Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

Serum lipidomics reveals phosphatidylethanolamine and phosphatidylcholine disorders in patients with myocardial infarction and post-myocardial infarction-heart failure

Sat, 20/05/2023 - 12:00
Lipids Health Dis. 2023 May 20;22(1):66. doi: 10.1186/s12944-023-01832-0.ABSTRACTBACKGROUND: Myocardial infarction (MI) and post-MI-heart failure (pMIHF) are a major cause of death worldwide, however, the underlying mechanisms of pMIHF from MI are not well understood. This study sought to characterize early lipid biomarkers for the development of pMIHF disease.METHODS: Serum samples from 18 MI and 24 pMIHF patients were collected from the Affiliated Hospital of Zunyi Medical University and analyzed using lipidomics with Ultra High Performance Liquid Chromatography and Q-Exactive High Resolution Mass Spectrometer. The serum samples were tested by the official partial least squares discriminant analysis (OPLS-DA) to find the differential expression of metabolites between the two groups. Furthermore, the metabolic biomarkers of pMIHF were screened using the subject operating characteristic (ROC) curve and correlation analysis.RESULTS: The average age of the 18 MI and 24 pMIHF participants was 57.83 ± 9.28 and 64.38 ± 10.89 years, respectively. The B-type natriuretic peptide (BNP) level was 328.5 ± 299.842 and 3535.96 ± 3025 pg/mL, total cholesterol(TC) was 5.59 ± 1.51 and 4.69 ± 1.13 mmol/L, and blood urea nitrogen (BUN) was 5.24 ± 2.15 and 7.20 ± 3.49 mmol/L, respectively. In addition, 88 lipids, including 76 (86.36%) down-regulated lipids, were identified between the patients with MI and pMIHF. ROC analysis showed that phosphatidylethanolamine (PE) (12:1e_22:0) (area under the curve [AUC] = 0.9306) and phosphatidylcholine (PC) (22:4_14:1) (AUC = 0.8380) could be potential biomarkers for the development of pMIHF. Correlation analysis showed that PE (12:1e_22:0) was inversely correlated with BNP and BUN, but positively correlated with TC. In contrast, PC (22:4_14:1) was positively associated with both BNP and BUN, and was negatively associated with TC.CONCLUSIONS: Several lipid biomarkers were identified that could potentially be used to predict and diagnose patients with pMIHF. PE (12:1e_22:0) and PC (22:4_14:1) could sufficiently differentiate between patients with MI and pMIHF.PMID:37210547 | DOI:10.1186/s12944-023-01832-0

Alanine supplementation exploits glutamine dependency induced by SMARCA4/2-loss

Sat, 20/05/2023 - 12:00
Nat Commun. 2023 May 20;14(1):2894. doi: 10.1038/s41467-023-38594-3.ABSTRACTSMARCA4 (BRG1) and SMARCA2 (BRM) are the two paralogous ATPases of the SWI/SNF chromatin remodeling complexes frequently inactivated in cancers. Cells deficient in either ATPase have been shown to depend on the remaining counterpart for survival. Contrary to this paralog synthetic lethality, concomitant loss of SMARCA4/2 occurs in a subset of cancers associated with very poor outcomes. Here, we uncover that SMARCA4/2-loss represses expression of the glucose transporter GLUT1, causing reduced glucose uptake and glycolysis accompanied with increased dependency on oxidative phosphorylation (OXPHOS); adapting to this, these SMARCA4/2-deficient cells rely on elevated SLC38A2, an amino acid transporter, to increase glutamine import for fueling OXPHOS. Consequently, SMARCA4/2-deficient cells and tumors are highly sensitive to inhibitors targeting OXPHOS or glutamine metabolism. Furthermore, supplementation of alanine, also imported by SLC38A2, restricts glutamine uptake through competition and selectively induces death in SMARCA4/2-deficient cancer cells. At a clinically relevant dose, alanine supplementation synergizes with OXPHOS inhibition or conventional chemotherapy eliciting marked antitumor activity in patient-derived xenografts. Our findings reveal multiple druggable vulnerabilities of SMARCA4/2-loss exploiting a GLUT1/SLC38A2-mediated metabolic shift. Particularly, unlike dietary deprivation approaches, alanine supplementation can be readily applied to current regimens for better treatment of these aggressive cancers.PMID:37210563 | DOI:10.1038/s41467-023-38594-3

Serum metabolomic signatures of fatty acid oxidation defects differentiate host-response subphenotypes of acute respiratory distress syndrome

