PubMed
Metabolomics perspectives into the co-exposure effect of polycyclic aromatic hydrocarbons and metals on renal function: A meet-in-the-middle approach
Sci Total Environ. 2024 Feb 13:170975. doi: 10.1016/j.scitotenv.2024.170975. Online ahead of print.ABSTRACTStudies on the dose effects of kidney impairment and metabolomes in co-exposure to polycyclic aromatic hydrocarbons (PAHs) and metals are limited. We aimed to identify overall associations and metabolic perturbations in 130 participants (53 petrochemical workers and 77 controls) exposed to a PAHs-metals mixture in Southern China. Studies on dose effects on kidney impairment and metabolomes of co-exposure to polycyclic aromatic hydrocarbons (PAHs) and metals are limited. We aim to identify overall associations and metabolic perturbations in 130 participants (53 petrochemical workers vs. 77 controls) exposed to the PAHs-metals mixture in Southern China. The urinary 7 hydroxylated PAHs and 15 metals were determined, and serum creatinine, beta-2 microglobulin, and estimated glomerular filtration rate were health outcomes. The liquid chromatography-mass spectrometry-based method was applied to serum metabolomics. Generalized weighted quantile sum (gWQS) regressions were used to estimate the overall dose-response relationships, and pathway analysis, "meet-in-the-middle" approach, and mediation effect analyses were conducted to identify potential metabolites and biological mechanisms linking exposure with nephrotoxic effects. Our results indicated that renal function reduction was associated with a PAHs-metals mixture in a dose-dependent manner, and 1-hydroxynaphthalene and copper were the most predominant contributors to two families of pollutants. Furthermore, the metabolic disruptions associated with the early onset of kidney impairment induced by the combination of PAHs and metals encompassed pathways such as phenylalanine-tyrosine-tryptophan biosynthesis, phenylalanine metabolism, and alpha-linolenic acid metabolism. In addition, the specifically identified metabolites demonstrated excellent potential as bridging biomarkers connecting the reduction in renal function with the mixture of PAHs and metals. These findings shed light on understanding the overall associations and metabolic mechanism of nephrotoxic effects of co-exposure to PAHs and metals.PMID:38360308 | DOI:10.1016/j.scitotenv.2024.170975
Rewiring cis-2-butene-1,4-dial mediated urinary metabolomics fingerprints of short-term exposure to furan
Sci Total Environ. 2024 Feb 13:170946. doi: 10.1016/j.scitotenv.2024.170946. Online ahead of print.ABSTRACTFuran represents one of the dietary-sourced persistent organic pollutants and thermal processing contaminants. Given its widespread occurrence in food and various toxicological effects, accurately assessing furan exposure is essential for informing public health risks. Furan is metabolized to a reactive primary product, cis-2-butene-1,4-dial (BDA) upon absorption. Some of the resulting BDA-derived metabolites have been proposed as potential exposure biomarkers of furan. However, the lack of quantification for recognized and feasible furan biomarkers has hampered the development of internal exposure risk assessment of furan. In this study, we employed reliable non-targeted metabolomics techniques to uncover urinary furan metabolites and elucidate their chemical structures. We characterized 8 reported and 11 new furan metabolites derived from the binding of BDA with glutathione (GSH), biogenic amines, and/or amino acids in the urine of male rats subjected to varying doses of furan. Notably, a mono-GSH-BDA adduct named cyclic GSH-BDA emerged as a highly prospective specific biomarker of furan exposure, as determined by an ultrahigh-performance liquid chromatography-tandem mass spectrometry method. Cyclic GSH-BDA demonstrated a robust mass spectrometry ion response intensity and exhibited evident time- and dose response. Additionally, we conducted a comprehensive profiling of the kinetics of potential furan biomarkers over time to capture the metabolic dynamics of furan in vivo. Most urinary furan metabolites reached peak concentrations at either the first (3 h) or second (6 h) sampling time point and were largely eliminated within 36 h following furan treatment. The present study provides novel insights into furan metabolism and sheds light on the biomonitoring of furan exposure.PMID:38360302 | DOI:10.1016/j.scitotenv.2024.170946
Abaloparatide is more potent than teriparatide in restoring bone mass and strength in type 1 diabetic male mice
