Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

Jujubae Fructus alleviates intestinal injury caused by toxic medicinals in Shizao Decoction based on correlation between intestinal flora and host metabolism

Wed, 07/06/2023 - 12:00
Zhongguo Zhong Yao Za Zhi. 2023 May;48(10):2792-2802. doi: 10.19540/j.cnki.cjcmm.20230111.401.ABSTRACTGenkwa Fols, Kansui Radix, and Euphorbiae Pekinensis Radix in Shizao Decoction(SZD) are toxic to intestinal tract. Jujubae Fructus in this prescription can alleviate the toxicity, but the mechanism is still unclear. Therefore, this study aims to explore the mechanism. To be specific, 40 normal Sprague-Dawley(SD) rats were classified into the normal group, high-dose and low-dose SZD groups, and high-dose and low-dose SZD without Jujubae Fructus(SZD-JF) groups. The SZD groups were given(ig) SZD, while SZD-JF groups received the decoction without Jujubae Fructus. The variation of body weight and spleen index were recorded. The patho-logical changes of intestinal tissue were observed based on hematoxylin and eosin(HE) staining. The content of malondialdehyde(MDA) and glutathione(GSH) and activity of superoxide dismutase(SOD) in intestinal tissue were measured to evaluate the intestinal injury. Fresh feces of rats were collected to detect intestinal flora structure by 16S ribosomal RNA gene(16S rDNA) sequencing technology. The content of fecal short chain fatty acids and fecal metabolites was determined by gas chromatography-mass spectrometer(GC-MS) and liquid chromatography-mass spectrometer ultra-fast liquid chromatography-quadrupole-time-of-flight mass spectrometer(UFLC-Q-TOF-MS), separately. Spearman's correlation analysis was employed to analyze the differential bacteria genera and differential metabolites. RESULTS:: showed that high-dose and low-dose SZD-JF groups had high content of MDA in intestinal tissue, low GSH content and SOD activity, short intestinal villi(P<0.05), low diversity and abundance of intestinal flora, variation in the intestinal flora structure, and low content of short chain fatty acids(P<0.05) compared with the normal group. Compared with high-dose and low-dose SZD-JF groups, high-dose and low-dose SZD groups displayed low content of MDA in intestinal tissue, high GSH content and SOD activity, recovery of the length of intestinal villi, increased abundance and diversity of intestinal flora, alleviation of dysbacteria, and recovery of the content of short chain fatty acids(P<0.05). According to the variation of intestinal flora and fecal metabolites after the addition of Jujubae Fructus, 6 differential bacterial genera(Lactobacillus, Butyricimonas, Clostridia_UCG-014, Prevotella, Escherichia-Shigella, Alistipes),4 differential short chain fatty acids(such as acetic acid, propionic acid, butyric acid, valeric acid) and 18 differential metabolites(such as urolithin A, lithocholic acid, and creatinine) were screened out. Beneficial bacteria such as Lactobacillus were in positive correlation with butyric acid and urolithin A(P<0.05). The pathogenic bacteria such as Escherichia-Shigella were in negative correlation with propionic acid and urolithin A(P<0.05). In summary, SZD-JF caused obvious intestinal injury to normal rats, which could lead to intestinal flora disorder. The addition of Jujubae Fructus can alleviate the disorder and relieve the injury by regulating intestinal flora and the metabolites. This study discusses the effect of Jujubae Fructus in relieving the intestinal injury caused by SZD and the mechanism from the perspective of intestinal flora-host metabolism, which is expected to serve as a reference for clinical application of this prescription.PMID:37282939 | DOI:10.19540/j.cnki.cjcmm.20230111.401

Mechanism of tryptanthrin in treatment of ulcerative colitis in mice based on serum metabolomics

