. Cytotoxicity was linked to the presence of an aldehyde at C-1, but lost with a hydroxylation at C-13. Chemoinformatic analyses demonstrated the intricate interplay of chemical modifications on biological properties. This study marks the first systematic exploration of Armillaria spp. meroterpenoid diversity via MS-based untargeted metabolomics, offering insights into structure-activity relationships through innovative chemoinformatics.PMID:38390787 | DOI:10.1002/anie.202318505
Multiomics Approach Reveals Serum Biomarker Candidates for Congenital Zika Syndrome
J Proteome Res. 2024 Feb 23. doi: 10.1021/acs.jproteome.3c00677. Online ahead of print.ABSTRACTThe Zika virus (ZIKV) can be vertically transmitted, causing congenital Zika syndrome (CZS) in fetuses. ZIKV infection in early gestational trimesters increases the chances of developing CZS. This syndrome involves several pathologies with a complex diagnosis. In this work, we aim to identify biological processes and molecular pathways related to CZS and propose a series of putative protein and metabolite biomarkers for CZS prognosis in early pregnancy trimesters. We analyzed serum samples of healthy pregnant women and ZIKV-infected pregnant women bearing nonmicrocephalic and microcephalic fetuses. A total of 1090 proteins and 512 metabolites were identified by bottom-up proteomics and untargeted metabolomics, respectively. Univariate and multivariate statistical approaches were applied to find CZS differentially abundant proteins (DAP) and metabolites (DAM). Enrichment analysis (i.e., biological processes and molecular pathways) of the DAP and the DAM allowed us to identify the ECM organization and proteoglycans, amino acid metabolism, and arachidonic acid metabolism as CZS signatures. Five proteins and four metabolites were selected as CZS biomarker candidates. Serum multiomics analysis led us to propose nine putative biomarkers for CZS prognosis with high sensitivity and specificity.PMID:38390744 | DOI:10.1021/acs.jproteome.3c00677
Aerobic exercise attenuates high-fat diet-induced renal injury through kidney metabolite modulation in mice
Ren Fail. 2024 Dec;46(1):2286330. doi: 10.1080/0886022X.2023.2286330. Epub 2024 Feb 23.ABSTRACTPURPOSE: To investigate the preventive effect of aerobic exercise on renal damage caused by obesity.METHODS: The mice in the Control (Con) and Control + Exercise (Con + Ex) groups received a standard chow diet for the 21-week duration of the study, while the High-fat diet (HFD) group and High-fat diet + Exercise (HFD + Ex) group were fed an HFD. Mice were acclimated to the laboratory for 1 week, given 12 weeks of being on their respective diets, and then the Con + Ex and HFD + Ex groups were subjected to moderate intensity aerobic treadmill running 45 min/day, 5 days/week for 8 weeks.RESULTS: We found that HFD-induced obesity mainly impacts kidney glycerin phospholipids, glycerides, and fatty acyls, and aerobic exercise mainly impacts kidney glycerides, amino acids and organic acids as well as their derivatives. We identified 18 metabolites with significantly altered levels that appear to be involved in aerobic exercise mediated prevention of HFD-induced obesity and renal damage, half of which were amino acids and organic acids and their derivatives.CONCLUSION: Aerobic exercise rewires kidney metabolites to reduce high-fat diet-induced obesity and renal injury.PMID:38390733 | DOI:10.1080/0886022X.2023.2286330
Succession of microbial community composition and secondary metabolism during marine biofilm development
ISME Commun. 2024 Jan 20;4(1):ycae006. doi: 10.1093/ismeco/ycae006. eCollection 2024 Jan.ABSTRACTIn nature, secondary metabolites mediate interactions between microorganisms residing in complex microbial communities. However, the degree to which community dynamics can be linked to secondary metabolite potential remains largely unknown. In this study, we address the relationship between community succession and secondary metabolism variation. We used 16S and 18S rRNA gene and adenylation domain amplicon sequencing, genome-resolved metagenomics, and untargeted metabolomics to track the taxons, biosynthetic gene clusters, and metabolome dynamics in situ of microorganisms