Bone. 2024 Feb 13:117042. doi: 10.1016/j.bone.2024.117042. Online ahead of print.ABSTRACTThis study investigated the efficacy of the two FDA-approved bone anabolic ligands of the parathyroid hormone receptor 1 (PTH1R), teriparatide or human parathyroid hormone 1-34 (PTH) and abaloparatide (ABL), to restoring skeletal health using a preclinical murine model of streptozotocin-induced T1-DM. Intermittent daily subcutaneous injections of equal molar doses (12 pmoles/g/day) of PTH (50 ng/g/day), ABL (47.5 ng/g/day), or vehicle, were administered for 28 days to 5-month-old C57Bl/6 J male mice with established T1-DM or control (C) mice. ABL was superior to PTH in increasing or restoring bone mass in control or T1-MD mice, respectively, which was associated with superior stimulation of trabecular and periosteal bone formation, upregulation of osteoclastic/osteoblastic gene expression, and increased circulating bone remodeling markers. Only ABL corrected the reduction in ultimate load, which is a measure of bone strength, induced by T1-DM, and it also increased energy to ultimate load. In addition, bones from T1-DM mice treated with PTH or ABL exhibited increased ultimate stress, a material index, compared to T1-DM mice administered with vehicle. And both PTH and ABL prevented the increased expression of the Wnt antagonist Sost/sclerostin displayed by T1-DM mice. Further, PTH and ABL increased to a similar extent the circulating bone resorption marker CTX and the bone formation marker P1NP in T1-DM after 2 weeks of treatment; however, only ABL sustained these increases after 4 weeks of treatment. We conclude that at equal molar doses, ABL is more effective than PTH in increasing bone mass and restoring the cortical and trabecular bone lost with T1-DM, due to higher and longer-lasting increases in bone remodeling.PMID:38360197 | DOI:10.1016/j.bone.2024.117042
Microbiome of seventh-century old Parsurameswara stone monument of India and role of desiccation-tolerant cyanobacterium <em>Lyngbya corticicola</em> on its biodeterioration
Biofouling. 2024 Feb 15:1-14. doi: 10.1080/08927014.2024.2305381. Online ahead of print.ABSTRACTThe Parsurameswara stone monument, built in the seventh century, is one of the oldest stone monuments in Odisha, India. Metagenomic analysis of the biological crust samples collected from the stone monument revealed 17 phyla in the microbiome, with Proteobacteria being the most dominant phylum, followed by cyanobacteria. Eight cyanobacteria were isolated. Lyngbya corticicola was the dominant cyanobacterium in all crust samples and could tolerate six months of desiccation in vitro. With six months of desiccation, chlorophyll-a decreased; however, carotenoid and cellular carbohydrate contents of this organism increased in the desiccated state. Resistance to desiccation, high carotenoid content, and effective trehalose biosynthesis in this cyanobacterium provide a distinct advantage over other microbiomes. Comparative metabolic profiles of the biological crust and L. corticicola show strongly corrosive organic acids such as dichloroacetic acid, which might be responsible for the biocorrosion of stone monuments.PMID:38359904 | DOI:10.1080/08927014.2024.2305381
MINNO: An Open Source Software for Refining Metabolic Networks and Investigating Complex Network Activity Using Empirical Metabolomics Data
Anal Chem. 2024 Feb 15. doi: 10.1021/acs.analchem.3c04501. Online ahead of print.ABSTRACTMetabolomics is a powerful tool for uncovering biochemical diversity in a wide range of organisms. Metabolic network modeling is commonly used to frame metabolomics data in the context of a broader biological system. However, network modeling of poorly characterized nonmodel organisms remains challenging due to gene homology mismatches which lead to network architecture errors. To address this, we developed the Metabolic Interactive Nodular Network for Omics (MINNO), a web-based mapping tool that uses empirical metabolomics data to refine metabolic networks. MINNO allows users to create, modify, and interact with metabolic pathway visualizations for thousands of organisms, in both individual and multispecies contexts. Herein, we illustrate the use of MINNO in elucidating the metabolic networks of understudied species, such as those of the Borrelia genus, which cause Lyme and relapsing fever diseases. Using a hybrid genomics-metabolomics modeling approach, we constructed species-specific metabolic networks for threeBorrelia species. Using these empirically refined networks, we were able to metabolically differentiate these species via their nucleotide metabolism, which cannot be predicted from genomic networks. Additionally, using MINNO, we identified 18 missing reactions from the KEGG database, of which nine were supported by the primary literature. These examples illustrate the use of metabolomics for the empirical refining of genetically constructed networks and show how MINNO can be used to study nonmodel organisms.PMID:38359900 | DOI:10.1021/acs.analchem.3c04501