Sat, 20/05/2023 - 12:00
Respir Res. 2023 May 20;24(1):136. doi: 10.1186/s12931-023-02447-w.ABSTRACTBACKGROUND: Fatty acid oxidation (FAO) defects have been implicated in experimental models of acute lung injury and associated with poor outcomes in critical illness. In this study, we examined acylcarnitine profiles and 3-methylhistidine as markers of FAO defects and skeletal muscle catabolism, respectively, in patients with acute respiratory failure. We determined whether these metabolites were associated with host-response ARDS subphenotypes, inflammatory biomarkers, and clinical outcomes in acute respiratory failure.METHODS: In a nested case-control cohort study, we performed targeted analysis of serum metabolites of patients intubated for airway protection (airway controls), Class 1 (hypoinflammatory), and Class 2 (hyperinflammatory) ARDS patients (N = 50 per group) during early initiation of mechanical ventilation. Relative amounts were quantified by liquid chromatography high resolution mass spectrometry using isotope-labeled standards and analyzed with plasma biomarkers and clinical data.RESULTS: Of the acylcarnitines analyzed, octanoylcarnitine levels were twofold increased in Class 2 ARDS relative to Class 1 ARDS or airway controls (P = 0.0004 and < 0.0001, respectively) and was positively associated with Class 2 by quantile g-computation analysis (P = 0.004). In addition, acetylcarnitine and 3-methylhistidine were increased in Class 2 relative to Class 1 and positively correlated with inflammatory biomarkers. In all patients within the study with acute respiratory failure, increased 3-methylhistidine was observed in non-survivors at 30 days (P = 0.0018), while octanoylcarnitine was increased in patients requiring vasopressor support but not in non-survivors (P = 0.0001 and P = 0.28, respectively).CONCLUSIONS: This study demonstrates that increased levels of acetylcarnitine, octanoylcarnitine, and 3-methylhistidine distinguish Class 2 from Class 1 ARDS patients and airway controls. Octanoylcarnitine and 3-methylhistidine were associated with poor outcomes in patients with acute respiratory failure across the cohort independent of etiology or host-response subphenotype. These findings suggest a role for serum metabolites as biomarkers in ARDS and poor outcomes in critically ill patients early in the clinical course.PMID:37210531 | DOI:10.1186/s12931-023-02447-w

Comparison between 5 extractions methods in either plasma or serum to determine the optimal extraction and matrix combination for human metabolomics

Sat, 20/05/2023 - 12:00
Cell Mol Biol Lett. 2023 May 20;28(1):43. doi: 10.1186/s11658-023-00452-x.ABSTRACTBACKGROUND: Although metabolomics continues to expand in many domains of research, methodological issues such as sample type, extraction and analytical protocols have not been standardized, impeding proper comparison between studies and future research.METHODS: In the present study, five solvent-based and solid-phase extraction methods were investigated in both plasma and serum. All these extracts were analyzed using four liquid chromatography coupled with high resolution mass spectrometry (LC-MS) protocols, either in reversed or normal-phase and with both types of ionization. The performances of each method were compared according to putative metabolite coverage, method repeatability and also extraction parameters such as overlap, linearity and matrix effect; in both untargeted (global) and targeted approaches using fifty standard spiked analytes.RESULTS: Our results verified the broad specificity and outstanding accuracy of solvent precipitation, namely methanol and methanol/acetonitrile. We also reveal high orthogonality between methanol-based methods and SPE, providing the possibility of increased metabolome coverage, however we highlight that such potential benefits must be weighed against time constrains, sample consumption and the risk of low reproducibility of SPE method. Furthermore, we highlighted the careful consideration about matrix choice. Plasma showed the most suitable in this metabolomics approach combined with methanol-based methods.CONCLUSIONS: Our work proposes to facilitate rational design of protocols towards standardization of these approaches to improve the impact of metabolomics research.PMID:37210499 | DOI:10.1186/s11658-023-00452-x

Protective effect of L-pipecolic acid on constipation in C57BL/6 mice based on gut microbiome and serum metabolomic

Sat, 20/05/2023 - 12:00
BMC Microbiol. 2023 May 20;23(1):144. doi: 10.1186/s12866-023-02880-3.ABSTRACTBACKGROUND: Functional constipation (FC) in children affects their growth, development and quality of life. L-pipecolic acid (L-PA) was decreased in FC children based on gut microbiome and serum metabolomic. In this study, loperamide-induced constipation in mice was used to evaluate the effects of L-PA on constipated mice.METHOD: 26 FC and 28 healthy children were recruited. Stool samples and serum samples were subjected to 16S rDNA sequencing and ultra-performance liquid chromatography/quadrupole time of flight (UPLC-Q/TOF-MS) approach, respectively. A loperamide-induced mouse constipation model was developed, and all mice were randomly divided into control (Con), loperamide (Lop) and L-PA (Lop + L-PA) treatment groups (6 mice per group). The mice in the Lop + L-PA group were given L-PA (250 mg/kg, once a day) and loperamide; the Lop group was given loperamide for 1 week, and the Con group was given saline. The fecal parameters and intestinal motility of mice in each group were detected. serum 5-HT levels and colon 5-HT expression were detected by ELISA and immunohistochemistry, respectively; qRT-PCR was used to detect the expression of AQP3 and 5-HT4R mRNA in each group.RESULTS: 45 differential metabolites and 18 significantly different microbiota were found in FC children. The α and β diversity of gut microbiota in FC children was significantly reduced. Importantly, serum L-PA was significantly reduced in FC children. The KEGG pathway enrichment were mainly enriched in fatty acid biosynthesis, lysine degradation, and choline metabolism. L-PA was negatively associated with Ochrobactrum, and N6, N6, N6-trimethyl-l-lysine was positively associated with Phascolarcrobacterium. In addition, L-PA improved the fecal water content, intestinal transit rate, and increased the serum 5-HT levels in constipated mice. Moreover, L-PA increased the expression of 5-HT4R, reduced AQP3, and regulated constipation-associated genes.CONCLUSIONS: Gut microbiota and serum metabolites were significantly altered in children with FC. The abundance of Phascolarctobacterium and Ochrobactrum and serum L-PA content were decreased in FC children. L-PA was found to alleviate the fecal water content, increase intestinal transit rate and the first black stool defecation time. L-PA improved constipation by increasing 5-HT and 5-HT4R expression while down-regulating AQP3 expression.PMID:37210496 | DOI:10.1186/s12866-023-02880-3