Wed, 07/06/2023 - 12:00
Zhongguo Zhong Yao Za Zhi. 2023 Apr;48(8):2193-2202. doi: 10.19540/j.cnki.cjcmm.20221213.401.ABSTRACTThis study aims to explore the effect of tryptanthrin on potential metabolic biomarkers in the serum of mice with ulcerative colitis(UC) induced by dextran sulfate sodium(DSS) based on liquid chromatography-mass spectrometry(LC-MS) and predict the related metabolic pathways. C57BL/6 mice were randomly assigned into a tryptanthrin group, a sulfasalazine group, a control group, and a model group. The mouse model of UC was established by free drinking of 3% DSS solution for 11 days, and corresponding drugs were adminsitrated at the same time. The signs of mice were observed and the disease activity index(DAI) score was recorded from the first day. Colon tissue samples were collected after the experiment and observed by hematoxylin-eosin(HE) staining. The levels of interleukin-4(IL-4), interleukin-10(IL-10), tumor necrosis factor-α(TNF-α), interleukin-6(IL-6), and interleukin-8(IL-8) in the serum were measured by enzyme linked immunosorbent assay(ELISA). The serum samples were collected from 6 mice in each group for widely targeted metabolomics. The metabolic pathways were enriched by MetaboAnalyst 5.0. The results showed that compared with the model group, tryptanthrin treatment decreased the DAI score(P<0.05), alleviated the injury of the colon tissue and the infiltration of inflammatory cells, lowered the levels of proinflammatory cytokines, and elevated the levels of anti-inflammatory cytokines in the serum. The metabolomic analysis revealed 28 differential metabolites which were involved in 3 metabolic pathways including purine metabolism, arachidonic acid metabolism, and tryptophan metabolism. Tryptanthrin may restore the metabolism of the mice with UC induced by DSS to the normal level by regulating the purine metabolism, arachidonic acid metabolism, and tryptophan metabolism. This study employed metabolomics to analyze the mechanism of tryptanthrin in the treatment of UC, providing an experimental basis for the utilization and development of tryptanthrin.PMID:37282907 | DOI:10.19540/j.cnki.cjcmm.20221213.401

Metabolomics study of Berberidis Radix in intervening ulcerative colitis based on UPLC-Q-TOF-MS

Wed, 07/06/2023 - 12:00
Zhongguo Zhong Yao Za Zhi. 2023 May;48(9):2490-2499. doi: 10.19540/j.cnki.cjcmm.20230130.401.ABSTRACTThe effect of Tujia medicine Berberidis Radix on endogenous metabolites in the serum and feces of mice with ulcerative colitis(UC) induced by dextran sulfate sodium(DSS) was analyzed by metabolomics technology to explore the metabolic pathway and underlying mechanism of Berberidis Radix in the intervention of UC. The UC model was induced in mice by DSS. Body weight, disease activity index(DAI), and colon length were recorded. The levels of tumor necrosis factor-α(TNF-α) and interleukin-10(IL-10) in colon tissues were determined by ELISA. The levels of endogenous metabolites in the serum and feces were detected by ultra-high-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry(UPLC-Q-TOF-MS). Principal component analysis(PCA) and orthogonal partial least squares-discriminant analysis(OPLS-DA) were employed to characterize and screen differential metabolites. The potential metabolic pathways were analyzed by MetaboAnalyst 5.0. The results showed that Berberidis Radix could significantly improve the symptoms of UC mice and increase the level of the anti-inflammatory factor IL-10. A total of 56 and 43 differential metabolites were identified in the serum and feces, respectively, belonging to lipids, amino acids, fatty acids, etc. After the intervention by Berberidis Radix, the metabolic disorder gradually recovered. The involved metabolic pathways included biosynthesis of phenylalanine, tyrosine, and tryptophan, linoleic acid metabolism, phenylalanine metabolism, and glycerophospholipid metabolism. Berberidis Radix can alleviate the symptoms of mice with DSS-induced UC, and the mechanism may be closely related to the re-gulation of lipid metabolism, amino acid metabolism, and energy metabolism.PMID:37282878 | DOI:10.19540/j.cnki.cjcmm.20230130.401

Anemoside B4 regulates fatty acid metabolism reprogramming in mice with colitis-associated cancer

