Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

Artemisia argyi H.Lév. & Vaniot essential oil induces ferroptosis in pancreatic cancer cells via up-regulation of TFR1 and depletion of γ- glutamyl cycle

Thu, 11/05/2023 - 12:00
Fitoterapia. 2023 May 9:105522. doi: 10.1016/j.fitote.2023.105522. Online ahead of print.ABSTRACTArtemisia argyi H.Lév. & Vaniot, a traditional Chinese medicine with a history spanning over two millennia, has been extensively used in folk medicine to treat dysmenorrhea, uterine bleeding and inflammation. Recent studies have demonstrated that the essential oil extracted from Artemisia argyi H.Lév. & Vaniot, known as AAEO, exhibits significant anti-tumor properties against liver and lung cancers. There is a scarcity of research on the potential impact of AAEO on pancreatic cancer (PC) cells. In this study, UPLC-MS/MS-based metabolomics method was established to evaluate the effect of AAEO on the proliferation of PC cells. The differential compounds included 5-oxoproline, glutamate, γ-glutamylcysteine, glutathione, arachidonic acid, adrenal acid and linoleic acid were detected by metabolomics, enriching in the γ-glutamyl cycle and polyunsaturated fatty acid metabolism, which were closely related to ferroptosis. Meanwhile, AAEO dramatically increased the levels of intracellular iron ion via up-regulation of TFR1, augmented reactive oxygen species and malondialdehyde in a dose-dependent manner by down-regulation of γ-glutamyl cycle through decreasing expressions of SLC7A11. Additionally, β-caryophyllene oxide, one of the main components of AAEO, could covalently bind to Cys in SW1990 cells to form a conjugate Cpo-Cys, resulting in the inhibition of glutathione synthesis. Importantly, the ferroptosis inhibitor deferoxamine significantly blocked the inhibitory effect of AAEO on SW1990 cells. Meanwhile, β-caryophyllene oxide, dihydro-β-ionone and α-bisabolol had strong binding force with GPX4, SLC7A11 and TFR1, respectively. These findings showed that AAEO induced ferroptosis via regulation of γ-glutamyl cycle by SLC7A11 and iron disorders by TFR1. Our study discovered AAEO as a potential therapeutic approach to induce ferroptosis to prevent or treat PC.PMID:37169131 | DOI:10.1016/j.fitote.2023.105522

The role of clinical glyco(proteo)mics in precision medicine

Thu, 11/05/2023 - 12:00
Mol Cell Proteomics. 2023 May 9:100565. doi: 10.1016/j.mcpro.2023.100565. Online ahead of print.ABSTRACTGlycoproteomics reveals site-specific O- and N-glycosylation that may influence protein properties including binding, activity and half-life. The increasingly mature toolbox with glycomic- and glycoproteomic strategies is applied for the development of biopharmaceuticals and discovery and clinical evaluation of glycobiomarkers in various disease fields. Notwithstanding the contributions of glycoscience in identifying new drug targets, the current report is focused on the biomarker modality that is of interest for diagnostic and monitoring purposes. To this end it is noted that the identification of biomarkers has received more attention than corresponding quantification. Most analytical methods are very efficient in detecting large numbers of analytes but developments to accurately quantify these have so far been limited. In this perspective a parallel is made with earlier proposed tiers for protein quantification using mass spectrometry. Moreover, the foreseen reporting of multimarker readouts is discussed to describe an individual's health or disease state and their role in clinical decision-making. The potential of longitudinal sampling and monitoring of glycomic features for diagnosis and treatment monitoring is emphasized. Finally, different strategies that address quantification of a multimarker panel will be discussed.PMID:37169080 | DOI:10.1016/j.mcpro.2023.100565

Therapeutic effects and mechanism of Atractylodis rhizoma in acute lung injury: Investigation based on an Integrated approach

Thu, 11/05/2023 - 12:00
Front Pharmacol. 2023 Apr 24;14:1181951. doi: 10.3389/fphar.2023.1181951. eCollection 2023.ABSTRACTAcute lung injury (ALI) is characterized by an excessive inflammatory response. Atractylodes lancea (Thunb.) DC. is a traditional chinese medicine with good anti-inflammatory activity that is commonly used clinically for the treatment of lung diseases in China; however, its mechanism of against ALI is unclear. We clarified the therapeutic effects of ethanol extract of Atractylodis rhizoma (EEAR) on lipopolysaccharide (LPS)-induced ALI by evaluation of hematoxylin-eosin (HE) stained sections, the lung wet/dry (W/D) ratio, and levels of inflammatory factors as indicators. We then characterized the chemical composition of EEAR by ultra-performance liquid chromatography and mass spectrometry (UPLC-MS) and screened the components and targets by network pharmacology to clarify the signaling pathways involved in the therapeutic effects of EEAR on ALI, and the results were validated by molecular docking simulation and Western blot (WB) analysis. Finally, we examined the metabolites in rat lung tissues by gas chromatography and mass spectrometry (GC-MS). The results showed that EEAR significantly reduced the W/D ratio, and tumor necrosis factor-α (TNF-α), interleukin-1 beta (IL-1β), interleukin-6 (IL-6) levels in the lungs of ALI model rats. Nineteen components of EEAR were identified and shown to act synergetically by regulating shared pathways such as the mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K)-protein kinase B (AKT) signaling pathways. Ferulic acid, 4-methylumbelliferone, acetylatractylodinol, atractylenolide I, and atractylenolide III were predicted to bind well to PI3K, AKT and MAPK1, respectively, with binding energies < -5 kcal/mol, although only atractylenolide II bound with high affinity to MAPK1. EEAR significantly inhibited the phosphorylation of PI3K, AKT, p38, and ERK1/2, thus reducing protein expression. EEAR significantly modulated the expression of metabolites such as D-Galactose, D-Glucose, serine and D-Mannose. These metabolites were mainly concentrated in the galactose and amino acid metabolism pathways. In conclusion, EEAR alleviates ALI by inhibiting activation of the PI3K-AKT and MAPK signaling pathways and regulating galactose metabolism, providing a new direction for the development of drugs to treat ALI.PMID:37168993 | PMC:PMC10164760 | DOI:10.3389/fphar.2023.1181951