Network pharmacology and molecular docking study for biological pathway detection of cytotoxicity of the yellow jasmine flowers

Sat, 20/05/2023 - 12:00
BMC Complement Med Ther. 2023 May 20;23(1):164. doi: 10.1186/s12906-023-03987-w.ABSTRACTBACKGROUND: The yellow jasmine flower (Jasminum humile L.) is a fragrant plant belonging to the Oleaceae family with promising phytoconstituents and interesting medicinal uses. The purpose of this study was to characterize the plant metabolome to identify the potential bioactive agents with cytotoxic effects and the underlying mechanism of cytotoxic activity.METHODS: First, HPLC-PDA-MS/MS was used to identify the potential bioactive compounds in the flowers. Furthermore, we assessed the cytotoxic activity of the flower extract against breast cancer (MCF-7) cell line using MTT assay followed by the cell cycle, DNA-flow cytometry, and Annexin V-FITC analyses alongside the effect on reactive oxygen species (ROS). Finally, Network pharmacology followed by a molecular docking study was performed to predict the pathways involved in anti-breast cancer activity.RESULTS: HPLC-PDA-MS/MS tentatively identified 33 compounds, mainly secoiridoids. J. humile extract showed a cytotoxic effect on MCF-7 breast cancer cell line with IC50 value of 9.3 ± 1.2 µg/mL. Studying the apoptotic effect of J. humile extract revealed that it disrupts G2/M phase in the cell cycle, increases the percentage of early and late apoptosis in Annexin V-FTIC, and affects the oxidative stress markers (CAT, SOD, and GSH-R). Network analysis revealed that out of 33 compounds, 24 displayed interaction with 52 human target genes. Relationship between compounds, target genes, and pathways revealed that J. humile exerts its effect on breast cancer by altering, Estrogen signaling pathway, HER2, and EGFR overexpression. To further verify the results of network pharmacology, molecular docking was performed with the five key compounds and the topmost target, EGFR. The results of molecular docking were consistent with those of network pharmacology.CONCLUSION: Our findings suggest that J. humile suppresses breast cancer proliferation and induces cell cycle arrest and apoptosis partly by EGFR signaling pathway, highlighting J. humile as a potential therapeutic candidate against breast cancer.PMID:37210476 | DOI:10.1186/s12906-023-03987-w

Plasma metabolomics reveals major changes in carbohydrate, lipid, and protein metabolism of abruptly weaned beef calves

Sat, 20/05/2023 - 12:00
Sci Rep. 2023 May 20;13(1):8176. doi: 10.1038/s41598-023-35383-2.ABSTRACT1H NMR-based metabolomics was used to study the effect of abrupt weaning on the blood metabolome of beef calves. Twenty Angus calves (258 ± 5 kg BW; 5 to 6 months old) were randomly assigned to a non-weaned (NW) group that remained grazing with their dam or a weaned (W) group that underwent abrupt separation from their dam to a separate paddock on d 0 of the study. Body weight, behaviour, and blood samples for cortisol and metabolomics were measured at d 0, 1, 2, 7, and 14 of the study. On d 1 and 2, W calves spent less time grazing and ruminating, and more time vocalising and walking, had a greater concentration of cortisol, NEFA, 3-hydroxybutyrate, betaine, creatine, and phenylalanine, and lesser abundance of tyrosine (P < 0.05) compared to NW calves. Compared to NW calves at d 14, W calves had greater (P < 0.01) relative abundance of acetate, glucose, allantoin, creatinine, creatine, creatine phosphate, glutamate, 3-hydroxybutyrate, 3-hydroxyisobutyrate, and seven AA (alanine, glutamate, leucine, lysine, phenylalanine, threonine and valine) but lesser (P < 0.05) relative abundance of low density and very low-density lipids, and unsaturated lipids. Both PCA and OPLS-DA showed no clustering or discrimination between groups at d 0 and increasing divergence to d 14. Blood metabolomics is a useful tool to quantify the acute effects of stress in calves during the first 2 days after abrupt weaning, and longer-term changes in carbohydrate, lipid and protein metabolism due to nutritional changes from cessation of milk intake and greater reliance on forage intake.PMID:37210395 | DOI:10.1038/s41598-023-35383-2