Wed, 07/06/2023 - 12:00
Zhongguo Zhong Yao Za Zhi. 2023 May;48(9):2325-2333. doi: 10.19540/j.cnki.cjcmm.20221122.402.ABSTRACTThe study aimed to investigate the effect of anemoside B4(B4) on fatty acid metabolism in mice with colitis-associated cancer(CAC). The CAC model was established by azoxymethane(AOM)/dextran sodium sulfate(DSS) in mice. Mice were randomly divided into a normal group, a model group, and low-, medium-, and high-dose anemoside B4 groups. After the experiment, the length of the mouse colon and the size of the tumor were measured, and the pathological alterations in the mouse colon were observed using hematoxylin-eosin(HE) staining. The slices of the colon tumor were obtained for spatial metabolome analysis to analyze the distribution of fatty acid metabolism-related substances in the tumor. The mRNA levels of SREBP-1, FAS, ACCα, SCD-1, PPARα, ACOX, UCP-2, and CPT-1 were determined by real-time quantitative PCR(RT-qPCR). The results revealed that the model group showed decreased body weight(P<0.05) and colon length(P<0.001), increased number of tumors, and increased pathological score(P<0.01). Spatial metabolome analysis revealed that the content of fatty acids and their derivatives, carnitine, and phospholipid in the colon tumor was increased. RT-qPCR results indicated that fatty acid de novo synthesis and β-oxidation-related genes, such as SREBP-1, FASN, ACCα, SCD-1, ACOX, UCP-2, and CPT-1 mRNA expression levels increased considerably(P<0.05, P<0.001). After anemoside B4 administration, the colon length increased(P<0.01), and the number of tumors decreased in the high-dose anemoside B4 group(P<0.05). Additionally, spatial metabolome analysis showed that anemoside B4 could decrease the content of fatty acids and their derivatives, carnitine, and phospholipids in colon tumors. Meanwhile, anemoside B4 could also down-regulate the expression of FASN, ACCα, SCD-1, PPARα, ACOX, UCP-2, and CPT-1 in the colon(P<0.05, P<0.01, P<0.001). The findings of this study show that anemoside B4 may inhibit CAC via regulating fatty acid metabolism reprogramming.PMID:37282861 | DOI:10.19540/j.cnki.cjcmm.20221122.402

Transcriptomics, proteomics, metabolomics and network pharmacology reveal molecular mechanisms of multi-targets effects of Shenxianshengmai improving human iPSC-CMs beating

Wed, 07/06/2023 - 12:00
Clin Transl Med. 2023 Jun;13(6):e1302. doi: 10.1002/ctm2.1302.NO ABSTRACTPMID:37282796 | DOI:10.1002/ctm2.1302

Multilayered regulation of developmentally programmed pre-anthesis tip degeneration of the barley inflorescence

Wed, 07/06/2023 - 12:00
Plant Cell. 2023 Jun 7:koad164. doi: 10.1093/plcell/koad164. Online ahead of print.ABSTRACTLeaf and floral tissue degeneration are common features in plants. In cereal crops such as barley (Hordeum vulgare L.), pre-anthesis tip degeneration (PTD) starts with growth arrest of the inflorescence meristem dome, which is followed basipetally by the degeneration of floral primordia and the central axis. Due to its quantitative nature and environmental sensitivity, inflorescence PTD constitutes a complex, multilayered trait affecting final grain number. This trait appears to be highly predictable and heritable under standardized growth conditions, consistent with a developmentally programmed mechanism. To elucidate the molecular underpinnings of inflorescence PTD, we combined metabolomic, transcriptomic, and genetic approaches to show that barley inflorescence PTD is accompanied by sugar depletion, amino acid degradation, and abscisic acid responses involving transcriptional regulators of senescence, defense, and light signaling. Based on transcriptome analyses, we identified GRASSY TILLERS1 (HvGT1), encoding an HD-ZIP transcription factor, as an important modulator of inflorescence PTD. A gene-edited knockout mutant of HvGT1 delayed PTD and increased differentiated apical spikelets and final spikelet number, suggesting a possible strategy to increase grain number in cereals. We propose a molecular framework that leads to barley PTD, the manipulation of which may increase yield potential in barley and other related cereals.PMID:37282730 | DOI:10.1093/plcell/koad164

Maternal dietary deficiencies in folic acid or choline worsen stroke outcomes in adult male and female mouse offspring

Wed, 07/06/2023 - 12:00
Neural Regen Res. 2023 Nov;18(11):2443-2448. doi: 10.4103/1673-5374.371375.ABSTRACTMaternal one-carbon metabolism plays an important role in early life programming. There is a well-established connection between the fetal environment and the health status of the offspring. However, there is a knowledge gap on how maternal nutrition impacts stroke outcomes in offspring. The aim of our study was to investigate the role of maternal dietary deficiencies in folic acid or choline on stroke outcomes in 3-month-old offspring. Adult female mice were fed a folic acid-deficient diet, choline-deficient diet, or control diet 4 weeks before pregnancy. They were continued on diets during pregnancy and lactation. Male and female offspring were weaned onto a control diet and at 2 months of age were subjected to ischemic stroke within the sensorimotor cortex via photothrombotic damage. Mothers maintained on either a folic acid-deficient diet or choline-deficient diet had reduced levels of S-adenosylmethionine in the liver and S-adenosylhomocysteine in the plasma. After ischemic stroke, motor function was impaired in 3-month-old offspring from mothers receiving either a folic acid-deficient diet or choline-deficient diet compared to the animals receiving a control diet. In brain tissue, there was no difference in ischemic damage volume. When protein levels were assessed in ischemic brain tissue, there were lower levels of active caspase-3 and hypoxia-inducible factor 1α in males compared to females and betaine levels were reduced in offspring from the mothers receiving a choline-deficient diet. Our results demonstrate that a deficient maternal diet at critical time points in neurodevelopment results in worse stroke outcomes. This study emphasizes the importance of maternal diet and the impact it can have on offspring health.PMID:37282475 | DOI:10.4103/1673-5374.371375