Alterations of endogenous pain-modulatory system of the cerebral cortex in the neuropathic pain

Thu, 11/05/2023 - 12:00
iScience. 2023 Apr 13;26(5):106668. doi: 10.1016/j.isci.2023.106668. eCollection 2023 May 19.ABSTRACTNeuropathic pain (NeP) remains a significant clinical challenge owing to insufficient awareness of its pathological mechanisms. We elucidated the aberrant metabolism of the cerebral cortex in NeP induced by the chronic constriction injury (CCI) using metabolomics and proteomics analyses. After CCI surgery, the values of MWT and TWL markedly reduced and maintained at a low level. CCI induced the significant dysregulation of 57 metabolites and 31 proteins in the cerebral cortex. Integrative analyses showed that the differentially expressed metabolites and proteins were primarily involved in alanine, aspartate and glutamate metabolism, GABAergic synapse, and retrograde endocannabinoid signaling. Targeted metabolomics and western blot analysis confirmed the alterations of some key metabolites and proteins in endogenous pain-modulatory system. In conclusion, our study revealed the alterations of endocannabinoids system and purinergic system in the CCI group, and provided a novel perspective on the roles of endogenous pain-modulatory system in the pathological mechanisms of NeP.PMID:37168579 | PMC:PMC10165265 | DOI:10.1016/j.isci.2023.106668

Dynamic cellular changes in acute kidney injury caused by different ischemia time

Thu, 11/05/2023 - 12:00
iScience. 2023 Apr 11;26(5):106646. doi: 10.1016/j.isci.2023.106646. eCollection 2023 May 19.ABSTRACTIschemia reperfusion injury (IRI), often related to surgical procedures, is one of the important causes of acute kidney injury (AKI). To decipher the dynamic process of AKI caused by IRI (with prolonged ischemia phase), we performed single-cell RNA sequencing (scRNA-seq) of clinically relevant IRI murine model with different ischemic intervals. We discovered that Slc5a2hi proximal tubular cells were susceptible to AKI and highly expressed neutral amino acid transporter gene Slc6a19, which was dramatically decreased over the time course. With the usage of mass spectrometry-based metabolomic analysis, we detected that the level of neutral amino acid isoleucine dropped off in AKI mouse plasma metabolites. And the reduction of plasma isoleucine was also verified in patients with cardiac surgery-associated acute kidney injury (CSA-AKI). The findings advanced the understanding of dynamic process of AKI and introduced reduction of isoleucine as a potential biomarker for CSA-AKI.PMID:37168554 | PMC:PMC10165188 | DOI:10.1016/j.isci.2023.106646

Stratification of ovarian cancer borderline from high-grade serous carcinoma patients by quantitative serum NMR spectroscopy of metabolites, lipoproteins, and inflammatory markers