Exhaled volatile fatty acids, ruminal methane emission and their diurnal patterns in lactating dairy cows

Sat, 20/05/2023 - 12:00
J Dairy Sci. 2023 May 18:S0022-0302(23)00259-X. doi: 10.3168/jds.2023-23301. Online ahead of print.ABSTRACTTo date, the commonly used methods to assess rumen fermentation are invasive. Exhaled breath contains hundreds of volatile organic compounds (VOC) that can reflect animal physiological processes. In the present study, for the first time, we aimed to use a non-invasive metabolomics approach based on high-resolution mass spectrometry to identify rumen fermentation parameters in dairy cows. Enteric methane (CH4) production from 7 lactating cows was measured 8 times over 2 consecutive days using the GreenFeed system. Simultaneously, exhalome samples were collected in Tedlar gas sampling bags and analyzed offline using a secondary electrospray ionization high-resolution mass spectrometry (SESI-HRMS) system. In total, 1,298 features were detected, among them targeted exhaled volatile fatty acids (eVFA, i.e., acetate, propionate, butyrate), which were putatively annotated using their exact mass-to-charge ratio. The intensity of eVFA, in particular acetate, increased immediately after feeding and followed a similar pattern observed for ruminal CH4 production. The average total eVFA concentration was 35.4 count-per-second (CPS), and among the individual eVFA, acetate had the greatest concentration, averaging 21.0 CPS followed by propionate at 11.5 CPS, and butyrate at 2.82 CPS. Further, exhaled acetate was on average the most abundant of the individual eVFA at around 59.3%, followed by 32.5 and 7.9% of the total eVFA for propionate and butyrate, respectively. This corresponds well with the previously reported proportions of these VFA in the rumen. The diurnal patterns of ruminal CH4 emission and individual eVFA were characterized using a linear mixed model with cosine function fit. The model characterized similar diurnal patterns for eVFA and ruminal CH4 and H2 production. Regarding the diurnal patterns of eVFA, the phase (time of peak) of butyrate occurred first, followed by that of acetate and propionate. Importantly, the phase of total eVFA occurred around 1 h before that of ruminal CH4. This corresponds well with existing data on the relationship between rumen VFA production and CH4 formation. Results from the present study revealed a great potential to assess the rumen fermentation of dairy cows using exhaled metabolites as a non-invasive proxy for rumen VFA. Further validation, with comparisons to rumen fluid, and establishment of the proposed method are required.PMID:37210352 | DOI:10.3168/jds.2023-23301

The markers and risk stratification model of intracranial aneurysm instability in a large Chinese cohort

Sat, 20/05/2023 - 12:00
Sci Bull (Beijing). 2023 May 10:S2095-9273(23)00308-0. doi: 10.1016/j.scib.2023.05.001. Online ahead of print.ABSTRACTIntracranial aneurysm is the leading cause of nontraumatic subarachnoid hemorrhage. Evaluating the unstable (rupture and growth) risk of aneurysms is helpful to guild decision-making for unruptured intracranial aneurysms (UIA). This study aimed to develop a model for risk stratification of UIA instability. The UIA patients from two prospective, longitudinal multicenter Chinese cohorts recruited from January 2017 to January 2022 were set as the derivation cohort and validation cohort. The primary endpoint was UIA instability, comprising aneurysm rupture, growth, or morphology change, during a 2-year follow-up. Intracranial aneurysm samples and corresponding serums from 20 patients were also collected. Metabolomics and cytokine profiling analysis were performed on the derivation cohort (758 single-UIA patients harboring 676 stable UIAs and 82 unstable UIAs). Oleic acid (OA), arachidonic acid (AA), interleukin 1β (IL-1β), and tumor necrosis factor-α (TNF-α) were significantly dysregulated between stable and unstable UIAs. OA and AA exhibited the same dysregulated trends in serums and aneurysm tissues. The feature selection process demonstrated size ratio, irregular shape, OA, AA, IL-1β, and TNF-α as features of UIA instability. A machine-learning stratification model (instability classifier) was constructed based on radiological features and biomarkers, with high accuracy to evaluate UIA instability risk (area under curve (AUC), 0.94). Within the validation cohort (492 single-UIA patients harboring 414 stable UIAs and 78 unstable UIAs), the instability classifier performed well to evaluate the risk of UIA instability (AUC, 0.89). Supplementation of OA and pharmacological inhibition of IL-1β and TNF-α could prevent intracranial aneurysms from rupturing in rat models. This study revealed the markers of UIA instability and provided a risk stratification model, which may guide treatment decision-making for UIAs.PMID:37210332 | DOI:10.1016/j.scib.2023.05.001