PKM2 rewires glucose metabolism during radiation therapy to promote an antioxidant response and glioblastoma radioresistance

Tue, 06/06/2023 - 12:00
Neuro Oncol. 2023 Jun 5:noad103. doi: 10.1093/neuonc/noad103. Online ahead of print.ABSTRACTBACKGROUND: Resistance to existing therapies is a significant challenge in improving outcomes for glioblastoma (GBM) patients. Metabolic plasticity has emerged as an important contributor to therapy resistance, including radiation therapy (RT). Here, we investigated how GBM cells reprogram their glucose metabolism in response to RT to promote radiation resistance.METHODS: Effects of radiation on glucose metabolism of human GBM specimens were examined in vitro and in vivo with the use of metabolic and enzymatic assays, targeted metabolomics, and FDG-PET. Radiosensitization potential of interfering with PKM2 activity was tested via gliomasphere formation assays and in vivo human GBM models.RESULTS: Here, we show that RT induces increased glucose utilization by GBM cells, and this is accompanied with translocation of GLUT3 transporters to the cell membrane. Irradiated GBM cells route glucose carbons through the pentose phosphate pathway (PPP) to harness the antioxidant power of the PPP and support survival after radiation. This response is regulated in part by the M2 isoform of pyruvate kinase (PKM2). Activators of PKM2 can antagonize the radiation-induced rewiring of glucose metabolism and radiosensitize GBM cells in vitro and in vivo.CONCLUSIONS: These findings open the possibility that interventions designed to target cancer-specific regulators of metabolic plasticity, such as PKM2, rather than specific metabolic pathways, have the potential to improve the radiotherapeutic outcomes in GBM patients.PMID:37279645 | DOI:10.1093/neuonc/noad103

Mitochondrial reprogramming in peripheral blood mononuclear cells of patients with glycogen storage disease type Ia

Tue, 06/06/2023 - 12:00
Genes Nutr. 2023 Jun 6;18(1):10. doi: 10.1186/s12263-023-00729-y.ABSTRACTBACKGROUND: Glycogen storage disease type Ia (GSDIa) is an inborn metabolic disorder caused by the deficiency of glucose-6-phospatase-α (G6Pase-α) leading to mitochondrial dysfunction. It remains unclear whether mitochondrial dysfunction is present in patients' peripheral blood mononuclear cells (PBMC) and whether dietary treatment can play a role. The aim of this study was to investigate mitochondrial function in PBMC of GSDIa patients.METHODS: Ten GSDIa patients and 10 age-, sex- and fasting-time matched controls were enrolled. Expression of genes involved in mitochondrial function and activity of key fatty acid oxidation (FAO) and Krebs cycle proteins were assessed in PBMC. Targeted metabolomics and assessment of metabolic control markers were also performed.RESULTS: Adult GSDIa patients showed increased CPT1A, SDHB, TFAM, mTOR expression (p < 0.05) and increased VLCAD, CPT2 and citrate synthase activity in PBMC (p < 0.05). VLCAD activity directly correlated with WC (p < 0.01), BMI (p < 0.05), serum malonycarnitine levels (p < 0.05). CPT2 activity directly correlated with BMI (p < 0.05).CONCLUSION: Mitochondrial reprogramming is detectable in PBMC of GSDIa patients. This feature may develop as an adaptation to the liver enzyme defect and may be triggered by dietary (over)treatment in the frame of G6Pase-α deficiency. PBMC can represent an adequate mean to assess (diet-induced) metabolic disturbances in GSDIa.PMID:37280548 | DOI:10.1186/s12263-023-00729-y