during marine biofilm succession over 113 days. Two phases were identified during the community succession, with a clear shift around Day 29, where the alkaloid secondary metabolites, pseudanes, were also detected. The microbial secondary metabolite potential changed between the phases, and only a few community members, including Myxococotta spp., were responsible for the majority of the biosynthetic gene cluster potential in the early succession phase. In the late phase, bryozoans and benthic copepods were detected, and the microbial nonribosomal peptide potential drastically decreased in association with a reduction in the relative abundance of the prolific secondary metabolite producers. Conclusively, this study provides evidence that the early succession of the marine biofilm community favors prokaryotes with high nonribosomal peptide synthetase potential. In contrast, the late succession is dominated by multicellular eukaryotes and a reduction in bacterial nonribosomal peptide synthetase potential.PMID:38390522 | PMC:PMC10881302 | DOI:10.1093/ismeco/ycae006
Metabolomic profiling reveals key metabolites associated with hypertension progression
Front Cardiovasc Med. 2024 Feb 8;11:1284114. doi: 10.3389/fcvm.2024.1284114. eCollection 2024.ABSTRACTINTRODUCTION: Pre-hypertension is a prevalent condition among the adult population worldwide. It is characterized by asymptomatic elevations in blood pressure beyond normal levels but not yet reaching the threshold for hypertension. If left uncontrolled, pre-hypertension can progress to hypertension, thereby increasing the risk of serious complications such as heart disease, stroke, kidney damage, and others.OBJECTIVE: The precise mechanisms driving the progression of hypertension remain unknown. Thus, identifying the metabolic changes associated with this condition can provide valuable insights into potential markers or pathways implicated in the development of hypertension.METHODS: In this study, we utilized untargeted metabolomics profiling, which examines over 1,000 metabolites to identify novel metabolites contributing to the progression from pre-hypertension to hypertension. Data were collected from 323 participants through Qatar Biobank.RESULTS: By comparing metabolic profiles between pre-hypertensive, hypertensive and normotensive individuals, six metabolites including stearidonate, hexadecadienoate, N6-carbamoylthreonyladenosine, 9 and 13-S-hydroxyoctadecadienoic acid (HODE), 2,3-dihydroxy-5-methylthio- 4-pentenoate (DMTPA), and linolenate were found to be associated with increased risk of hypertension, in both discovery and validation cohorts. Moreover, these metabolites showed a significant diagnostic performance with area under curve >0.7.CONCLUSION: These findings suggest possible biomarkers that can predict the risk of progression from pre-hypertension to hypertension. This will aid in early detection, diagnosis, and management of this disease as well as its associated complications.PMID:38390445 | PMC:PMC10881871 | DOI:10.3389/fcvm.2024.1284114
Targeted metabolite profiling of <em>Salvia rosmarinus</em> Italian local ecotypes and cultivars and inhibitory activity against <em>Pectobacterium carotovorum</em> subsp. <em>carotovorum</em>
Front Plant Sci. 2024 Feb 2;15:1164859. doi: 10.3389/fpls.2024.1164859. eCollection 2024.ABSTRACTINTRODUCTION: The development of agriculture in terms of sustainability and low environmental impact is, at present, a great challenge, mainly in underdeveloped and marginal geographical areas. The Salvia rosmarinus "Eretto Liguria" ecotype is widespread in Liguria (Northwest Italy), and farmers commonly use it by for cuttings and for marketing. In the present study, this ecotype was characterized in comparison with other cultivars from the same geographical region and Campania (Southern Italy), with a view to application and registration processes for the designation of protected geographical indications. Moreover, the possibility of using the resulting biomass after removing cuttings or fronds as a source of extracts and pure compounds to be used as phytosanitary products in organic farming was evaluated. Specifically, the potential of rosemary extracts and pure compounds to