Impact of environmental characteristics on children's gut microbiota - A pilot study in assessing the role of indoor microbiome and metabolites

Sat, 20/05/2023 - 12:00
Environ Res. 2023 May 18:116114. doi: 10.1016/j.envres.2023.116114. Online ahead of print.ABSTRACTBACKGROUND: A diverse and balanced human gut microbiota is crucial for maintaining normal human physiological functions. However, the impact of indoor microbiome and metabolites on gut microbiota is not well understood.METHODS: A self-administered questionnaire was used to collect information on more than 40 personal and environmental characteristics and dietary habits from 56 children in Shanghai, China. Shotgun metagenomics and untargeted liquid chromatography-mass spectrometry (LC-MS) were used to characterize the indoor microbiome and metabolomic/chemical exposure in children's living rooms. PacBio full-length 16 S rRNA sequencing was used to characterize children's gut microbiota. Associations between environmental characteristics and gut microbiota diversity/composition were assessed using PERMANOVA and regression.RESULTS: In total, 6247 and 318 indoor and gut microbial species and 1442 indoor metabolites were characterized. Age of children (R2 = 0.033, p = 0.008), age start kindergarten (R2 = 0.029, p = 0.03), living adjacent to heavy traffic (R2 = 0.031, p = 0.01) and drinking soft drinks (R2 = 0.028, p = 0.04) significantly impacted overall gut microbial composition, consistent with previous studies. Having pets/plants and frequent vegetable intake were positively associated with gut microbiota diversity and the Gut Microbiome Health Index (GMHI), while frequent juice and fries intake decreased gut microbiota diversity (p < 0.05). The abundance of indoor Clostridia and Bacilli was positively associated with gut microbial diversity and GMHI (p < 0.01). Total indoor indole derivatives and 6 indole metabolites (L-tryptophan, indole, 3-methylindole, indole-3-acetate, 5-hydroxy-L-tryptophan and indolelactic acid, p < 0.05) were positively associated with the abundance of total protective gut bacteria, suggesting a potential role in promoting gut health. Neural network analysis revealed that these indole derivatives were derived from indoor microorganisms.CONCLUSIONS: The study is the first to report associations between indoor microbiome/metabolites and gut microbiota, highlighting the potential role of indoor microbiome in shaping human gut microbiota.PMID:37209986 | DOI:10.1016/j.envres.2023.116114

Investigation of the metabolomic crosstalk between liver sinusoidal endothelial cells and hepatocytes exposed to paracetamol using organ-on-chip technology

Sat, 20/05/2023 - 12:00
Toxicology. 2023 May 18:153550. doi: 10.1016/j.tox.2023.153550. Online ahead of print.ABSTRACTOrgan-on-chip technology is a promising in vitro approach recapitulating human physiology for the study of responses to drug exposure. Organ-on-chip cell cultures have paved new grounds for testing and understanding metabolic dose-responses when evaluating pharmaceutical and environmental toxicity. Here, we present a metabolomic investigation of a coculture of liver sinusoidal endothelial cells (LSECs, SK-HEP-1) with hepatocytes (HepG2/C3a) using advanced organ-on-chip technology. To reproduce the physiology of the sinusoidal barrier, LSECs were separated from hepatocytes by a membrane (culture insert integrated organ-on-chip platform). The tissues were exposed to acetaminophen (APAP), an analgesic drug widely used as a xenobiotic model in liver and HepG2/C3a studies. The differences between the SK-HEP-1, HepG2/C3a monocultures and SK-HEP-1/HepG2/C3a cocultures, treated or not with APAP, were identified from metabolomic profiles using supervised multivariate analysis. The pathway enrichment coupled with metabolite analysis of the corresponding metabolic fingerprints contributed to extracting the specificity of each type of culture and condition. In addition, we analysed the responses to APAP treatment by mapping the signatures with significant modulation of the biological processes of the SK-HEP-1 APAP, HepG2/C3a APAP and SK-HEP-1/HepG2/C3a APAP conditions. Furthermore, our model shows how the presence of the LSECs barrier and APAP first pass can modify the metabolism of HepG2/C3a. Altogether, this study demonstrates the potential of a "metabolomic-on-chip" strategy for pharmaco-metabolomic applications predicting individual response to drugs.PMID:37209942 | DOI:10.1016/j.tox.2023.153550