The technological landscape and applications of single-cell multi-omics

Tue, 06/06/2023 - 12:00
Nat Rev Mol Cell Biol. 2023 Jun 6. doi: 10.1038/s41580-023-00615-w. Online ahead of print.ABSTRACTSingle-cell multi-omics technologies and methods characterize cell states and activities by simultaneously integrating various single-modality omics methods that profile the transcriptome, genome, epigenome, epitranscriptome, proteome, metabolome and other (emerging) omics. Collectively, these methods are revolutionizing molecular cell biology research. In this comprehensive Review, we discuss established multi-omics technologies as well as cutting-edge and state-of-the-art methods in the field. We discuss how multi-omics technologies have been adapted and improved over the past decade using a framework characterized by optimization of throughput and resolution, modality integration, uniqueness and accuracy, and we also discuss multi-omics limitations. We highlight the impact that single-cell multi-omics technologies have had in cell lineage tracing, tissue-specific and cell-specific atlas production, tumour immunology and cancer genetics, and in mapping of cellular spatial information in fundamental and translational research. Finally, we discuss bioinformatics tools that have been developed to link different omics modalities and elucidate functionality through the use of better mathematical modelling and computational methods.PMID:37280296 | DOI:10.1038/s41580-023-00615-w

Intra-population genomic diversity of the bloom-forming cyanobacterium, Aphanizomenon gracile, at low spatial scale

Tue, 06/06/2023 - 12:00
ISME Commun. 2023 Jun 7;3(1):57. doi: 10.1038/s43705-023-00263-3.ABSTRACTCyanobacteria are oxygenic photosynthetic bacteria that perform a substantial part of the global primary production. Some species are responsible for catastrophic environmental events, called blooms, which have become increasingly common in lakes and freshwater bodies as a consequence of global changes. Genotypic diversity is considered essential for marine cyanobacterial population, allowing it to cope with spatio-temporal environmental variations and to adapt to specific micro-niches in the ecosystem. This aspect is underestimated in the study of bloom development, however, and given little notice in studies of the ecology of harmful cyanobacteria. Here we compared the genomes of four strains of Aphanizomenon gracile, a species of filamentous toxinogenic cyanobacteria (Nostocales) found worldwide in fresh and brackish water. Millimeter-sized fascicles were isolated from a single water sample and have been maintained in culture since 2010. A comparative study revealed extensive heterogeneity in gene contents, despite similar genome size and high similarity indices. These variations were mainly associated with mobile genetic elements and biosynthetic gene clusters. For some of the latter, metabolomic analysis confirmed the production of related secondary metabolites, such as cyanotoxins and carotenoids, which are thought to play a fundamental role in the cyanobacterial fitness. Altogether, these results demonstrated that an A. gracile bloom could be a highly diverse population at low spatial scale and raised questions about potential exchanges of essential metabolites between individuals.PMID:37280295 | DOI:10.1038/s43705-023-00263-3

A novel strategy to characterize the pattern of β-lactam antibiotic-induced drug resistance in Acinetobacter baumannii

Tue, 06/06/2023 - 12:00
Sci Rep. 2023 Jun 6;13(1):9177. doi: 10.1038/s41598-023-36475-9.ABSTRACTCarbapenem-resistant Acinetobacter baumannii (CRAb) is an urgent public health threat, according to the CDC. This pathogen has few treatment options and causes severe nosocomial infections with > 50% fatality rate. Although previous studies have examined the proteome of CRAb, there have been no focused analyses of dynamic changes to β-lactamase expression that may occur due to drug exposure. Here, we present our initial proteomic study of variation in β-lactamase expression that occurs in CRAb with different β-lactam antibiotics. Briefly, drug resistance to Ab (ATCC 19606) was induced by the administration of various classes of β-lactam antibiotics, and the cell-free supernatant was isolated, concentrated, separated by SDS-PAGE, digested with trypsin, and identified by label-free LC-MS-based quantitative proteomics. Thirteen proteins were identified and evaluated using a 1789 sequence database of Ab β-lactamases from UniProt, the majority of which were Class C β-lactamases (≥ 80%). Importantly, different antibiotics, even those of the same class (e.g. penicillin and amoxicillin), induced non-equivalent responses comprising various isoforms of Class C and D serine-β-lactamases, resulting in unique resistomes. These results open the door to a new approach of analyzing and studying the problem of multi-drug resistance in bacteria that rely strongly on β-lactamase expression.PMID:37280269 | DOI:10.1038/s41598-023-36475-9

Supramolecular Photothermal Cascade Nano-Reactor Enables Photothermal Effect, Cascade Reaction, and In Situ Hydrogelation for Biofilm-Associated Tooth-Extraction Wound Healing