prevent soft rot damage was then tested.METHODS: A targeted NMR metabolomic approach was employed, followed by multivariate analysis, to characterize the rosemary accessions. Bacterial soft rot assay and disk diffusion test were carried out to evaluate the activity of extracts and isolated compounds against Pectobacterium carotovorum subsp. carotovorum. Enzymatic assay was performed to measure the in vitro inhibition of the pectinase activity produced by the selected pathogen. Molecular docking simulations were used to explore the possible interaction of the selected compounds with the pectinase enzymes.RESULTS AND DISCUSSION: The targeted metabolomic analysis highlighted those different geographical locations can influence the composition and abundance of bioactive metabolites in rosemary extracts. At the same time, genetic factors are important when a single geographical area is considered. Self-organizing maps (SOMs) showed that the accessions of "Eretto Liguria" appeared well characterized when compared to the others and had a good content in specialized metabolites, particularly carnosic acid. Soft rotting Enterobacteriaceae belonging to the Pectobacterium genus represent a serious problem in potato culture. Even though rosemary methanolic extracts showed a low antibacterial activity against a strain of Pectobacterium carotovorum subsp. carotovorum in the disk diffusion test, they showed ability in reducing the soft rot damage induced by the bacterium on potato tissue. 7-O-methylrosmanol, carnosol and isorosmanol appeared to be the most active components. In silico studies indicated that these abietane diterpenoids may interact with P. carotovorum subsp. carotovorum pectate lyase 1 and endo-polygalacturonase, thus highlighting these rosemary components as starting points for the development of agents able to prevent soft rot progression.PMID:38390298 | PMC:PMC10883066 | DOI:10.3389/fpls.2024.1164859
Monitoring the metabolite content of seasoned zucchinis during storage by NMR-based metabolomics
Heliyon. 2024 Feb 13;10(4):e25976. doi: 10.1016/j.heliyon.2024.e25976. eCollection 2024 Feb 29.ABSTRACTThis study applied 1H NMR metabolomics to monitor the metabolite content of baked and seasoned zucchinis packaged in both compostable and plastic trays. Polar extracts of samples stored at 4 °C up to 35 days were investigated to check for metabolite changes upon shelf life. The evolution of the integral values of only the main metabolites responsible for sample differentiation (lactate, acetate, malate, α and β glucose and sucrose) were further analysed and compared. In particular, the evaluation of lactate and acetate amount, considered markers of fermentation progress, showed a comparable performance for the two types of packaging in preserving the freshness of seasoned zucchinis, confirming the maintenance of food product composition within the declared shelf life period in the recommended storage conditions. Albeit preliminary, the results support the NMR metabolomics as a tool for identifying candidate metabolites to monitor the shelf life of foods, thereby improving the understanding of molecular changes during storage.PMID:38390144 | PMC:PMC10881322 | DOI:10.1016/j.heliyon.2024.e25976
MAGL protects against renal fibrosis through inhibiting tubular cell lipotoxicity
Theranostics. 2024 Feb 4;14(4):1583-1601. doi: 10.7150/thno.92848. eCollection 2024.ABSTRACTRationale: Renal fibrosis, with no therapeutic approaches, is a common pathological feature in various chronic kidney diseases (CKD). Tubular cell injury plays a pivotal role in renal fibrosis. Commonly, injured tubular cells exhibit significant lipid accumulation. However, the underlying mechanisms remain poorly understood. Methods: 2-arachidonoylglycerol (2-AG) levels in CKD patients and CKD model specimens were measured using mass spectrometry. 