Thu, 11/05/2023 - 12:00
Front Mol Biosci. 2023 Apr 19;10:1158330. doi: 10.3389/fmolb.2023.1158330. eCollection 2023.ABSTRACTBackground: Traditional diagnosis is based on histology or clinical-stage classification which provides no information on tumor metabolism and inflammation, which, however, are both hallmarks of cancer and are directly associated with prognosis and severity. This project was an exploratory approach to profile metabolites, lipoproteins, and inflammation parameters (glycoprotein A and glycoprotein B) of borderline ovarian tumor (BOT) and high-grade serous ovarian cancer (HGSOC) for identifying additional useful serum markers and stratifying ovarian cancer patients in the future. Methods: This project included 201 serum samples of which 50 were received from BOT and 151 from high-grade serous ovarian cancer (HGSOC), respectively. All the serum samples were validated and phenotyped by 1H-NMR-based metabolomics with in vitro diagnostics research (IVDr) standard operating procedures generating quantitative data on 38 metabolites, 112 lipoprotein parameters, and 5 inflammation markers. Uni- and multivariate statistics were applied to identify NMR-based alterations. Moreover, biomarker analysis was carried out with all NMR parameters and CA-125. Results: Ketone bodies, glutamate, 2-hydroxybutyrate, glucose, glycerol, and phenylalanine levels were significantly higher in HGSOC, while the same tumors showed significantly lower levels of alanine and histidine. Furthermore, alanine and histidine and formic acid decreased and increased, respectively, over the clinical stages. Inflammatory markers glycoproteins A and B (GlycA and GlycB) increased significantly over the clinical stages and were higher in HGSOC, alongside significant changes in lipoproteins. Lipoprotein subfractions of VLDLs, IDLs, and LDLs increased significantly in HGSOC and over the clinical stages, while total plasma apolipoprotein A1 and A2 and a subfraction of HDLs decreased significantly over the clinical stages. Additionally, LDL triglycerides significantly increased in advanced ovarian cancer. In biomarker analysis, glycoprotein inflammation biomarkers behaved in the same way as the established clinical biomarker CA-125. Moreover, CA-125/GlycA, CA-125/GlycB, and CA-125/Glycs are potential biomarkers for diagnosis, prognosis, and treatment response of epithelial ovarian cancer (EOC). Last, the quantitative inflammatory parameters clearly displayed unique patterns of metabolites, lipoproteins, and CA-125 in BOT and HGSOC with clinical stages I-IV. Conclusion: 1H-NMR-based metabolomics with commercial IVDr assays could detect and identify altered metabolites and lipoproteins relevant to EOC development and progression and show that inflammation (based on glycoproteins) increased along with malignancy. As inflammation is a hallmark of cancer, glycoproteins, thereof, are promising future serum biomarkers for the diagnosis, prognosis, and treatment response of EOC. This was supported by the definition and stratification of three different inflammatory serum classes which characterize specific alternations in metabolites, lipoproteins, and CA-125, implicating that future diagnosis could be refined not only by diagnosed histology and/or clinical stages but also by glycoprotein classes.PMID:37168255 | PMC:PMC10166069 | DOI:10.3389/fmolb.2023.1158330

Metabolomic profiling and its association with the bio-efficacy of <em>Aspergillus niger</em> strain against <em>Fusarium</em> wilt of guava

Thu, 11/05/2023 - 12:00
Front Microbiol. 2023 Apr 24;14:1142144. doi: 10.3389/fmicb.2023.1142144. eCollection 2023.ABSTRACTBio-control agents are the best alternative to chemicals for the successful management of plant diseases. The fungus Aspergillus niger is known to produce diverse metabolites with antifungal activity, attracting researchers to exploit it as a bio-control agent for plant disease control. In the present study, 11 A. niger strains were isolated and screened for their antagonism against the guava wilt pathogen under in vitro and in planta conditions. Strains were identified morphologically and molecularly by sequencing the internal transcribed spacer (ITS), β-tubulin, and calmodulin genes. The strains were evaluated through dual culture, volatile, and non-volatile methods under an in vitro study. AN-11, AN-6, and AN-2 inhibited the test pathogen Fusarium oxysporum f. sp. psidii (FOP) at 67.16%, 64.01%, and 60.48%, respectively. An in planta study was conducted under greenhouse conditions with 6 months old air-layered guava plants (var. Allahabad Safeda) by pre- and post-inoculation of FOP. The AN-11 strain was found to be effective under both pre- and post-inoculation trials. Furthermore, gas chromatography-mass spectrometry (GC-MS) analysis was carried out to characterize the volatile compounds of the most potential strain, A. niger. The hexane soluble fraction showed the appearance of characteristic peaks of hexadecenoic acid methyl ester (4.41%), 10-octadecanoic acid methyl ester (3.79%), dodecane (3.21%), undecane (3.19%), gibepyrone A (0.15%), 3-methylundecane (0.36%), and citroflex A (0.38%). The ethyl acetate fraction of the bio-control fungi revealed the occurrence of major antifungal compounds, such as acetic acid ethyl ester (17.32%), benzopyron-4-ol (12.17%), 1,2,6-hexanetriol (7.16%), 2-propenoic acid ethanediyl ester (2.95%), 1-(3-ethyloxiranyl)-ethenone (0.98%), 6-acetyl-8-methoxy dimethyl chromene (0.96%), 4-hexyl-2,5-dihydro dioxo furan acetic acid (0.19%), and octadecanoic acid (1.11%). Furthermore, bio-control abilities could be due to hyper-parasitism, the production of secondary metabolites, and competition for sites and nutrients. Indeed, the results will enrich the existing knowledge of metabolomic information and support perspectives on the bio-control mechanism of A. niger.PMID:37168123 | PMC:PMC10165087 | DOI:10.3389/fmicb.2023.1142144

Metabolomic signatures associated with weight gain and psychosis spectrum diagnoses: A pilot study