Tue, 06/06/2023 - 12:00
Adv Mater. 2023 Jun 6:e2301664. doi: 10.1002/adma.202301664. Online ahead of print.ABSTRACTDue to the emergence of drug resistance in bacteria and biofilm protection, achieving a satisfactory therapeutic effect for bacteria-infected open wounds with conventional measures is problematic. Here, we construct a photothermal cascade nano-reactor (CPNC@GOx-Fe2+ ) through a supramolecular strategy through hydrogen bonding and coordination interactions between chitosan-modified palladium nano-cube (CPNC), glucose oxidase (GOx), and ferrous iron (Fe2+ ). CPNC@GOx-Fe2+ exhibits excellent photothermal effect and powers the GOx-assisted cascade reaction to generate hydroxyl radicals, enabling photothermal and chemodynamic combination therapy against bacteria and biofilms. Further proteomics, metabolomics, and all-atom simulation results indicate that the damage of hydroxyl radical to the function and structure of the cell membrane and the thermal effect enhances the fluidity and inhomogeneity of the bacterial cell membrane, resulting in the synergistic anti-bacterial effect. In the biofilm-associated tooth extraction wound model, hydroxyl radical generated from the cascade reaction process could initiate the radical polymerization process to form a hydrogel in situ for wound protection. In vivo experiments confirm synergistic anti-bacterial and wound protection can accelerate the healing of infected tooth-extraction wounds without affecting the oral commensal microbiota. This study provides a way to propose a multifunctional supramolecular system for the treatment of open wound infection. This article is protected by copyright. All rights reserved.PMID:37279172 | DOI:10.1002/adma.202301664

AADB: a manually collected database for combinations of antibiotics with adjuvants

Tue, 06/06/2023 - 12:00
IEEE/ACM Trans Comput Biol Bioinform. 2023 Jun 6;PP. doi: 10.1109/TCBB.2023.3283221. Online ahead of print.ABSTRACTAntimicrobial resistance is a global public health concern. The lack of innovations in antibiotic development has led to renewed interest in antibiotic adjuvants. However, there is no database to collect antibiotic adjuvants. Herein, we build a comprehensive database named Antibiotic Adjuvant DataBase (AADB) by manually collecting relevant literature. Specifically, AADB includes 3,035 combinations of antibiotics with adjuvants, covering 83 antibiotics, 226 adjuvants, and 325 bacterial strains. AADB provides user-friendly interfaces for searching and downloading. Users can easily obtain these datasets for further analysis. In addition, we also collected related datasets (e.g., chemogenomic and metabolomic data) and proposed a computational strategy to dissect these datasets. As a test case, we identified 10 candidates for minocycline, and 6 of 10 candidates are the known adjuvants that synergize with minocycline to inhibit the growth of E. coli BW25113. We hope that AADB can help users to identify effective antibiotic adjuvants. AADB is freely available at http://www.acdb.plus/AADB.PMID:37279138 | DOI:10.1109/TCBB.2023.3283221

Tissue and plasma free amino acid detection by LC-MS/MS method in high grade glioma patients

Tue, 06/06/2023 - 12:00
J Neurooncol. 2023 Jun 6. doi: 10.1007/s11060-023-04329-z. Online ahead of print.ABSTRACTPURPOSE: The changes in serum amino acid profiles are evaluated in different types of cancers and screening tests were developed for estimating the risk of cancer by rapid analysis of plasma free amino acid (PFAA) levels. There is scarce evidence about the metabolomics analysis of PFAA in malignant gliomas. The aim of the present study was to identify the most promising diagnostic amino acid biomarkers that could be objectively measured for high-grade glioma and to compare their level with the tissue counterpart.METHODS: In this prospective study, we collected serum samples from 22 patients with the pathological diagnosis of high-grade diffuse glioma according to WHO 2016 classification and 22 healthy subjects, and brain tissue from 22 controls. Plasma and tissue amino acid concentrations were analyzed applying liquid chromatography-tandem mass spectrometry (LC-MS/MS) method.RESULTS: Serum alanine, alpha-aminobutyric acid (AABA), lysine (Lys) and cysteine concentrations were significantly higher in high-grade glioma patients despite low levels of alanine and Lys in the tumor tissue. Aspartic acid, histidine and taurine were significantly decreased in both serum and tumors of glioma patients. A positive correlation was detected between tumor volumes and serum levels of latter three amino acids.CONCLUSION: This study demonstrated potential amino acids which may have diagnostic value for high-grade glioma patients by utilizing LC-MS/MS method. Our results are preliminary to compare serum and tissue levels of amino acids in patients with malignant gliomas. The data presented here may provide feature ideas about the metabolic pathways in the pathogenesis of gliomas.PMID:37278937 | DOI:10.1007/s11060-023-04329-z