Multimodal mass spectrometry imaging identifies cell-type-specific metabolic and lipidomic variation in the mammalian liver
Dev Cell. 2024 Feb 12:S1534-5807(24)00045-5. doi: 10.1016/j.devcel.2024.01.025. Online ahead of print.ABSTRACTSpatial single-cell omics provides a readout of biochemical processes. It is challenging to capture the transient lipidome/metabolome from cells in a native tissue environment. We employed water gas cluster ion beam secondary ion mass spectrometry imaging ([H2O]n>28K-GCIB-SIMS) at ≤3 μm resolution using a cryogenic imaging workflow. This allowed multiple biomolecular imaging modes on the near-native-state liver at single-cell resolution. Our workflow utilizes desorption electrospray ionization (DESI) to build a reference map of metabolic heterogeneity and zonation across liver functional units at tissue level. Cryogenic dual-SIMS integrated metabolomics, lipidomics, and proteomics in the same liver lobules at single-cell level, characterizing the cellular landscape and metabolic states in different cell types. Lipids and metabolites classified liver metabolic zones, cell types and subtypes, highlighting the power of spatial multi-omics at high spatial resolution for understanding celluar and biomolecular organizations in the mammalian liver.PMID:38359832 | DOI:10.1016/j.devcel.2024.01.025
Microbial Fermentation as an Efficient Method for Eliminating Pyrethroid Pesticide Residues in Food: A Case Study on Cyfluthrin and <em>Aneurinibacillus aneurinilyticus</em> D-21
J Agric Food Chem. 2024 Feb 15. doi: 10.1021/acs.jafc.3c09024. Online ahead of print.ABSTRACTThe microbial fermentation of food has emerged as an efficient means to eliminate pesticide residues in agricultural products; however, the specific degradation characteristics and mechanisms remain unclear. In this study, a Gram-positive bacterium, Aneurinibacillus aneurinilyticus D-21, isolated from fermented Pixian Douban samples exhibited the capability to degrade 45 mg/L of cyfluthrin with an efficiency of 90.37%. Product analysis unveiled a novel cyfluthrin degradation pathway, involving the removal of the cyanide group and ammoniation of the ester bond into an amide. Whole genome analysis discovered the enzymes linked to cyfluthrin degradation, including nitrilase, esterase, carbon-nitrogen ligases, and enzymes associated with aromatic degradation. Additionally, metabolome analysis identified 140 benzenoids distributed across various aromatic metabolic pathways, further substantiating D-21's catabolic capability toward aromatics. This study underscores the exceptional pyrethroid degradation prowess of A. aneurinilyticus D-21, positioning it as a promising candidate for the biotreatment of pesticide residues in food systems.PMID:38359781 | DOI:10.1021/acs.jafc.3c09024
FBXL4 protects against HFpEF through Drp1-Mediated regulation of mitochondrial dynamics and the downstream SERCA2a
Redox Biol. 2024 Feb 9;70:103081. doi: 10.1016/j.redox.2024.103081. Online ahead of print.ABSTRACTAIMS: Heart failure with preserved ejection fraction (HFpEF) is a devastating health issue although limited knowledge is available for its pathogenesis and therapeutics. Given the perceived involvement of mitochondrial dysfunction in HFpEF, this study was designed to examine the role of mitochondrial dynamics in the etiology of HFpEF.METHOD AND RESULTS: Adult mice were placed on a high fat diet plus l-NAME in drinking water ('two-hit' challenge to mimic obesity and hypertension) for 15 consecutive weeks. Mass spectrometry revealed pronounced changes in mitochondrial fission protein Drp1 and E3 ligase FBXL4 in 'two-hit' mouse hearts. Transfection of FBXL4 rescued against HFpEF-compromised diastolic function, cardiac geometry, and mitochondrial integrity without affecting systolic performance, in conjunction with altered mitochondrial dynamics and integrity (hyperactivation of Drp1 and unchecked fission). Mass spectrometry and co-IP analyses unveiled an interaction between FBXL4 and Drp1 to foster ubiquitination and degradation of Drp1. Truncated mutants of FBXL4 (Delta-Fbox) disengaged interaction between FBXL4 and Drp1. Metabolomic and proteomics findings identified deranged fatty acid and glucose metabolism in HFpEF patients and mice. A cellular