2-AG-loaded nanoparticles were infused into unilateral ureteral obstruction (UUO) mice. Lipid accumulation and renal fibrosis were tested. Furthermore, monoacylglycerol lipase (MAGL), the hydrolyzing enzyme of 2-AG, was assessed in CKD patients and models. Tubular cell-specific MAGL knock-in mice were generated. Moreover, MAGL recombination protein was also administered to unilateral ischemia reperfusion injury (UIRI) mice. Besides, a series of methods including RNA sequencing, metabolomics, primary cell culture, lipid staining, etc. were used. Results: 2-AG was increased in the serum or kidneys from CKD patients and models. Supplement of 2-AG further induced lipid accumulation and fibrogenesis through cannabinoid receptor type 2 (CB2)/β-catenin signaling. β-catenin knockout blocked 2-AG/CB2-induced fatty acid β-oxidation (FAO) deficiency and lipid accumulation. Remarkably, MAGL significantly decreased in CKD, aligning with lipid accumulation and fibrosis. Specific transgene of MAGL in tubular cells significantly preserved FAO, inhibited lipid-mediated toxicity in tubular cells, and finally retarded fibrogenesis. Additionally, supplementation of MAGL in UIRI mice also preserved FAO function, inhibited lipid accumulation, and protected against renal fibrosis. Conclusion: MAGL is a potential diagnostic marker for kidney function decline, and also serves as a new therapeutic target for renal fibrosis through ameliorating lipotoxicity.PMID:38389852 | PMC:PMC10879875 | DOI:10.7150/thno.92848
Tripeptidyl peptidase II coordinates the homeostasis of calcium and lipids in the central nervous system and its depletion causes presenile dementia in female mice through calcium/lipid dyshomeostasis-induced autophagic degradation of CYP19A1
Theranostics. 2024 Jan 27;14(4):1390-1429. doi: 10.7150/thno.92571. eCollection 2024.ABSTRACTRationale: Tripeptidyl peptidase II (TPP2) has been proven to be related to human immune and neurological diseases. It is generally considered as a cytosolic protein which forms the largest known protease complex in eukaryotic cells to operate mostly downstream of proteasomes for degradation of longer peptides. However, this canonical function of TPP2 cannot explain its role in a wide variety of biological and pathogenic processes. The mechanistic interrelationships and hierarchical order of these processes have yet to be clarified. Methods: Animals, cells, plasmids, and viruses established and/or used in this study include: TPP2 knockout mouse line, TPP2 conditional knockout mouse lines (different neural cell type oriented), TRE-TPP2 knockin mouse line on the C57BL/6 background; 293T cells with depletion of TPP2, ATF6, IRE1, PERK, SYVN1, UCHL1, ATG5, CEPT1, or CCTα, respectively; 293T cells stably expressing TPP2, TPP2 S449A, TPP2 S449T, or CCTα-KDEL proteins on the TPP2-depleted background; Plasmids for eukaryotic transient expression of rat CYP19A1-Flag, CYP19A1 S118A-Flag, CYP19A1 S118D-Flag, Sac I ML GFP Strand 11 Long, OMMGFP 1-10, G-CEPIA1er, GCAMP2, CEPIA3mt, ACC-GFP, or SERCA1-GFP; AAV2 carrying the expression cassette of mouse CYP19A1-3 X Flag-T2A-ZsGreen. Techniques used in this study include: Flow cytometry, Immunofluorescence (IF) staining, Immunohistochemical (IHC) staining, Luxol fast blue (LFB) staining, β-galactosidase staining, Lipid droplet (LD) staining, Calcium (Ca2+) staining, Stimulated emission depletion (STED) imaging, Transmission electron microscopic imaging, Two-photon imaging, Terminal deoxynucleotidyl transferase (TdT) dUTP nick-end Labeling (TUNEL) assay, Bromodeoxyuridine (BrdU) assay, Enzymatic activity assay, Proximity ligation assay (PLA), In vivo electrophysiological recording, Long-term potentiation (LTP) recording, Split-GFP-based mitochondria-associated membrane (MAM) detection, Immunoprecipitation (IP), Cellular fractionation, In situ hybridization, Semi-quantitative RT-PCR, Immunoblot, Mass spectrometry-based lipidomics, metabolomics, proteomics, Primary hippocampal neuron culture and Morris water maze (MWM) test. Results: We found that TPP2, independent of its enzymatic activity, plays a crucial role in maintaining the homeostasis of intracellular Ca2+ and phosphatidylcholine (PC) in the central nervous system (CNS) of mice. In consistence with the critical importance of Ca2+ and PC in the CNS, TPP2 gene ablation causes presenile dementia in female mice, which is closely associated with Ca2+/PC dysregulation-induced endoplasmic reticulum (ER) stress, abnormal autophagic degradation of CYP19A1 (aromatase), and estrogen depletion. This work therefore uncovers a new role of TPP2 in lipogenesis and neurosteroidogenesis which is tightly related to cognitive function of adult female mice. Conclusion: Our study reveals a crucial role of TPP2 in controlling homeostasis of Ca2+ and lipids in CNS, and its deficiency causes sexual dimorphism in dementia. Thus, this study is not only of great significance for elucidating the pathogenesis of dementia and its futural treatment, but also for interpreting the role of TPP2 in other systems and their related disorders.PMID:38389851 | PMC:PMC10879859 | DOI:10.7150/thno.92571