Thu, 11/05/2023 - 12:00
Front Psychiatry. 2023 Apr 24;14:1169787. doi: 10.3389/fpsyt.2023.1169787. eCollection 2023.ABSTRACTPsychosis spectrum disorders (PSDs), as well as other severe mental illnesses where psychotic features may be present, like bipolar disorder, are associated with intrinsic metabolic abnormalities. Antipsychotics (APs), the cornerstone of treatment for PSDs, incur additional metabolic adversities including weight gain. Currently, major gaps exist in understanding psychosis illness biomarkers, as well as risk factors and mechanisms for AP-induced weight gain. Metabolomic profiles may identify biomarkers and provide insight into the mechanistic underpinnings of PSDs and antipsychotic-induced weight gain. In this 12-week prospective naturalistic study, we compared serum metabolomic profiles of 25 cases within approximately 1 week of starting an AP to 6 healthy controls at baseline to examine biomarkers of intrinsic metabolic dysfunction in PSDs. In 17 of the case participants with baseline and week 12 samples, we then examined changes in metabolomic profiles over 12 weeks of AP treatment to identify metabolites that may associate with AP-induced weight gain. In the cohort with pre-post data (n = 17), we also compared baseline metabolomes of participants who gained ≥5% baseline body weight to those who gained <5% to identify potential biomarkers of antipsychotic-induced weight gain. Minimally AP-exposed cases were distinguished from controls by six fatty acids when compared at baseline, namely reduced levels of palmitoleic acid, lauric acid, and heneicosylic acid, as well as elevated levels of behenic acid, arachidonic acid, and myristoleic acid (FDR < 0.05). Baseline levels of the fatty acid adrenic acid was increased in 11 individuals who experienced a clinically significant body weight gain (≥5%) following 12 weeks of AP exposure as compared to those who did not (FDR = 0.0408). Fatty acids may represent illness biomarkers of PSDs and early predictors of AP-induced weight gain. The findings may hold important clinical implications for early identification of individuals who could benefit from prevention strategies to reduce future cardiometabolic risk, and may lead to novel, targeted treatments to counteract metabolic dysfunction in PSDs.PMID:37168086 | PMC:PMC10164938 | DOI:10.3389/fpsyt.2023.1169787

Pulsatilla chinensis saponins ameliorated murine depression by inhibiting intestinal inflammation mediated IDO1 overexpression and rebalancing tryptophan metabolism

Thu, 11/05/2023 - 12:00
Phytomedicine. 2023 May 1;116:154852. doi: 10.1016/j.phymed.2023.154852. Online ahead of print.ABSTRACTBACKGROUND: Current antidepressant therapy remains unsatisfactory due to the complex pathogenesis. Emerging evidence suggested that depression is associated with inflammatory bowel disease (IBD), intestinal inflammation is an increasingly accepted factor that influences depression, but the mechanism is unclear.PURPOSE: In the current study, we determined whether Pulsatilla chinensis saponins (PRS), a phytomedicine from Pulsatilla chinensis (Bunge) Regel with excellent anti-IBD effect, could improve the depression. Furthermore, we investigated the mechanisms to explore the relationship between IBD and depression and provide new source for the urgent development of antidepressants from phytomedicine.METHODS: The antidepressant activity of PRS was accessed by behavioral test and multichannel technology in depression mice induced by Chronic Unpredictable Mild Stress (CUMS). 16S rDNA-based microbiota and RNA-seq in colon was used to explore potential intestinal metabolism affected by PRS. To illustrate the underlying mechanisms of anti-depression effect of PRS, targeted metabolomics, ELISA assay, immunofluorescence staining, Western Blot, and qPCR were carried out.RESULTS: The results clarified that CUMS induced depression with tryptophan (Trp) metabolism and intestinal inflammation. PRS effectively suppressed the depression and acted as a regulator of Trp/kynurenine (Kyn) metabolic and intestinal inflammation confirmed by analysis of microflora and colon RNA. Meanwhile PRS reduced interferon gamma (IFN-γ), inhibited JAK1-STAT1 phosphorylation, decreased IDO1 levels to protect against the overactivity of Trp/kyn path, suggesting that IFN-γ activated IDO1 probably a significant target for PRS to exert anti-depression effects. To further confirm the mechanism, this research expressed that PRS improved IDO1 activity and depressive behavior in mice with IFN-γ-induced depression. Furthermore, the therapeutic effect of 1-methyl-tryptophan (1-MT) well known as an IDO1 inhibitor in depression and clinically used anti-UC drug Mesalazine (MS) was demonstrated to confirm the potential mechanism.CONCLUSION: The study is the first to reveal the antidepressant effect of PRS and further demonstrate its potential therapeutic targets. In addition, it also clarifies that the Trp/kyn pathway is the crosstalk between IBD and depression and provides new choice for depression treatment. And it also provides an important basis for the follow-up development and exploration of anti-intestinal antidepressants.PMID:37167824 | DOI:10.1016/j.phymed.2023.154852

Wen-Shen-Jian-Pi-Hua-Tan decoction protects against early obesity-related glomerulopathy by improving renal bile acid composition and suppressing lipogenesis, inflammation, and fibrosis