model was established with concurrent exposure of high glucose and palmitic acid as a 'double-damage' insult to mimic diastolic anomalies in HFpEF. Transfection of FBXL4 mitigated 'double-damage'-induced cardiomyocyte diastolic dysfunction and mitochondrial injury, the effects were abolished and mimicked by Drp1 knock-in and knock-out, respectively. HFpEF downregulated sarco(endo)plasmic reticulum (SR) Ca2+ uptake protein SERCA2a while upregulating phospholamban, RYR1, IP3R1, IP3R3 and Na+-Ca2+ exchanger with unaltered SR Ca2+ load. FBXL4 ablated 'two-hit' or 'double-damage'-induced changes in SERCA2a, phospholamban and mitochondrial injury.CONCLUSION: FBXL4 rescued against HFpEF-induced cardiac remodeling, diastolic dysfunction, and mitochondrial injury through reverting hyperactivation of Drp1-mediated mitochondrial fission, underscoring the therapeutic promises of FBXL4 in HFpEF.PMID:38359748 | DOI:10.1016/j.redox.2024.103081
Traceability and authentication in agri-food production: A multivariate approach to the characterization ofthe Italian food excellence elephant garlic (Allium ampeloprasum L.), a vasoactive nutraceutical
Food Chem. 2024 Feb 8;444:138684. doi: 10.1016/j.foodchem.2024.138684. Online ahead of print.ABSTRACTA research platform for food authentication was set up by combining stable isotope ratio analysis, metabolomics by gas and liquid mass-spectrometry and NMR investigations, chemometric analyses for food excellences. This multi-analytical approach was tested on samples of elephant garlic (Allium ampeloprasum L.), a species belonging to the same genus of common garlic (Allium ampeloprasum L.), mainly produced in southern Tuscany-(Allium ampeloprasum). The isotopic composition allowed the product to be geographically characterized. Flavonoids, like (+)-catechin, cinnamic acids, quercetin glycosides were identified. The samples showed also a significant amount of dipeptides, sulphur-containing metabolites and glutathione, the latter of which could be considered a molecular marker of the analyzed elephant garlic. For nutraceutical profiling to reach quality labels, extracts were investigated in specific biological assays, displaying interesting vasorelaxant properties in rat aorta by mediating nitric oxide release from the endothelium and exhibited positive inotropic and negative chronotropic effects in rat perfused heart.PMID:38359701 | DOI:10.1016/j.foodchem.2024.138684
Maillard reaction products and metabolite profile of plant-based meat burgers compared with traditional meat burgers and cooking-induced alterations
Food Chem. 2024 Feb 10;445:138705. doi: 10.1016/j.foodchem.2024.138705. Online ahead of print.ABSTRACTWe are undergoing a food transformation with the introduction of plant-based meat analogues, but little is known about their chemical characteristics. This study aimed to elucidate the Maillard reactions in plant-based meat burger alternatives (PBMBA). For this purpose, NMR-based metabolomics and targeted MS analysis of Maillard and dehydroalanine pathway markers were conducted on six PBMBA prototypes with different proportions of high-moisture protein extrudates, low-moisture extrudates and pea protein on a commercial PBMBA and on a meat burger before and after cooking. Results revealed that higher levels of Maillard reaction markers were present in PBMBAs in the uncooked state, with lower levels formed during cooking compared with conventional meat. The metabolite profile disclosed that the distinct pattern of the Maillard reaction could be attributed to different substrate availability, but data also revealed that pre-processing of the plant protein affects the presence of Maillard reaction products in PBMBAs.PMID:38359568 | DOI:10.1016/j.foodchem.2024.138705
Modeling blood metabolite homeostatic levels reduces sample heterogeneity across cohorts
Proc Natl Acad Sci U S A. 2024 Feb 20;121(8):e2307430121. doi: 10.1073/pnas.2307430121. Epub 2024 Feb 15.ABSTRACTBlood metabolite levels are affected by numerous factors, including preanalytical factors such as collection methods and geographical sites. These perturbations have caused deleterious consequences for many metabolomics studies and represent a major challenge in the metabolomics field. It is important to understand these factors and develop models to reduce their perturbations. However, to date, the lack of suitable mathematical models for blood metabolite levels under homeostasis has hindered progress. In this study, we develop quantitative models of blood metabolite levels in healthy adults based on multisite sample cohorts that mimic the current challenge. Five