20-HETE mediated TRPV1 activation drives allokinesis via MrgprA3<sup>+</sup> neurons in chronic dermatitis
Theranostics. 2024 Feb 4;14(4):1615-1630. doi: 10.7150/thno.85214. eCollection 2024.ABSTRACTRationale: Noxious stimuli are often perceived as itchy in patients with chronic dermatitis (CD); however, itch and pain mechanisms of CD are not known. Methods: TRPV1 involvement in CD was analyzed using a SADBE induced CD-like mouse model, and several loss- and gain-of-function mouse models. Trigeminal TRPV1 channel and MrgprA3+ neuron functions were analyzed by calcium imaging and whole-cell patch-clamp recordings. Lesional CD-like skin from mice were analyzed by unbiased metabolomic analysis. 20-HETE availability in human and mouse skin were determined by LC/MS and ELISA. And finally, HET0016, a selective 20-HETE synthase inhibitor, was used to evaluate if blocking skin TRPV1 activation alleviates CD-associated chronic itch or pain. Results: While normally a pain inducing chemical, capsaicin induced both itch and pain in mice with CD condition. DREADD silencing of MrgprA3+ primary sensory neurons in these mice selectively decreased capsaicin induced scratching, but not pain-related wiping behavior. In the mice with CD condition, MrgprA3+ neurons showed elevated ERK phosphorylation. Further experiments showed that MrgprA3+ neurons from MrgprA3;Braf mice, which have constitutively active BRAF in MrgprA3+ neurons, were significantly more excitable and responded more strongly to capsaicin. Importantly, capsaicin induced both itch and pain in MrgprA3;Braf mice in an MrgprA3+ neuron dependent manner. Finally, the arachidonic acid metabolite 20-HETE, which can activate TRPV1, was significantly elevated in the lesional skin of mice and patients with CD. Treatment with the selective 20-HETE synthase inhibitor HET0016 alleviated itch in mice with CD condition. Conclusion: Our results demonstrate that 20-HETE activates TRPV1 channels on sensitized MrgprA3+ neurons, and induces allokinesis in lesional CD skin. Blockade of 20-HETE synthesis or silencing of TRPV1-MrgprA3+ neuron signaling offers promising therapeutic strategies for alleviating CD-associated chronic itch.PMID:38389848 | PMC:PMC10879873 | DOI:10.7150/thno.85214
Global metabolomics revealed deviations from the metabolic aging clock in colorectal cancer patients
Theranostics. 2024 Feb 4;14(4):1602-1614. doi: 10.7150/thno.87303. eCollection 2024.ABSTRACTBackground: Markers of aging hold promise in the context of colorectal cancer (CRC) care. Utilizing high-resolution metabolomic profiling, we can unveil distinctive age-related patterns that have the potential to predict early CRC development. Our study aims to unearth a panel of aging markers and delve into the metabolomic alterations associated with aging and CRC. Methods: We assembled a serum cohort comprising 5,649 individuals, consisting of 3,002 healthy volunteers, 715 patients diagnosed with colorectal advanced precancerous lesions (APL), and 1,932 CRC patients, to perform a comprehensive metabolomic analysis. Results: We successfully identified unique age-associated patterns across 42 metabolic pathways. Moreover, we established a metabolic aging clock, comprising 9 key metabolites, using an elastic net regularized regression model that accurately estimates chronological age. Notably, we observed significant chronological disparities among the healthy population, APL patients, and CRC patients. By combining the analysis of circulative carcinoembryonic antigen levels with the categorization of individuals into the "hypo" metabolic aging subgroup, our blood test demonstrates the ability to detect APL and CRC with positive predictive values of 68.4% (64.3%, 72.2%) and 21.4% (17.8%, 25.9%), respectively. Conclusions: This innovative approach utilizing our metabolic aging clock holds significant promise for accurately assessing biological age and enhancing our capacity to detect APL and CRC.PMID:38389840 | PMC:PMC10879879 | DOI:10.7150/thno.87303