Omics data for sampling thermodynamically feasible kinetic models

Sat, 20/05/2023 - 12:00
Metab Eng. 2023 May 18:S1096-7176(23)00068-X. doi: 10.1016/j.ymben.2023.05.002. Online ahead of print.ABSTRACTKinetic models are key to understanding and predicting the dynamic behaviour of metabolic systems. Traditional models require kinetic parameters which are not always available and are often estimated in vitro. Ensemble models overcome this challenge by sampling thermodynamically feasible models around a measured reference point. However, it is unclear if the convenient distributions used to generate the ensemble produce a natural distribution of model parameters and hence if the model predictions are reasonable. In this paper, we produced a detailed kinetic model for the central carbon metabolism of Escherichia coli. The model consists of 82 reactions (including 13 reactions with allosteric regulation) and 79 metabolites. To sample the model, we used metabolomic and fluxomic data from a single steady-state time point for E.coli K-12 MG1655 growing on glucose minimal M9 medium (average sampling time for 1000 models: 11.21 ± 0.14 min). Afterwards, in order to examine whether our sampled models are biologically sound, we calculated the Km, Vmax and kcat for the reactions and compared them to previously published values. Finally, we used metabolic control analysis to identify enzymes with high control over the fluxes in the central carbon metabolism. Our analyses demonstrate that our platform samples thermodynamically feasible kinetic models, which are in agreement with previously published experimental results and can be used to investigate metabolic control patterns within cells. This renders it a valuable tool for the study of cellular metabolism and the design of metabolic pathways.PMID:37209863 | DOI:10.1016/j.ymben.2023.05.002

New insights into microbial and metabolite signatures of coral bleaching

Sat, 20/05/2023 - 12:00
Sci Total Environ. 2023 May 18:164258. doi: 10.1016/j.scitotenv.2023.164258. Online ahead of print.ABSTRACTCoral bleaching and coral reef degradation have been severely increased due to anthropogenic impacts, especially global warming. Studies have indicated the key role of host-microbiome symbiotic relationships for the coral holobiont health and development, although not all of the mechanisms of interaction have been fully explored. Here, we explore bacterial and metabolic shifts within coral holobionts under thermal stress, and its correlation with bleaching. Our results showed obvious signs of coral bleaching after 13 days of heating treatment, and a more-complex co-occurrence network was observed in the coral-associated bacterial community of the heating group. The bacterial community and metabolites changed significantly under thermal stress, and genera Flavobacterium, Shewanella and Psychrobacter increased from <0.1 % to 43.58 %, 6.95 % and 6.35 %, respectively. Bacteria potentially associated with stress tolerance, biofilm formation and mobile elements decreased from 80.93 %, 62.15 % and 49.27 % to 56.28 %, 28.41 % and 18.76 %, respectively. The differentially expressed metabolites of corals after heating treatment, such as Cer(d18:0/17:0), 1-Methyladenosine, Trp-P-1 and Marasmal, were associated with cell cycle regulation and antioxidant properties. Our results can contribute to our current understanding on the correlations between coral-symbiotic bacteria, metabolites and the coral physiological response to thermal stress. These new insights into the metabolomics of heat-stressed coral holobionts may expand our knowledge on the mechanisms underlying bleaching.PMID:37209734 | DOI:10.1016/j.scitotenv.2023.164258

Gut microbiome and serum metabolome analyses identify biomarkers associated with sexual maturity in quails

Sat, 20/05/2023 - 12:00
Poult Sci. 2023 Apr 28;102(7):102762. doi: 10.1016/j.psj.2023.102762. Online ahead of print.ABSTRACTIncreasing evidence indicates that the gut microbiome plays an important role in host aging and sexual maturity. However, the gut microbial taxa associated with sexual maturity in quails are unknown. This study used shotgun metagenomic sequencing to identify bacterial taxa associated with sexual maturity in d 20 and d 70 quails. We found that 17 bacterial species and 67 metagenome-assembled genomes (e.g., Bacteroides spp. and Enterococcus spp.) significantly differed between the d 20 and d 70 groups, including 5 bacterial species (e.g., Enterococcus faecalis) enriched in the d 20 group and 12 bacterial species (e.g., Christensenella massiliensis, Clostridium sp. CAG:217, and Bacteroides neonati) which had high abundances in the d 70 group. The bacterial species enriched in d 20 or d 70 were key biomarkers distinguishing sexual maturity and significantly correlated with the shifts in the functional capacities of the gut microbiome. Untargeted serum metabolome analysis revealed that 5 metabolites (e.g., nicotinamide riboside) were enriched in the d 20 group, and 6 metabolites (e.g., D-ribose, stevioside, and barbituric acid) were enriched in the d 70 group. Furthermore, metabolites with high abundances in the d 20 group were significantly enriched for the KEGG pathways of arginine biosynthesis, nicotinate and nicotinamide metabolism, and lysine degradation. However, glutathione metabolism and valine, leucine and isoleucine biosynthesis were enriched in high-abundance metabolites from the d 70 group. These results provide important insights into the effects of gut microbiome and host metabolism on quail sexual maturity.PMID:37209654 | DOI:10.1016/j.psj.2023.102762