cohorts of samples obtained across four geographically distinct sites were investigated, focusing on approximately 50 metabolites that were quantified using 1H NMR spectroscopy. More than one-third of the variation in these metabolite profiles is due to cross-cohort variation. A dramatic reduction in the variation of metabolite levels (90%), especially their site-to-site variation (95%), was achieved by modeling each metabolite using demographic and clinical factors and especially other metabolites, as observed in the top principal components. The results also reveal that several metabolites contribute disproportionately to such variation, which could be explained by their association with biological pathways including biosynthesis and degradation. The study demonstrates an intriguing network effect of metabolites that can be utilized to better define homeostatic metabolite levels, which may have implications for improved health monitoring. As an example of the potential utility of the approach, we show that modeling gender-related metabolic differences retains the interesting variance while reducing unwanted (site-related) variance.PMID:38359289 | DOI:10.1073/pnas.2307430121
Concentric Hybrid Nanoelectrospray Ionization-Atmospheric Pressure Chemical Ionization Source for High-Coverage Mass Spectrometry Analysis of Single-Cell Metabolomics
Adv Sci (Weinh). 2024 Feb 15:e2306659. doi: 10.1002/advs.202306659. Online ahead of print.ABSTRACTHigh-coverage mass spectrometry analysis of single-cell metabolomics remains challenging due to the extremely low abundance and wide polarity of metabolites and ultra-small volume in single cells. Herein, a novel concentric hybrid ionization source, nanoelectrospray ionization-atmospheric pressure chemical ionization (nanoESI-APCI), is ingeniously designed to detect polar and nonpolar metabolites simultaneously in single cells. The source is constructed by inserting a pulled glass capillary coaxially into a glass tube that acts as a dielectric barrier layer. Benefitting from the integrated advantages of nanoESI and APCI, its limit of detection is improved by one order of magnitude to 10 pg mL-1 . After the operational parameter optimization, 254 metabolites detected in nanoESI-APCI are tentatively identified from a single cell, and 82 more than those in nanoESI. The developed nanoESI-APCI is successively applied to study the metabolic heterogeneity of human hepatocellular carcinoma tissue microenvironment united with laser capture microdissection (LCM), the discrimination of cancer cell types and subtypes, the metabolic perturbations to glucose starvation in MCF7 cells and the metabolic regulation of cancer stem cells. These results demonstrated that the nanoESI-APCI not only opens a new avenue for high-coverage and high-sensitivity metabolomics analysis of single cell, but also facilitates spatially resolved metabolomics study coupled with LCM.PMID:38359005 | DOI:10.1002/advs.202306659
An exercise physiologist's guide to metabolomics
Exp Physiol. 2024 Feb 15. doi: 10.1113/EP091059. Online ahead of print.ABSTRACTThe field of exercise physiology has undergone significant technological advancements since the pioneering works of exercise physiologists in the early to mid-20th century. Historically, the ability to detect metabolites in biofluids from exercising participants was limited to single-metabolite analyses. However, the rise of metabolomics, a discipline focused on the comprehensive analysis of metabolites within a biological system, has facilitated a more intricate understanding of metabolic pathways and networks in exercise. This review explores some of the pivotal technological and bioinformatic advancements that have propelled metabolomics to the forefront of exercise physiology research. Metabolomics offers a unique 'fingerprint' of cellular activity, offering a broader spectrum than traditional single-metabolite assays. Techniques, including mass spectrometry and nuclear magnetic resonance spectroscopy, have significantly improved the speed and sensitivity of metabolite analysis. Nonetheless, challenges persist, including study design and data interpretation issues. This review aims to serve as a guide for exercise physiologists to facilitate better research design, data analysis and interpretation within metabolomics. The potential of metabolomics in bridging the gap between genotype and phenotype is emphasised, underscoring the critical importance of careful study design and the selection of appropriate metabolomics techniques. Furthermore, the paper highlights the need to deeply understand the broader scientific context to discern meaningful metabolic changes. The emerging field of fluxomics, which seeks to quantify metabolic reaction rates, is also introduced as a promising avenue for future research.PMID:38358958 | DOI:10.1113/EP091059