Cancer-associated fibroblasts reprogram cysteine metabolism to increase tumor resistance to ferroptosis in pancreatic cancer
Theranostics. 2024 Feb 11;14(4):1683-1700. doi: 10.7150/thno.89805. eCollection 2024.ABSTRACTBackground: Pancreatic ductal adenocarcinoma (PDAC) is an insidious, rapidly progressing malignancy of the gastrointestinal tract. Due to its dense fibrous stroma and complex tumor microenvironment, neither of which is sensitive to radiotherapy, pancreatic adenocarcinoma is one of the malignancies with the poorest prognosis. Therefore, detailed elucidation of the inhibitory microenvironment of PDAC is essential for the development of novel therapeutic strategies. Methods: We analyzed the association between cancer-associated fibroblasts (CAFs) and resistance to ferroptosis in PDAC using conditioned CAF medium and co-culture of pancreatic cancer cells. Abnormal cysteine metabolism was observed in CAFs using non-targeted metabolomics analysis with liquid chromatography-tandem mass spectrometry (LC-MS/MS). The regulatory effects of cysteine were investigated in PDAC cells through measurement of cell cloning, cell death, cell function, and EdU assays. The effects of exogenous cysteine intake were examined in a mouse xenograft model and the effects of the cysteine pathway on ferroptosis in PDAC were investigated by western blotting, measurement of glutathione and reactive oxygen species levels, among others. Results: It was found that CAFs played a critical role in PDAC metabolism by secreting cysteine, which could increase tumor resistance to ferroptosis. A previously unrecognized function of the sulfur transfer pathway in CAFs was identified, which increased the extracellular supply of cysteine to support glutathione synthesis and thus inducing ferroptosis resistance. Cysteine secretion by CAFs was found to be mediated by the TGF-β/SMAD3/ATF4 signaling axis. Conclusion: Taken together, the findings demonstrate a novel metabolic relationship between CAFs and cancer cells, in which cysteine generated by CAFs acts as a substrate in the prevention of oxidative damage in PDAC and thus suggests new therapeutic targets for PDAC.PMID:38389839 | PMC:PMC10879865 | DOI:10.7150/thno.89805
Study on the correlation between color and taste of beauty tea infusion and the pivotal contributing compounds based on UV-visible spectroscopy, taste equivalent quantification and metabolite analysis
Food Chem X. 2024 Feb 5;21:101192. doi: 10.1016/j.fochx.2024.101192. eCollection 2024 Mar 30.ABSTRACTThis study utilized a colorimeter to determine the color values of 23 beauty tea (BT) samples, the color and the taste characteristics were also quantitatively described through ultraviolet-visible (UV-Vis) spectroscopy and taste equivalent quantification. Furthermore, metabolomic analysis was conducted by using ultra-high-performance liquid chromatography-mass spectrometry (UPLC-MS). Correlation analysis was employed to preliminarily identify the compounds that contribute to the color and taste of BT infusion. Finally, the contributing compounds were further determined through verification experiment. The results showed that within a certain range, as the color of BT infusion deepened, the taste became stronger, more bitter and astringent, while on the contrary, it became sweeter and mellower. Theaflavins, kaempferol, astragalin, and 5-p-coumaroylquinic acid influenced both the color and taste of the BT infusion. Gallic acid was also determined as a contributor to the color. This study provides new insights into research on tea quality in infusion color and taste aspects.PMID:38389575 | PMC:PMC10881530 | DOI:10.1016/j.fochx.2024.101192
Integrated metabolome and microbiome analysis reveals the effect of rumen-protected sulfur-containing amino acids on the meat quality of Tibetan sheep meat