Thu, 11/05/2023 - 12:00
Phytomedicine. 2023 May 4;116:154861. doi: 10.1016/j.phymed.2023.154861. Online ahead of print.ABSTRACTBACKGROUND: Obesity is an independent predictor of chronic kidney disease (CKD) development and may directly lead to kidney lesions such as obesity-related glomerulopathy (ORG) which might play a vital pathogenic role in obese patients with CKD. Wen-Shen-Jian-Pi-Hua-Tan decoction (WSHT) has been clinically used for the treatment of obesity and obesity-related metabolic diseases for years. However, the renoprotective effects and potential mechanism of action of WSHT against ORG remain unknown.PURPOSE: This study aimed to explore the potential effect of WSHT on ORG and reveal its mechanisms in high-fat diet (HFD)-induced obese rats.METHODS: An animal model of early stage ORG was established using HFD-induced obese rats. After treatment with WSHT for 6 weeks, an integrated metabolomics and molecular biology strategy was utilized to illustrate the effects and mechanism of WSHT on ORG. First, UPLC-ESI-MS/MS-based targeted metabolomics was used to analyze renal bile acid (BA) levels. Biochemical, histological, and immunofluorescence assays; electron microscopy; and western blotting were performed to evaluate the efficacy of WSHT against ORG and its underlying mechanisms in vivo.RESULTS: Our results showed that an HFD led to hyperlipidemia, proteinuria, renal lipid deposition, effacement of podocyte foot processes, and increased expression of proinflammatory factors and profibrotic growth factors in ORG rats. In addition, an HFD decreased the levels of renal BAs such as cholic acid, chenodeoxycholic acid, and lithocholic acid. After 6 weeks of treatment, WSHT markedly attenuated dyslipidemia and reduced body, kidney and epididymal fat weights in ORG rats. WSHT also significantly increased BA levels, suggesting that it altered BA composition; the effects of BAs are closely associated with farnesoid X receptor (FXR) activation. WSHT alleviated fat accumulation, podocyte loss and proteinuria, and reduced the expression of proinflammatory cytokines and profibrotic growth factors in the kidneys of ORG rats. Finally, WSHT remarkably upregulated the renal expression of FXR and salt-induced kinase 1 and blocked the renal expression of sterol regulatory element-binding protein-1c and its target genes.CONCLUSION: WSHT attenuated early renal lesions in ORG rats by improving renal BA composition and suppressing lipogenesis, inflammation and fibrosis. This study develops a new way to alleviate obesity-induced renal damages.PMID:37167823 | DOI:10.1016/j.phymed.2023.154861

Amburana cearensis seed extract stimulates astrocyte glutamate homeostatic mechanisms in hippocampal brain slices and protects oligodendrocytes against ischemia

Thu, 11/05/2023 - 12:00
BMC Complement Med Ther. 2023 May 11;23(1):154. doi: 10.1186/s12906-023-03959-0.ABSTRACTBACKGROUND: Stroke is a leading cause of death and disability worldwide. A major factor in brain damage following ischemia is excitotoxicity caused by elevated levels of the neurotransmitter glutamate. In the brain, glutamate homeostasis is a primary function of astrocytes. Amburana cearensis has long been used in folk medicine and seed extract obtained with dichloromethane (EDAC) have previously been shown to exhibit cytoprotective activity in vitro. The aim of the present study was to analyse the activity of EDAC in hippocampal brain slices.METHODS: We prepared a dichloromethane extract (EDAC) from A. cearensis seeds and characterized the chemical constituents by 1H and 13C-NMR. Hippocampal slices from P6-8 or P90 Wistar rats were used for cell viability assay or glutamate uptake test. Hippocampal slices from P10-12 transgenic mice SOX10-EGFP and GFAP-EGFP and immunofluorescence for GS, GLAST and GLT1 were used to study oligodendrocytes and astrocytes.RESULTS: Astrocytes play a critical role in glutamate homeostasis and we provide immunohistochemical evidence that in excitotoxicity EDAC increased expression of glutamate transporters and glutamine synthetase, which is essential for detoxifying glutamate. Next, we directly examined astrocytes using transgenic mice in which glial fibrillary acidic protein (GFAP) drives expression of enhanced green fluorescence protein (EGFP) and show that glutamate excitotoxicity caused a decrease in GFAP-EGFP and that EDAC protected against this loss. This was examined further in the oxygen-glucose deprivation (OGD) model of ischemia, where EDAC caused an increase in astrocytic process branching, resulting in an increase in GFAP-EGFP. Using SOX10-EGFP reporter mice, we show that the acute response of oligodendrocytes to OGD in hippocampal slices is a marked loss of their processes and EDAC protected oligodendrocytes against this damage.CONCLUSION: This study provides evidence that EDAC is cytoprotective against ischemia and glutamate excitotoxicity by modulating astrocyte responses and stimulating their glutamate homeostatic mechanisms.PMID:37170258 | DOI:10.1186/s12906-023-03959-0

Bushen-Yizhi formula ameliorates mitochondrial dysfunction and oxidative stress via AMPK/Sirt1 signaling pathway in D-gal-induced aging rats