Metabolomics identifies and validates serum androstenedione as novel biomarker for diagnosing primary angle closure glaucoma and predicting the visual field progression
Elife. 2024 Feb 15;12:RP91407. doi: 10.7554/eLife.91407.ABSTRACTBACKGROUND: Primary angle closure glaucoma (PACG) is the leading cause of irreversible blindness in Asia, and no reliable, effective diagnostic, and predictive biomarkers are used in clinical routines. A growing body of evidence shows metabolic alterations in patients with glaucoma. We aimed to develop and validate potential metabolite biomarkers to diagnose and predict the visual field progression of PACG.METHODS: Here, we used a five-phase (discovery phase, validation phase 1, validation phase 2, supplementary phase, and cohort phase) multicenter (EENT hospital, Shanghai Xuhui Central Hospital), cross-sectional, prospective cohort study designed to perform widely targeted metabolomics and chemiluminescence immunoassay to determine candidate biomarkers. Five machine learning (random forest, support vector machine, lasso, K-nearest neighbor, and GaussianNaive Bayes [NB]) approaches were used to identify an optimal algorithm. The discrimination ability was evaluated using the area under the receiver operating characteristic curve (AUC). Calibration was assessed by Hosmer-Lemeshow tests and calibration plots.RESULTS: Studied serum samples were collected from 616 participants, and 1464 metabolites were identified. Machine learning algorithm determines that androstenedione exhibited excellent discrimination and acceptable calibration in discriminating PACG across the discovery phase (discovery set 1, AUCs=1.0 [95% CI, 1.00-1.00]; discovery set 2, AUCs = 0.85 [95% CI, 0.80-0.90]) and validation phases (internal validation, AUCs = 0.86 [95% CI, 0.81-0.91]; external validation, AUCs = 0.87 [95% CI, 0.80-0.95]). Androstenedione also exhibited a higher AUC (0.92-0.98) to discriminate the severity of PACG. In the supplemental phase, serum androstenedione levels were consistent with those in aqueous humor (r=0.82, p=0.038) and significantly (p=0.021) decreased after treatment. Further, cohort phase demonstrates that higher baseline androstenedione levels (hazard ratio = 2.71 [95% CI: 1.199-6.104], p=0.017) were associated with faster visual field progression.CONCLUSIONS: Our study identifies serum androstenedione as a potential biomarker for diagnosing PACG and indicating visual field progression.FUNDING: This work was supported by Youth Medical Talents - Clinical Laboratory Practitioner Program (2022-65), the National Natural Science Foundation of China (82302582), Shanghai Municipal Health Commission Project (20224Y0317), and Higher Education Industry-Academic-Research Innovation Fund of China (2023JQ006).PMID:38358793 | DOI:10.7554/eLife.91407
A study on the association between gut microbiota, inflammation, and type 2 diabetes
Appl Microbiol Biotechnol. 2024 Feb 15;108(1):213. doi: 10.1007/s00253-024-13041-5.ABSTRACTType 2 diabetes mellitus (T2DM) was reported to be associated with impaired immune response and alterations in microbial composition and function. However, the underlying mechanism remains elusive. To investigate the association among retinoic acid-inducible gene-I-like receptors (RLRs) signaling pathway, intestinal bacterial microbiome, microbial tryptophan metabolites, inflammation, and a longer course of T2DM, 14 patients with T2DM and 7 healthy controls were enrolled. 16S rRNA amplicon sequencing and untargeted metabolomics were utilized to analyze the stool samples. RNA sequencing (RNA-seq) was carried out on the peripheral blood samples. Additionally, C57BL/6J specific pathogen-free (SPF) mice were used. It was found that the longer course of T2DM could lead to a decrease in the abundance of probiotics in the intestinal microbiome. In addition, the production of microbial tryptophan derivative skatole declined as a consequence of the reduced abundance of related intestinal microbes. Furthermore, low abundances of probiotics, such as Bacteroides and Faecalibacterium, could trigger the inflammatory response by activating the RLRs signaling pathway. The increased level of the member of TNF receptor-associated factors (TRAF) family, nuclear factor kappa-B (NF-κB) activator (TANK), in the animal colon activated nuclear factor kappa B subunit 2 (NFκB2), resulting in inflammatory damage. In