Front Microbiol. 2024 Feb 8;15:1345388. doi: 10.3389/fmicb.2024.1345388. eCollection 2024.ABSTRACTINTRODUCTION: This study investigated the effects of rumen-protected sulfur-containing amino acids (RPSAA) on the rumen and jejunal microbiota as well as on the metabolites and meat quality of the longissimus lumborum (LL) in Tibetan sheep.METHODS: By combining 16S rDNA sequencing with UHPLC-Q-TOF MS and Pearson correlation analysis, the relationship between gastrointestinal microbiota, muscle metabolites and meat quality was identified.RESULTS: The results showed that feeding RPSAA can increase the carcass weight, abdominal fat thickness (AP-2 group), and back fat thickness (AP-2 and AP-3 group) of Tibetan sheep. The water holding capacity (WHC), texture, and shear force (SF) of LL in the two groups also increased although the fatty acids content and brightness (L*) value significantly decreased in the AP-2 group. Metabolomics and correlation analysis further showed that RPSAA could significantly influence the metabolites in purine metabolism, thereby affecting L* and SF. In addition, RPSAA was beneficial for the fermentation of the rumen and jejunum. In both groups, the abundance of Prevotella 1, Lachnospiraceae NK3A20 group, Prevotella UCG-003, Lachnospiraceae ND3007 group in the rumen as well as the abundance of Eubacterium nodatum group and Mogibacterium group in the jejunum increased. In contrast, that of Turicibacter pathogens in the jejunum was reduced. The above microorganisms could regulate meat quality by regulating the metabolites (inosine, hypoxanthine, linoleic acid, palmitic acid, etc.) in purine and fatty acids metabolism.DISCUSSION: Overall, reducing the levels of crude proteins in the diet and feeding RPSAA is likely to improve the carcass quality of Tibetan sheep, with the addition of RPMET (AP-2) yielding the best edible quality, possibly due to its ability to influence the gastrointestinal microbiota to subsequently regulate muscle metabolites.PMID:38389537 | PMC:PMC10883651 | DOI:10.3389/fmicb.2024.1345388
Alternative electrolyte solutions for untargeted breath metabolomics using secondary-electrospray ionization high-resolution mass spectrometry
Rapid Commun Mass Spectrom. 2024 Apr 30;38(8):e9714. doi: 10.1002/rcm.9714.ABSTRACTRATIONALE: Secondary-electrospray ionization (SESI) coupled with high-resolution mass spectrometry is a powerful tool for the discovery of biomarkers in exhaled breath. A primary electrospray consisting of aqueous formic acid (FA) is currently used to charge the volatile organic compounds in breath. To investigate whether alternate electrospray compositions could enable different metabolite coverage and sensitivities, the electrospray dopants NaI and AgNO3 were tested.METHODS: In a proof-of-principle manner, the exhaled breath of one subject was analyzed repeatedly with different electrospray solutions and with the help of a spectral stitching technique. Capillary diameter and position were optimized to achieve proper detection of exhaled breath. The detected features were then compared using formula annotation. Using an evaporation-based gas standard system, the signal response of the different solutions was probed.RESULTS: Principal component analysis revealed a substantial difference in features detected with AgNO3 . With silver, more sulfur-containing features and more unsaturated hydrocarbon compounds were detected. Furthermore, more primary amines were potentially ionized, as indicated by van Krewelen diagrams. In total, twice as many features were unique to AgNO3 than for other electrospray dopants. Using gas standards at known concentrations, the high sensitivity of FA as a dopant was demonstrated but also indicated alternate sensitivities of the other electrospray solutions.CONCLUSIONS: This work demonstrated the potential of AgNO3 as a complementary dopant for further biomarker discovery in SESI-based breath analysis.PMID:38389333 | DOI:10.1002/rcm.9714
Dietary chlorogenic acid alleviates high-fat diet-induced steatotic liver disease by regulating metabolites and gut microbiota