Thu, 11/05/2023 - 12:00
Chin Med. 2023 May 11;18(1):53. doi: 10.1186/s13020-023-00755-3.ABSTRACTBACKGROUND: As a major risk factor for neurodegenerative diseases, aging has become a heavy health care burden worldwide. Age-related decline in mitochondrial function and oxidative stress is strongly associated with neurodegeneration. The previous study demonstrated that Bushen-Yizhi formula (BSYZ), a traditional Chinese medicine formula, is effective in reducing neurodegeneration.METHODS: This study is the first to investigate the effect of BSYZ on D-gal-induced learning memory in rats. Secondly, the potential metabolic mechanism of BSYZ was explored by 1H-NMR metabolomics analysis. Then based on the comparison of differential metabolites implied that BSYZ ameliorated mitochondrial dysfunction through choline metabolic pathway in D-gal-treated rats. Finally, pharmacological validation was conducted to explore the effects of BSYZ on D-gal-induced oxidative stress, neuroinflammation, and neuronal apoptosis.RESULTS: Our data showed that BSYZ increased aspartate and betaine levels, while decreasing choline levels. Furthermore, BSYZ also increased the proteins level of CHDH and BHMT to regulate choline metabolic pathway. Meanwhile, BSYZ alleviated mitochondrial damage and oxidative stress, including enhanced ATP production and the ratio of NAD+/NADH, reduced the level of MDA, enhanced GSH and SOD activity, upregulated the expressions of p-AMPK, SIRT1 proteins. In addition, BSYZ downregulated the levels of inflammatory cytokines, such as TNF-α, IL-1β and IL-6, as well as suppressed Bcl-2 proteins family dependent apoptosis.CONCLUSION: BSYZ treatment effectively rescues neurobehavioral impairment by improving mitochondrial dysfunction, oxidative stress, neuroinflammation and neuroapoptosis via AMPK/SIRT1 pathway in D-gal-induced aging.PMID:37170155 | DOI:10.1186/s13020-023-00755-3

Multiomics strategies for decoding seed dormancy breakdown in Paris polyphylla

Thu, 11/05/2023 - 12:00
BMC Plant Biol. 2023 May 11;23(1):247. doi: 10.1186/s12870-023-04262-3.ABSTRACTBACKGROUND: The disruption of seed dormancy is a complicated process and is controlled by various factors. Among these factors, membrane lipids and plant hormones are two of the most important ones. Paris polyphylla is an important Chinese herbaceous species, and the dormancy trait of its seed limits the cultivation of this herb.RESULTS: In this study, we investigate the global metabolic and transcriptomic profiles of Paris polyphylla during seed dormancy breaking. Widely targeted metabolomics revealed that lysophospholipids (lysoPLs) increased during P. polyphylla seed dormancy breaking. The expression of phospholipase A2 (PLA2), genes correlated to the production of lysoPLs, up-regulated significantly during this process. Abscisic acid (ABA) decreased dramatically during seed dormancy breaking of P. polyphylla. Changes of different GAs varied during P. polyphylla seeds dormancy breaking, 13-OH GAs, such as GA53 were not detected, and GA3 decreased significantly, whereas 13-H GAs, such as GA15, GA24 and GA4 increased. The expression of CYP707As was not synchronous with the change of ABA content, and the expression of most UGTs, GA20ox and GA3ox up-regulated during seed dormancy breaking.CONCLUSIONS: These results suggest that PLA2 mediated production of lysoPLs may correlate to the seed dormancy breaking of P. polyphylla. The conversion of ABA to ABA-GE catalysed by UGTs may be the main cause of ABA degradation. Through inhibition the expression of genes related to the synthesis of 13-OH GAs and up-regulation genes related to the synthesis of 13-H GAs, P. polyphylla synthesized more bioactive 13-H GA (GA4) to break its seed dormancy.PMID:37170087 | DOI:10.1186/s12870-023-04262-3

Gut microbiome combined with metabolomics reveals biomarkers and pathways in central precocious puberty

Thu, 11/05/2023 - 12:00
J Transl Med. 2023 May 11;21(1):316. doi: 10.1186/s12967-023-04169-5.ABSTRACTBACKGROUND: Central precocious puberty (CPP) is a common disease in prepubertal children and results mainly from disorders in the endocrine system. Emerging evidence has highlighted the involvement of gut microbes in hormone secretion, but their roles and downstream metabolic pathways in CPP remain unknown.METHODS: To explore the gut microbes and metabolism alterations in CPP, we performed the 16S rRNA sequencing and untargeted metabolomics profiling for 91 CPP patients and 59 healthy controls. Bioinformatics and statistical analyses, including the comparisons of alpha and beta diversity, abundances of microbes, were undertaken on the 16S rRNA gene sequences and metabolism profiling. Classifiers were constructed based on the microorganisms and metabolites. Functional and pathway enrichment analyses were performed for identification of the altered microorganisms and metabolites in CPP.RESULTS: We integrated a multi-omics approach to investigate the alterations and functional characteristics of gut microbes and metabolites in CPP patients. The fecal microbiome profiles and fecal and blood metabolite profiles for 91 CPP patients and 59 healthy controls were generated and compared. We identified the altered microorganisms and metabolites during the development of CPP and constructed a machine learning-based classifier for distinguishing CPP. The Area Under Curves (AUCs) of the classifies were ranged from 0.832 to 1.00. In addition, functional analysis of the gut microbiota revealed that the nitric oxide synthesis was closely associated with the progression of CPP. Finally, we investigated the metabolic potential of gut microbes and discovered the genus Streptococcus could be a candidate molecular marker for CPP treatment.CONCLUSIONS: Overall, we utilized multi-omics data from microorganisms and metabolites to build a classifier for discriminating CPP patients from the common populations and recognized potential therapeutic molecular markers for CPP through comprehensive analyses.PMID:37170084 | DOI:10.1186/s12967-023-04169-5