Transcriptomics and metabolomics revealed the pulmonary protective mechanism of Xixin-Ganjiang Herb Pair for warming the lungs to dissolve phlegm in COPD rats

Sat, 20/05/2023 - 12:00
J Chromatogr B Analyt Technol Biomed Life Sci. 2023 Mar 15;1224:123665. doi: 10.1016/j.jchromb.2023.123665. Online ahead of print.ABSTRACTXixin-Ganjiang Herb Pair (XGHP), a classic combination treatment to warm the lungs and dissolve phlegm, is widely used in the treatment of various pulmonary diseases. Chronic obstructive pulmonary disease (COPD) refers to a group of chronic obstructive airway diseases that can seriously harm human health. However, the effective components, targets, and pathways that underlie XGHP in the treatment of COPD remain unclear. Therefore, this study initially identified the effective components of XGHP through the use of UPLC-MS/MS and pharmacologic methods of traditional Chinese medicine. Secondly, transcriptomic analysis of the lung tissues of rats revealed the pharmacodynamic transcripts of each group, and metabolomics analysis revealed the differential metabolites associated with XGHP treatment. Finally, molecular docking of effective components with transcriptome genes was performed and western blotting was performed in order to determine the expression of related proteins in rat lung tissue. Overall, 30 effective components of XGHP were identified, including L-asarinin, 6-gingerol, sesamin, kaempferol, and quercetin. Transcriptomic studies demonstrated that expression of 386 genes recovered after XGHP treatment, and that they were mainly enriched in the oxidative phosphorylation and AMPK signaling pathways. According to the metabolomics studies, expression of eight metabolites differed between the COPD and the XGHP groups. These metabolites were mainly involved the biosynthesis of unsaturated fatty acids. Finally, the transcriptomic and metabolomics data were integrated. FASN and SCD in AMPK signaling pathway were directly linked to certain metabolites, including linoleic acid, palmitic acid, and oleic acid. These results indicate that XGHP can inhibit pAMPK expression and negatively regulate FASN and SCD expression during treatment of COPD in order to enhance the biosynthesis of unsaturated fatty acids and maintain energy homeostasis.PMID:37209557 | DOI:10.1016/j.jchromb.2023.123665

Untargeted metabolomics-based approach using UHPLC-HRMS to authenticate carrots (Daucus carota L.) based on geographical origin and production mode

Sat, 20/05/2023 - 12:00
Food Chem. 2023 May 5;423:136273. doi: 10.1016/j.foodchem.2023.136273. Online ahead of print.ABSTRACTCarrots produced in different agricultural regions with organic or conventional mode were analyzed by untargeted UHPLC-HRMS using reversed-phase and HILIC modes. Data were first treated separately, and further combined to possibly improve results. An in-house data processing workflow was applied to identify relevant features after peak detection. Based on these features, discrimination models were built using chemometrics. A tentative annotation of chemical markers was performed using online databases and UHPLC-HRMS/MS analyses. An independent set of samples was analyzed to assess the discrimination potential of these markers. Carrots produced in the New Aquitaine region could be successfully discriminated from carrots originating from the Normandy region by an OLPS-DA model. Arginine and 6-methoxymellein could be identified as potential markers with the C18-silica column. Additional markers (N-acetylputrescine, l-carnitine) could be identified thanks to the polar column. Discrimination based on production mode was more challenging: some trend was observed but model metrics remained unsatisfactory.PMID:37209545 | DOI:10.1016/j.foodchem.2023.136273

Study on material basis and anti-hypertensive metabolomics of different extraction methods of the Uncaria rhynchophylla Scrophularia Formula

Sat, 20/05/2023 - 12:00
J Pharm Biomed Anal. 2023 May 18;233:115464. doi: 10.1016/j.jpba.2023.115464. Online ahead of print.ABSTRACTHypertension is one of the most challenging public health problems worldwide. Previous studies suggested that the Uncaria rhynchophylla Scrophularia Formula (URSF), a medical institution preparation of the affiliated Hospital of Shandong University of Traditional Chinese Medicine, is effective for essential hypertension. However, the efficacy of URSF for hypertension remains unclear. We aimed to clarify the anti-hypertensive mechanism of the URSF. The material basis of URSF was identified by the LC-MS. We also evaluated the antihypertensive efficacy of URSF on SHR rats by body weight, blood pressure and biochemical indicators. The LC-MS spectrometry-based serum non-targeted metabolomics was used to seek potential biomarkers and relevant pathways for URSF in the treatment of SHR rats. 56 biomarkers were metabolically disturbed in SHR rats in the model group compared with the control group. After URSF intervention, 13 biomarkers showed a recovery in the optimal method compared with the other three groups. We identified 3 metabolic pathways in which URSF is involved: the arachidonic acid metabolism pathway, the niacin and nicotinamide metabolism pathway, and the purine metabolism pathway. These discoveries offer a basis for the study of URSF for the treatment of hypertension.PMID:37209496 | DOI:10.1016/j.jpba.2023.115464