summary, it was revealed that the low abundances of probiotics could activate the RLR signaling pathway, which could in turn activate its downstream signaling pathway, NF-κB, highlighting a relationship among gut microbes, inflammation, and a longer course of T2DM. KEY POINTS: Hyperglycemia may suppress tryptophanase activity. The low abundance of Bacteroides combined with the decrease of Dopa decarboxylase (DDC) activity may lead to the decrease of the production of tryptophan microbial derivative skatole, and the low abundance of Bacteroides or reduced skatole may further lead to the increase of blood glucose by downregulating the expression of glucagon-like peptide-1 (GLP1). A low abundance of anti-inflammatory bacteria may induce an inflammatory response by triggering the RLR signaling pathway and then activating its downstream NF-κB signaling pathway in prolonged T2DM.PMID:38358546 | DOI:10.1007/s00253-024-13041-5
Comparative metabolome analysis reveals higher potential of haemoperfusion adsorption in providing favourable outcome in ACLF patients
Liver Int. 2024 Feb 15. doi: 10.1111/liv.15858. Online ahead of print.ABSTRACTBACKGROUND AND AIMS: Acute-on-chronic liver failure (ACLF) is a serious illness associated with altered metabolome, organ failure and high mortality. Need for therapies to improve the metabolic milieu and support liver regeneration are urgently needed.METHODS: We investigated the ability of haemoperfusion adsorption (HA) and therapeutic plasma exchange (TPE) in improving the metabolic profile and survival in ACLF patients. Altogether, 45 ACLF patients were randomized into three groups: standard medical therapy (SMT), HA and TPE groups. Plasma metabolomics was performed at baseline, post-HA and TPE sessions on days 7 and 14 using high-resolution mass spectrometry.RESULTS: The baseline clinical/metabolic profiles of study groups were comparable. We identified 477 metabolites. Of these, 256 metabolites were significantly altered post 7 days of HA therapy (p < .05, FC > 1.5) and significantly reduced metabolites linked to purine (12 metabolites), tryptophan (7 metabolites), primary bile acid (6 metabolites) and arginine-proline metabolism (6 metabolites) and microbial metabolism respectively (p < .05). Metabolites linked to taurine-hypotaurine and histidine metabolism were reduced and temporal increase in metabolites linked to phenylalanine and tryptophan metabolism was observed post-TPE therapy (p < .05). Finally, weighted metabolite correlation network analysis (WMCNA) along with inter/intragroup analysis confirmed significant reduction in inflammatory (tryptophan, arachidonic acid and bile acid metabolism) and secondary energy metabolic pathways post-HA therapy compared to TPE and SMT (p < .05). Higher baseline plasma level of 11-deoxycorticosterone (C03205; AUROC > 0.90, HR > 3.2) correlated with severity (r2 > 0.5, p < .05) and mortality (log-rank-p < .05). Notably, 51 of the 64 metabolite signatures (ACLF non-survivor) were reversed post-HA treatment compared to TPE and SMT(p < .05).CONCLUSION: HA more potentially (~80%) improves plasma milieu compared to TPE and SMT. High baseline plasma 11-deoxycorticosterone level correlates with early mortality in ACLF patients.PMID:38358068 | DOI:10.1111/liv.15858
A metabolic signature for NADSYN1-dependent congenital NAD deficiency disorder
J Clin Invest. 2024 Feb 15;134(4):e174824. doi: 10.1172/JCI174824.ABSTRACTNicotinamide adenine dinucleotide (NAD) is essential for embryonic development. To date, biallelic loss-of-function variants in 3 genes encoding nonredundant enzymes of the NAD de novo synthesis pathway - KYNU, HAAO, and NADSYN1 - have been identified in humans with congenital malformations defined as congenital NAD deficiency disorder (CNDD). Here, we identified 13 further individuals with biallelic NADSYN1 variants predicted to be damaging, and phenotypes ranging from multiple severe malformations to the complete absence of malformation. Enzymatic assessment of variant deleteriousness in vitro revealed protein domain-specific perturbation, complemented by protein structure modeling in silico. We reproduced NADSYN1-dependent CNDD in mice and assessed various maternal NAD precursor supplementation strategies to prevent adverse pregnancy outcomes. While for Nadsyn1+/- mothers, any B3 vitamer was suitable to raise NAD, preventing embryo loss and malformation, Nadsyn1-/- mothers required supplementation with amidated NAD precursors (nicotinamide or nicotinamide mononucleotide) bypassing their metabolic block. The circulatory NAD metabolome in mice and humans before and after NAD precursor supplementation revealed a consistent metabolic signature with utility for patient identification. Our data collectively improve clinical diagnostics of NADSYN1-dependent CNDD, provide guidance for the therapeutic prevention of CNDD, and suggest an ongoing need to maintain NAD levels via amidated NAD precursor supplementation after birth.PMID:38357931 | DOI:10.1172/JCI174824