Sodium butyrate induces ferroptosis in endometrial cancer cells via the RBM3/SLC7A11 axis

Thu, 11/05/2023 - 12:00
Apoptosis. 2023 May 11. doi: 10.1007/s10495-023-01850-4. Online ahead of print.ABSTRACTFerroptosis is a form of programmed cell death with important biological functions in the progression of various diseases, and targeting ferroptosis is a new tumor treatment strategy. Studies have shown that sodium butyrate plays a tumor-suppressing role in the progression of various tumors, however, the mechanism of NaBu in endometrial cancer is unclear. Cell viability, clone formation, proliferation, migration, invasion abilities and cell cycle distribution were assessed by CCK8 assay, Clone formation ability assay, EdU incorporation, Transwell chambers and flow cytometry. The level of ferroptosis was assayed by the levels of ROS and lipid peroxidation, the ratio of GSH/GSSG and the morphology of mitochondria. Molecular mechanisms were explored by metabolome, transcriptome, RNA-pulldown and mass spectrometry. The in-vivo mechanism was validated using subcutaneous xenograft model. In this study, NaBu was identified to inhibit the progression of endometrial cancer in vitro and in vivo. Mechanistically, RBM3 has a binding relationship with SLC7A11 mRNA. NaBu indirectly downregulates the expression of SLC7A11 by promoting the expression of RBM3, thereby promoting ferroptosis in endometrial cancer cells. In conclusion, Sodium butyrate can promote the expression of RBM3 and indirectly downregulate the expression of SLC7A11 to stimulate ferroptosis, which may be a promising cancer treatment strategy.PMID:37170022 | DOI:10.1007/s10495-023-01850-4

Maternal separation leads to dynamic changes of visceral hypersensitivity and fecal metabolomics from childhood to adulthood

Thu, 11/05/2023 - 12:00
Sci Rep. 2023 May 11;13(1):7670. doi: 10.1038/s41598-023-34792-7.ABSTRACTWe assessed dynamic changes in visceral hypersensitivity and fecal metabolomics through a mouse model of irritable bowel syndrome (IBS) from childhood to adulthood. A mouse model of IBS was constructed with maternal separation (MS) in early life. Male mice aged 25, 40, and 70 days were used. Visceral sensitivity was assessed by recording the reaction between the abdominal withdrawal reflex and colorectal distension. Metabolomics was identified and quantified by liquid chromatography-tandem mass spectrometry. The visceral sensitivity of the MS group was significantly higher than that of the non-separation (NS) group in the three age groups. The top four fecal differential metabolites in the different age groups were lipids, lipid molecules, organic heterocyclic compounds, organic acids and derivatives, and benzenoids. Five identical differential metabolites were detected in the feces and ileal contents of the MS and NS groups at different ages, namely, benzamide, taurine, acetyl-L-carnitine, indole, and ethylbenzene. Taurine and hypotaurine metabolism were the most relevant pathways at P25, whereas histidine metabolism was the most relevant pathway at P40 and P70. Visceral hypersensitivity in the MS group lasted from childhood to adulthood. The different metabolites and metabolic pathways detected in MS groups of different ages provide a theoretical basis for IBS pathogenesis.PMID:37169847 | DOI:10.1038/s41598-023-34792-7

Multi-omics resources for targeted agronomic improvement of pigmented rice

Thu, 11/05/2023 - 12:00
Nat Food. 2023 May 11. doi: 10.1038/s43016-023-00742-9. Online ahead of print.ABSTRACTPigmented rice (Oryza sativa L.) is a rich source of nutrients, but pigmented lines typically have long life cycles and limited productivity. Here we generated genome assemblies of 5 pigmented rice varieties and evaluated the genetic variation among 51 pigmented rice varieties by resequencing an additional 46 varieties. Phylogenetic analyses divided the pigmented varieties into four varietal groups: Geng-japonica, Xian-indica, circum-Aus and circum-Basmati. Metabolomics and ionomics profiling revealed that black rice varieties are rich in aromatic secondary metabolites. We established a regeneration and transformation system and used CRISPR-Cas9 to knock out three flowering time repressors (Hd2, Hd4 and Hd5) in the black Indonesian rice Cempo Ireng, resulting in an early maturing variety with shorter stature. Our study thus provides a multi-omics resource for understanding and improving Asian pigmented rice.PMID:37169820 | DOI:10.1038/s43016-023-00742-9