Int J Food Sci Nutr. 2024 Feb 22:1-16. doi: 10.1080/09637486.2024.2318590. Online ahead of print.ABSTRACTThe high-fat diet would lead to excessive fat storage in the liver to form metabolic dysfunction-associated steatotic liver disease (MASLD), and the trend is burgeoning. The aim of the study is to investigate the effects of chlorogenic acid (CGA) on metabolites and gut microorganisms in MASLD mice induced by a high-fat diet. In comparison to the HF group, the TC (total cholesterol), TG (total triglycerides), LDL-C (low-density lipoprotein cholesterol), AST (aspartate aminotransferase) and ALT (alanine transaminase) levels were reduced after CGA supplement. CGA led to an increase in l-phenylalanine, l-tryptophan levels, and promoted fatty acid degradation. CGA increased the abundance of the Muribaculaceae, Bacteroides and Parabacteroides. Changes in these microbes were significantly associated with the liver metabolites level and lipid profile level. These data suggest important roles for CGA regulating the gut microbiota, liver and caecum content metabolites, and TG-, TC- and LDL-C lowering function.PMID:38389248 | DOI:10.1080/09637486.2024.2318590
Author Correction: A heterotypic assembly mechanism regulates CHIP E3 ligase activity
EMBO J. 2024 Feb 22. doi: 10.1038/s44318-024-00042-3. Online ahead of print.NO ABSTRACTPMID:38388749 | DOI:10.1038/s44318-024-00042-3
Ultrasound-activated piezo-hot carriers trigger tandem catalysis coordinating cuproptosis-like bacterial death against implant infections
Nat Commun. 2024 Feb 22;15(1):1643. doi: 10.1038/s41467-024-45619-y.ABSTRACTImplant-associated infections due to the formation of bacterial biofilms pose a serious threat in medical healthcare, which needs effective therapeutic methods. Here, we propose a multifunctional nanoreactor by spatiotemporal ultrasound-driven tandem catalysis to amplify the efficacy of sonodynamic and chemodynamic therapy. By combining piezoelectric barium titanate with polydopamine and copper, the ultrasound-activated piezo-hot carriers transfer easily to copper by polydopamine. It boosts reactive oxygen species production by piezoelectrics, and facilitates the interconversion between Cu2+ and Cu+ to promote hydroxyl radical generation via Cu+ -catalyzed chemodynamic reactions. Finally, the elevated reactive oxygen species cause bacterial membrane structure loosening and DNA damage. Transcriptomics and metabolomics analysis reveal that intracellular copper overload restricts the tricarboxylic acid cycle, promoting bacterial cuproptosis-like death. Therefore, the polyetherketoneketone scaffold engineered with the designed nanoreactor shows excellent antibacterial performance with ultrasound stimulation and promotes angiogenesis and osteogenesis on-demand in vivo.PMID:38388555 | DOI:10.1038/s41467-024-45619-y
Porphyromonas gingivalis aggravates colitis via a gut microbiota-linoleic acid metabolism-Th17/Treg cell balance axis
Nat Commun. 2024 Feb 22;15(1):1617. doi: 10.1038/s41467-024-45473-y.ABSTRACTPeriodontitis is closely related to inflammatory bowel disease (IBD). An excessive and non-self-limiting immune response to the dysbiotic microbiome characterizes the two. However, the underlying mechanisms that overlap still need to be clarified. We demonstrate that the critical periodontal pathogen Porphyromonas gingivalis (Pg) aggravates intestinal inflammation and Th17/Treg cell imbalance in a gut microbiota-dependent manner. Specifically, metagenomic and metabolomic analyses shows that oral administration of Pg increases levels of the Bacteroides phylum but decreases levels of the Firmicutes, Verrucomicrobia, and Actinobacteria phyla. Nevertheless, it suppresses the linoleic acid (LA) pathway in the gut microbiota, which was the target metabolite that determines the degree of inflammation and functions as an aryl hydrocarbon receptor (AHR) ligand to suppress Th17 differentiation while promoting Treg cell differentiation via the phosphorylation of Stat1 at Ser727. Therapeutically restoring LA levels in colitis mice challenged with Pg exerts anti-colitis effects by decreasing the Th17/Treg cell ratio in an AHR-dependent manner. Our study suggests that Pg aggravates colitis via a gut microbiota-LA metabolism-Th17/Treg cell balance axis, providing a potential therapeutically modifiable target for IBD patients with periodontitis.PMID:38388542 | DOI:10.1038/s41467-024-45473-y