The relative abundance of fecal bacterial species belonging to the Firmicutes and Bacteroidetes phyla is related to plasma levels of bile acids in young adults

Tue, 06/06/2023 - 12:00
Metabolomics. 2023 Jun 6;19(6):54. doi: 10.1007/s11306-023-02016-8.ABSTRACTBACKGROUND: Gut bacteria play a crucial role in the metabolism of bile acids (BA). Whether an association exists between the fecal microbiota composition and circulating BA levels in humans is poorly understood. Here, we investigated the relationship between fecal microbiota diversity and composition with plasma levels of BA in young adults.METHODS: Fecal microbiota diversity/composition was analyzed with 16S rRNA sequencing in 80 young adults (74% women; 21.9 ± 2.2 years old). Plasma levels of BA were measured using liquid chromatography-tandem mass spectrometry. PERMANOVA and Spearman correlation analyses were used to investigate the association between fecal microbiota parameters and plasma levels of BA.RESULTS: Fecal microbiota beta (P = 0.025) and alpha diversity indexes of evenness (rho = 0.237, P = 0.033), Shannon (rho = 0.313, P = 0.004), and inverse Simpson (rho = 0.283, P = 0.010) were positively associated with plasma levels of the secondary BA glycolithocholic acid (GLCA). The relative abundance of genera belonging to the Firmicutes and Bacteroidetes phyla was positively correlated with plasma levels of GLCA (all rho ≥ 0.225, P ≤ 0.049). However, the relative abundance of species from Firmicutes and Bacteroidetes phyla were negatively correlated with plasma levels of primary and secondary BA (all rho ≤ - 0.220, P ≤ 0.045), except for the relative abundance of Bacteroides vulgatus, Alistipes onderdonkii, and Bacteroides xylanisolvens species (Bacteroidetes phylum) that were positively correlated with the plasma levels of GLCA.CONCLUSIONS: The relative abundance of specific fecal bacteria species is associated with plasma levels of BA in young adults. However, further investigations are required to validate whether the composition of the gut microbiota can regulate the plasma concentrations of BA in humans.PMID:37278866 | DOI:10.1007/s11306-023-02016-8

The mechanisms governing mouse embryonic palate mesenchymal cells' proliferation associated with atRA-induced cleft palate in mice: insights from integrated transcriptomic and metabolomic analyses

Tue, 06/06/2023 - 12:00
Arch Toxicol. 2023 Jun 6. doi: 10.1007/s00204-023-03534-z. Online ahead of print.ABSTRACTWhile exposure to high levels of all-trans retinoic acid (atRA) during pregnancy is known to suppress murine embryonic palate mesenchymal (MEPM) cells proliferation and to result in cleft palate (CP) development, the underlying mechanisms are poorly understood. Accordingly, this study was designed with the goal of clarifying the etiological basis for atRA-induced CP. A murine model of CP was established via the oral administration of atRA to pregnant mice on gestational day (GD) 10.5, after which transcriptomic and metabolomic analyses were performed with the goal of clarifying the critical genes and metabolites associated with CP development through an integrated multi-omics approach. MEPM cells proliferation was altered by atRA exposure as expected, contributing to CP incidence. In total, 110 genes were differentially expressed in the atRA treatment groups, suggesting that atRA may influence key biological processes including stimulus, adhesion, and signaling-related activities. In addition, 133 differentially abundant metabolites were identified including molecules associated with ABC transporters, protein digestion and absorption, mTOR signaling pathway, and the TCA cycle, suggesting a link between these mechanisms and CP. Overall, combined analyses of these transcriptomic and metabolomic results suggested that the MAPK, calcium, PI3K-Akt, Wnt, and mTOR signaling pathways are particularly important pathways enriched in the palatal cleft under conditions of atRA exposure. Together, these integrated transcriptomic and metabolomic approaches provided new evidence with respect to the mechanisms underlying altered MEPM cells proliferation and signal transduction associated with atRA-induced CP, revealing a possible link between oxidative stress and these pathological changes.PMID:37278767 | DOI:10.1007/s00204-023-03534-z

&lt;SPAN style="color: blue;"&gt;Relationship between the concentration of ergothioneine in plasma and the likelihood of developing pre-eclampsia&lt;/SPAN&gt;