Comprehensive insights from composition to functional microbe-based biodiversity of the infant human gut microbiota

Thu, 11/05/2023 - 12:00
NPJ Biofilms Microbiomes. 2023 May 11;9(1):25. doi: 10.1038/s41522-023-00392-6.ABSTRACTDuring infancy, gut microbiota development is a crucial process involved in the establishment of microbe-host interactions which may persist throughout adulthood, and which are believed to influence host health. To fully understand the complexities of such interactions, it is essential to assess gut microbiota diversity of newborns and its associated microbial dynamics and relationships pertaining to health and disease. To explore microbial biodiversity during the first 3 years of human life, 10,935 shotgun metagenomic datasets were taxonomically and functionally classified. Microbial species distribution between infants revealed the presence of eight major Infant Community State Types (ICSTs), being dominated by 17 bacterial taxa, whose distribution was shown to correspond to the geographical origin and infant health status. In total, 2390 chromosomal sequences of the predominant taxa were reconstructed from metagenomic data and used in combination with 44,987 publicly available genomes to trace the distribution of microbial Population Subspecies (PS) within the different infant groups, revealing patterns of multistrain coexistence among ICSTs. Finally, implementation of a metagenomic- and metatranscriptomic-based metabolic profiling highlighted different enzymatic expression patterns of the gut microbiota that allowed us to acquire insights into mechanistic aspects of health-gut microbiota interplay in newborns. Comparison between metagenomic and metatranscriptomic data highlights how a complex environment like the human gut must be investigated by employing both sequencing methodologies and possibly supplemented with metabolomics approaches. While metagenomic analyses are very useful for microbial classification aimed at unveiling key players driving microbiota balances, using these data to explain functionalities of the microbiota is not always warranted.PMID:37169786 | DOI:10.1038/s41522-023-00392-6

Transcriptome and Metabolomics Integrated Analysis Reveals <em>MdMYB94</em> Associated with Esters Biosynthesis in Apple (<em>Malus</em> × <em>domestica</em>)

Thu, 11/05/2023 - 12:00
J Agric Food Chem. 2023 May 11. doi: 10.1021/acs.jafc.2c07719. Online ahead of print.ABSTRACTVolatile esters are major aromas contributing to the organoleptic quality of apple fruit. However, the molecular mechanisms underlying the regulation of volatile ester biosynthesis in apple remain elusive. This study investigated the volatile profiles and transcriptomes of 'Qinguan' (QG) apple fruit during development and/or postharvest storage. Although the constitution of volatiles varied widely between the peel and flesh, the volatile profiles of the peel and flesh of ripening QG fruit were dominated by volatile esters. WGCNA results suggested that 19 genes belonging to ester biosynthesis pathways and 11 hub transcription factor genes potentially participated in the biosynthesis and regulation of esters. To figure out key regulators of ester biosynthesis, correlation network analysis, dual-luciferase assays, and yeast one-hybrid assay were conducted and suggested that MdMYB94 trans-activated the MdAAT2 promoter and participated in the regulation of ester biosynthesis. This study provides a framework for understanding ester biosynthesis and regulation in apple.PMID:37167631 | DOI:10.1021/acs.jafc.2c07719

Combination of metabolomics and network pharmacology analysis to decipher the mechanisms of total flavonoids of Litchi seed against prostate cancer

Thu, 11/05/2023 - 12:00
J Pharm Pharmacol. 2023 May 11:rgad035. doi: 10.1093/jpp/rgad035. Online ahead of print.ABSTRACTOBJECTIVES: To explore the underlying mechanism of total flavonoids of Litchi seed (TFLS) in treating prostate cancer (PCa).METHODS: Cell Counting Kit-8 (CCK-8), EdU incorporation assay, trypan blue dye assay and colony formation assay were employed to evaluate the effect of TFLS on PCa in vitro. The xenograft mouse model was established to explore the anti-tumour effect of TFLS in vivo. Alterations in the metabolic profiles of the PC3 cells and mouse serum were obtained by untargeted metabolomics. Combination with metabolomics analysis and network pharmacology strategies, the potential targets were predicted and further validated by RT-qPCR.KEY FINDINGS: TFLS attenuated PCa progression both in vitro and in vivo. Metabolomics results yielded from cells and serum indicated that the anti-cancer effect of TFLS was correlated with synergistic modulation of five common metabolic pathways including glycerophospholipid metabolism, arginine and proline metabolism, glycine, serine and threonine metabolism, tryptophan metabolism and steroid biosynthesis. Using in silico prediction and RT-qPCR analysis, we further revealed that TFLS exerted anti-PCa activities via regulating the expressions of nine genes, including MAOA, ACHE, ALDH2, AMD1, ARG1, PLA2G10, PLA2G1B, FDFT1 and SQLE.CONCLUSIONS: TFLS suppressed tumour proliferation in PCa, which may be associated with regulating lipid and amino acid metabolisms.PMID:37167442 | DOI:10.1093/jpp/rgad035

Pages