Preventative and therapeutic potential of nutrition for inflammatory bowel diseases: A narrative review
JPEN J Parenter Enteral Nutr. 2024 Feb 15. doi: 10.1002/jpen.2606. Online ahead of print.ABSTRACTDiet strongly shapes the gut microbiome and metabolome, which in turn influence intestinal inflammation in patients with inflammatory bowel disease (IBD). Separate from inflammation and malnutrition, diet's direct interactions with the gastrointestinal system can also provoke or attenuate a host of nonspecific gastrointestinal symptoms. Given these multifaceted effects of diet on inflammation and symptoms, nutrition has been investigated for its potential roles in the prevention and treatment of IBD. This review presents epidemiological, observational cohort, and clinical trial evidence that underlie our current understanding of nutrition for prevention and treatment of IBD.PMID:38357793 | DOI:10.1002/jpen.2606
Genome-scale <em>cis-</em>acting catabolite-responsive element editing confers <em>Bacillus pumilus</em> LG3145 plant-beneficial functions
iScience. 2024 Jan 20;27(2):108983. doi: 10.1016/j.isci.2024.108983. eCollection 2024 Feb 16.ABSTRACTRhizosphere dwelling microorganism such as Bacillus spp. are helpful for crop growth. However, these functions are adversely affected by long-term synthetic fertilizer application. We developed a modified CRISPR/Cas9 system using non-specific single-guide RNAs to disrupt the genome-wide cis-acting catabolite-responsive elements (cres) in a wild-type Bacillus pumilus strain, which conferred dual plant-benefit properties. Most of the mutations occurred around imperfectly matched cis-acting elements (cre-like sites) in genes that are mainly involved in carbon and secondary metabolism pathways. The comparative metabolomics and transcriptome results revealed that carbon is likely transferred to some pigments, such as riboflavin, carotenoid, and lycopene, or non-ribosomal peptides, such as siderophore, surfactin, myxochelin, and bacilysin, through the pentose phosphate and amino acid metabolism pathways. Collectively, these findings suggested that the mutation of global cre-like sequences in the genome might alter carbon flow, thereby allowing beneficial biological interactions between the rhizobacteria and plants.PMID:38357660 | PMC:PMC10864199 | DOI:10.1016/j.isci.2024.108983
Metabolomics profiling reveals low blood tyrosine levels as a metabolic feature of newborns from systemic lupus erythematosus pregnancies
Front Immunol. 2024 Jan 31;15:1335042. doi: 10.3389/fimmu.2024.1335042. eCollection 2024.ABSTRACTINTRODUCTION: Pregnancy outcomes of patients with systemic lupus erythematosus (SLE) have improved over the past four decades, leading to an increased desire for pregnancy among this cohort. However, the offspring of patients with SLE still face the risks of preterm birth, low birth weight, learning disabilities, and neurological disorders, while the causes underlying these risks remain unclear.METHODS: In this study, we analyzed the blood metabolic features of neonates born to 30 SLE patients and 52 healthy control mothers by employing tandem mass spectrometry with the dual aims of identifying the etiology of metabolic features specific to infants born from mothers with SLE and providing new insights into the clinical management of such infants.RESULTS: We found significant differences in serum metabolite levels between infants born from mothers with SLE and those born from mothers without SLE, including 15 metabolites with reduced serum levels. Further analysis revealed a disrupted tyrosine metabolism pathway in the offspring of mothers with SLE.DISCUSSION: By constructing a composite model incorporating various factors, such as serum tyrosine levels, gestational age, and birth weight, we were able to accurately differentiate between newborns of SLE and non-SLE pregnancies. Our data reveal significant differences in serum concentrations of amino acids and acylcarnitines in newborns born to mothers with SLE. We conclude that the reduction of blood L-tyrosine levels is a feature that is characteristic of adverse neurological outcomes in infants born from mothers with SLE.PMID:38357540 | PMC:PMC10864668 | DOI:10.3389/fimmu.2024.1335042