Tue, 06/06/2023 - 12:00
Biosci Rep. 2023 Jun 6:BSR20230160. doi: 10.1042/BSR20230160. Online ahead of print.ABSTRACTErgothioneine, an antioxidant nutraceutical mainly at present derived from the dietary intake of mushrooms, has been suggested as a preventive for pre-eclampsia. We analysed early pregnancy samples from a cohort of 432 first time mothers as part of the Screening for Endpoints in Pregnancy (SCOPE, European branch) project to determine the concentration of ergothioneine in their plasma. There was a weak association between the ergothioneine levels and maternal age, but none for BMI. Of these 432 women, 97 went on to develop pre-term (23) or term (74) pre-eclampsia. If a threshold was set at the 90th percentile of the reference range in the control population (≥ 462 ng/mL), only one of these 97 women (1%) developed pre-eclampsia, versus 96/397 (24.2%) whose ergothioneine level was below this threshold. One possible interpretation of these findings, consistent with previous experiments in a reduced uterine perfusion model in rats, is that ergothioneine may indeed prove protective against pre-eclampsia in humans. An intervention study of some kind now seems warranted.PMID:37278746 | DOI:10.1042/BSR20230160

Integrative proteomics and metabolomics analysis of non-observable acute effect level PM<sub>2.5</sub> induced accumulative effects in AC16 cells

Tue, 06/06/2023 - 12:00
J Appl Toxicol. 2023 Jun 5. doi: 10.1002/jat.4500. Online ahead of print.ABSTRACTChronic exposure to very low ambient PM2.5 has been linked to cardiovascular risks in epidemiological observation, which also brought doubts on its safety threshold. In this study, we approached this question by chronic exposure of AC16 to the non-observable acute effect level (NOAEL) PM2.5 5 μg/mL and its positive reference 50 μg/mL, respectively. The doses were respectively defined on the cell viabilities >95% (p = 0.354) and >90% (p = 0.004) when treated acutely (24 h). To mimic the long-term exposure, AC16 was cultured from the 1st to 30th generations and treated with PM2.5 24 h in every three generations. The integration of proteomic and metabolomic analysis was applied, and 212 proteins and 172 metabolites were significantly altered during the experiments. The NOAEL PM2.5 induced both dose- and time-dependent disruption, which showed the dynamic cellular proteomic response and oxidation accumulation, the main metabolomics changes were ribonucleotide, amino acid, and lipid metabolism that have involved in stressed gene expression, and starving for energy metabolism and lipid oxidation. In summary, these pathways interacted with the monotonically increasing oxidative stress and led to the accumulated damage in AC16 and implied that the safe threshold of PM2.5 may be non-existent when a long-term exposure occurred.PMID:37278136 | DOI:10.1002/jat.4500

A bout of endurance and resistance exercise transiently decreases plasma levels of bile acids in young, sedentary adults

Tue, 06/06/2023 - 12:00
Scand J Med Sci Sports. 2023 Jun 6. doi: 10.1111/sms.14405. Online ahead of print.ABSTRACTCirculating bile acids (BA) are signaling molecules that control glucose and lipid metabolism. However, the effects of acute exercise on plasma levels of BA in humans remain poorly understood. Here, we evaluate the effects of a bout of maximal endurance exercise (EE) and resistance exercise (RE) on plasma levels of BA in young, sedentary adults. Concentration of eight plasma BA was measured by liquid chromatography-tandem mass spectrometry before and 3, 30, 60, and 120 min after each exercise bout. Cardiorespiratory fitness (CRF) was assessed in 14 young adults (21.8 ± 2.5 yo, 12 women); muscle strength was assessed in 17 young adults (22.4 ± 2.5 yo, 11 women). EE transiently decreased plasma levels of total, primary, and secondary BA at 3 and 30 min after exercise. RE exerted a prolonged reduction in plasma levels of secondary BA (p < 0.001) that lasted until 120 min. Primary BA levels of cholic acid (CA) and chenodeoxycholic acid (CDCA) were different across individuals with low/high CRF levels after EE (p ≤ 0.044); CA levels were different across individuals with low/high handgrip strength levels. High CRF individuals presented higher levels of CA and CDCA 120 min after exercise vs baseline (+77% and +65%) vs the low CRF group (-5% and -39%). High handgrip strength levels individuals presented higher levels of CA 120 min after exercise versus baseline (+63%) versus the low handgrip strength group (+6%). The study findings indicate that an individual's level of physical fitness can influence how circulating BA respond to both endurance and resistance exercise. Additionally, the study suggests that changes in plasma BA levels after exercising could be related to the control of glucose homeostasis in humans.PMID:37278109 | DOI:10.1111/sms.14405

Pages