Metabolomics reveals the role of Lactobacillus plantarum SHY130 in hepatic metabolic regulation in a mouse model of type 2 diabetes

Sat, 20/05/2023 - 12:00
J Sci Food Agric. 2023 May 20. doi: 10.1002/jsfa.12716. Online ahead of print.ABSTRACTBACKGROUND: Among type 2 diabetes (T2D) patients, the incidence rate of liver metabolic disorders is much higher than that in healthy subjects. It was observed in our previous research that diabetic symptoms were improved by Lactobacillus plantarum SHY130 (LPSHY130) isolated from yak yogurt in a murine model of type 2 diabetes (T2D). This study sought to investigate the LPSHY130-mediated hepatic metabolic regulation in a murine model of T2D.RESULTS: Treatment with LPSHY130 improved liver function and pathological damage in diabetic mice. Untargeted metabolome analysis revealed the T2D-induced changes in 11 metabolites were regulated after LPSHY130 treatment, mainly involving purine metabolism, amino acid metabolism, choline metabolism, and pantothenate and CoA biosynthesis pathways. In addition, correlation analysis indicated that hepatic metabolic changes can be adjusted by the intestinal microbiota.CONCLUSION: Overall, this study suggests that treatment with LPSHY130 relieves liver injury and regulates liver metabolism in a murine model of T2D, thus providing a theoretical basis for the use of probiotics as dietary supplements to regulate hepatic metabolic disorders associated with T2D. This article is protected by copyright. All rights reserved.PMID:37209399 | DOI:10.1002/jsfa.12716

Autoantibodies Neutralizing Type I IFNs in the Bronchoalveolar Lavage of at Least 10% of Patients During Life-Threatening COVID-19 Pneumonia

Sat, 20/05/2023 - 12:00
J Clin Immunol. 2023 May 20. doi: 10.1007/s10875-023-01512-9. Online ahead of print.ABSTRACTAutoantibodies (auto-Abs) neutralizing type I interferons (IFNs) are found in the blood of at least 15% of unvaccinated patients with life-threatening COVID-19 pneumonia. We report here the presence of auto-Abs neutralizing type I IFNs in the bronchoalveolar lavage (BAL) of 54 of the 415 unvaccinated patients (13%) with life-threatening COVID-19 pneumonia tested. The 54 individuals with neutralizing auto-Abs in the BAL included 45 (11%) with auto-Abs against IFN-α2, 37 (9%) with auto-Abs against IFN-ω, 54 (13%) with auto-Abs against IFN-α2 and/or ω, and five (1%) with auto-Abs against IFN-β, including three (0.7%) with auto-Abs neutralizing IFN-α2, IFN-ω, and IFN-β, and two (0.5%) with auto-Abs neutralizing IFN-α2 and IFN-β. Auto-Abs against IFN-α2 also neutralize the other 12 subtypes of IFN-α. Paired plasma samples were available for 95 patients. All seven patients with paired samples who had detectable auto-Abs in BAL also had detectable auto-Abs in plasma, and one patient had auto-Abs detectable only in blood. Auto-Abs neutralizing type I IFNs are, therefore, present in the alveolar space of at least 10% of patients with life-threatening COVID-19 pneumonia. These findings suggest that these auto-Abs impair type I IFN immunity in the lower respiratory tract, thereby contributing to hypoxemic COVID-19 pneumonia.PMID:37209324 | DOI:10.1007/s10875-023-01512-9

Optimization of the first extraction protocol for metabolomic studies of Brucella abortus

Sat, 20/05/2023 - 12:00
Braz J Microbiol. 2023 May 20. doi: 10.1007/s42770-023-01001-6. Online ahead of print.ABSTRACTBrucellosis is a zoonosis prevalent worldwide and very recurrent in less developed or developing regions. This zoonosis affects livestock, generating high financial losses to producers, in addition to transmitting diseases to humans through meat consumption or handling contaminated products and animals. In this study, five extraction methods for Brucella abortus intracellular metabolites, using different solvent compositions and cell membrane disruption procedures, were evaluated. Derivatized extracts were analyzed by GC-HRMS. Raw data were processed in XCMS Online and the results were evaluated through multivariate statistical analysis using the MetaboAnalyst platform. The identification of the extracted metabolites was performed by the Unknowns software using the NIST 17.L library. The extraction performance of each method was evaluated for thirteen representative metabolites, comprising four different chemical classes. Most of these compounds are reported in the cell membrane composition of Gram-negative bacteria. The method based on extraction with methanol/chloroform/water presented the best performance in the evaluation of the extracted compounds and in the statistical results. Therefore, this method was selected for extracting intracellular metabolites from cultures of Brucella abortus for untargeted metabolomics analysis.PMID:37209273 | DOI:10.1007/s42770-023-01001-6

Pages